
International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.2, Mar-Apr 2012 pp-462-470 ISSN: 2249-6645

 www.ijmer.com 462 | P a g e

Dhananjoy Dey
1
, Prasanna Raghaw Mishra

1
, Indranath Sengupta

2

1
SAG, DRDO, Metcalfe House, Delhi - 110 054, INDIA.

2
Department of Mathematics, Jadavpur University, Kolkata, WB - 700 032, INDIA.

Abstract

In this paper we present an improved version of HF-hash [DMS] viz., GB-hash: Hash Functions

Using Groebner Basis. In case of HF-hash, the compression function consists of 32 polynomials with

64 variables, which were taken from the first 32 polynomials of hidden field equations challenge-1

by forcing last 16 variables as 0. In GB-hash we have designed the compression function in such

way that these 32 polynomials with 64 variables form a minimal Groebner basis of the ideal

generated by them with respect to graded lexicographical (grlex) ordering as well as with respect to

graded reverse lexicographical (grevlex) ordering. In this paper we will prove that GB-hash is more

secure than HF-hash as well as it is little bit faster than HF-hash.

Keywords: Dedicated hash functions, differential attack, Groebner basis, preimage attack.

1 Introduction
After recent cryptanalytic attack on MD5 [WY] and SHA-1 [WYY], the security of their successor, SHA-2 family [NIST],

against all kinds of cryptanalytic attacks has become an important issue. Although many attacks [GH], [MPRR], [MPRR1],

[NB], [IMPR], [SS] on the reduced round of SHA-256 are published between 2003 to 2008, but no result gives any practical

threat to the security of SHA-256 till now. In the mean time NIST announced SHA-3 competition in 2007 and the final SHA-3

candidate will be declared by the second quarter of this year. All hash functions submitted for the SHA-3 competition [NIST1]

are divided on the following broad category: balanced Feistel network, unbalanced Feistel network, wide pipe design, key

schedule, MDS matrix, output transformation, S-box and feedback register. But it is still an important issue to analyse the hash

function based on the design principle of MD4 family.

We have already designed a cryptographic hash function viz. HF-hash [DMS] in which we have designed the compression

function consisting of 32 polynomials with 64 variables which were taken from the first 32 polynomials of hidden field equations

challenge-1 by forcing last 16 variables as 0. The leading monomials of 32 polynomials with respect to graded lexicographical

ordering used in HF-hash are the following:

.,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,

3121212131212121712151313121

214121212121216131212121213131213121

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Therefore, there are only six different leading monomials viz. .&,,,, 716151413121 xxxxxxxxxxxx

To improve the design of the compression function of HF-hash function, we have designed a new hash function viz. GB-hash.

The leading monomials of the compression function of 32 polynomials with respect to grlex ordering as well as with respect to

grevlex ordering used in GB-hash are given below:

.,,

,,,,,,,,,,,,,,

,,,,,,,,,,,,,,

636362616059

58575655545352515049484746454443424140393837363534333231

,302928272625242322212019181716151413121110987654321

xxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

These 32 polynomials form a minimal Groebner basis for the ideal they generate with respect to grlex ordering as well as with

respect to grevlex ordering. But if any one wants to solve the system of equations formed by these polynomials, (s)he cannot

reduce the number of polynomials 8 with respect to any monomial ordering with the assumption that they form a Groebner

basis. So the number of equations cannot be reduced to less than 8.

GB-hash: Hash Functions Using Groebner Basis

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.2, Mar-Apr 2012 pp-462-470 ISSN: 2249-6645

 www.ijmer.com 463 | P a g e

In this paper we prove that GB-hash is more secure than HF-hash with respect to the preimage resistance as well as the collision

search attack in the subsequent sections.

2 GB-hash

GB-hash function can take arbitrary length)2(64 of input and gives 256 bits output. We have designed GB-hash by changing

the compression function. The compression function is designed by taking a set of 32 polynomials with 64 variables over GF(2)

which form a minimal Groebner basis of an ideal they generate with respect to grlex or grevlex ordering; where as the

compression function of HF-hash consists of 32 polynomials with 64 variables which were taken from the first 32 polynomials

of hidden field equations challenge-1 by forcing last 16 variables as 0. For computation of GB-hash, we have taken the padding

and parsing procedure, initial value and the 64 constants are the same as HF-hash. For completeness of the algorithm, the

computation of hash value of a message M of length l bits is given below:

Padding: First we append 1 to the end of the message M. Let k be the number of zeros added for padding. The 64-bit

representation of l is appended to the end of k zeros. The padded message M is shown in the following figure. Now k will be the

smallest positive integer satisfying the following condition:

448mod383.,.

448mod0641





lkei

kl

Parsing: Let 'l be the length of the padded message. Divide the padded message into)448/'(ln  448-bit block i.e. fourteen

32-bit words. Let
)(iM denote the

thi block of the padded message, where ni1 and each word of
thi block is denoted by

.141)( jforM i

j

Initial Value: Take the first 256 bits initial value i.e., eight 32-bit words from the expansion of the fractional part of  and

hexadecimal representation of these eight words are given below:

.8964,98082,031299,4093822

,03707344,213198,330885,886243

)0(

7

)0(

6

)0(

5

)0(

4

)0(

3

)0(

2

)0(

1

)0(

0

CEEChEFAhDFhAh

hEAhDAhAFh





Hash Computation: For each 448-bit block ,,,,)()2()1(nMMM  the following four steps are executed for all the values of i

from 1 to n.

1. Initialization

.70)1(  jforhH i

jj

2. Expansion

i. 00 HW 

ii. 141,)( jforMW i

jj

iii. 715 HW 

M 1 k-bit 64-bit

Padded Message

M

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.2, Mar-Apr 2012 pp-462-470 ISSN: 2249-6645

 www.ijmer.com 464 | P a g e

iv. ,6316),(1814163   jforWWWWrotlW jjjjj where krotl denotes the left rotation

by k.

This is the expansion of the message blocks without padding. In the last block we apply padding rule. If

384)1(l bits, then we have two extra blocks in the padded message. Otherwise we have one extra block in the

padded message. In both the cases, we apply the following expansion rule for the last block so that the length of the

message appears in the end of the padded message.

i. 00 HW 

ii. 71 HW 

iii. 152,)( jforMW i

jj

iv. 6316),(1814163   jforWWWWrotlW jjjjj

3. Iteration for j = 0 to 63

i. jKHHpHHT )||(03211
1

ii. jWHHpHHT )||(67542

iii. 67 HH 

iv. 56 HH 

v. 45 HH 

vi.)(2354 THrotlH 

vii. 23 HH 

viii. 12 HH 

ix. 01 HH 

x. ,210 TTH  where 1T and 2T are two temporary variables and 3264 22
: ZZp  be a

function defined by

).,,(.1),,(.2),,(.2)(641326412

30

6411

31 xxpxxpxxpxp  

Since any element 642
Zx can be represented by ,6421 xxx  where 6421 xxx  denotes the bits of

x in decreasing order of their significance. The list of polynomials),,(641 xxpi  for 321 i is

given in https://docs.google.com/file/d/0ByA1ZE-

dqRLQaDFvRWZGZHVUNFNpS1otWjdTVk8tZw/edit

The 64 constants jK are taken from the fractional part of e and are given below:

1 The operation || denotes the concatenation and + denotes the addition mod

322 .

https://docs.google.com/file/d/0ByA1ZE-dqRLQaDFvRWZGZHVUNFNpS1otWjdTVk8tZw/edit
https://docs.google.com/file/d/0ByA1ZE-dqRLQaDFvRWZGZHVUNFNpS1otWjdTVk8tZw/edit

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.2, Mar-Apr 2012 pp-462-470 ISSN: 2249-6645

 www.ijmer.com 465 | P a g e

K0 = AC211BEC K1 = 5FEFE110 K2 = 112276F8 K3 = 8AE122A4

K4 = 18B3488B K5 = 00921A36 K6 = 40C045F8 K7 = C8C0A3DA

K8 = C4ABF676 K9 = 6A68C750 K10 = A37AFE0F K11 = 732806F3

K12 = 25722CB7 K13 = 3FF43825 K14 = ACDF96D7 K15 = 9B53BCD3

K16 = E34950DE K17 = D9780CCB K18 = 8B5F9BB7 K19 = 3D1182ED

K20 = 1921B44A K21 = 7003F30D K22 = 42657E31 K23 = 231E7B55

K24 = 91E3A28E K25 = 95CD4AB0 K26 = 0A0AC2E3 K27 = FCDEBE5E

K28 = FCF1E321 K29 = 1D136560 K30 = 2974BF63 K31 = 70963992

K32 = 4F5B5107 K33 = 0072C0C1 K34 = C99F3C1D K35 = C56598D9

K36 = 77A1D027 K37 = 36675FB6 K38 = A40C34E8 K39 = 46764EAD

K40 = F8823861 K41 = 19F66E64 K42 = 87E10299 K43 = 4311C8C2

K44 = 07C102B9 K45 = 9F4EC8CE K46 = 29D81EBA K47 = 992744F9

K48 = 4CDA6790 K49 = 13DA5357 K50 = BA6D7772 K51 = 80673F08

K52 = B049EE4C K53 = 839F8647 K54 = 736F658B K55 = EBE90F9B

K56 = FA6DC4D1 K57 = E951630E K58 = AFC453E4 K59 = 159B7483

K60 = 45EABF9D K61 = 4292A60E K62 = 17AA0ABD K63 = 94E81C30

4. Intermediate Hash Value

The
thi intermediate hash value

,||||||||||||||)(

7

)(

6

)(

5

)(

4

)(

3

)(

2

)(

1

)(

0

)(iiiiiiiii hhhhhhhhh 

where .70)( jforHh j

i

j
 This

)(ih will be the initial value for the message block .)1(iM

The final hash value of the message M will be

,||||||||||||||)(

7

)(

6

)(

5

)(

4

)(

3

)(

2

)(

1

)(

0

nnnnnnnn hhhhhhhh

where .70)( iforHh i

n

i

Process of Implementation: In order to compute GB-hash(M), first the padding rule is applied and then the padded message is

divided into 448-bit blocks. Now each 448-bit block is divided into fourteen 32-bit words and each 32-bit word is read in little

endian format. For example, suppose we have to read an ASCII file with data „abcd‟, it will be read as 0x64636261.

Test Value of GB-hash

Test values of the three inputs are given below:

GB-hash(a) = f1887394 23fab8a8 0512448e 43d6755e

da90c8d0 c38c38d0 db7ab991 4645e099

GB-hash(ab) = b302d927 033fd17e 1e2ff903 839e4b35

1feb55e2 fadd9f8b dca0adbf 1c719df9

GB-hash(abc) = 59d647e2 765243b3 49d01559 8392ba30

 476c5c65 dfacc415 a7a9de8c 794e8bb9

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.2, Mar-Apr 2012 pp-462-470 ISSN: 2249-6645

 www.ijmer.com 466 | P a g e

3. Analysis of GB-hash

In this section we present the complete analysis of GB-hash which includes properties, efficiency as well as the security analysis

of this function.

3.1 Properties of GB-hash

This subsection describes the properties of GB-hash required for cryptographic applications.

i. Easy to compute: For any given value x it is easy to compute GB-hash(x) and the efficiency of this hash function is

given in section 3.2.

ii. One-wayness: Suppose one knows the GB-hash(x) for an input x. Now to find the value of x, (s)he has to solve the

system of polynomial equations consisting of 32 polynomials with 64 variables given in the site for each round

operation. Since this system of equations is underdefined, the XL [CKPS] method or any variant of XL [YC] cannot be

applied to solve this system.

We will prove that this system of equations cannot be solve in polynomial time using the method described for solving

underdefined system of equation in [KPG].

Proposition 3.1. Let G denote the set of polynomials },,,{ 3221 ppp  , where spi ' are defined above and G

generates an ideal I. Then

(i) G is a Groebner basis for I with respect to the monomial order grlex as well as with respect to grevlex.

(ii) If 'G is a non-empty subset of G and if 'G is a Groebner basis for I with respect to some monomial order,

then .8'# G

Proof 3.1.

(i) The leading term (lt) of 3221 ,,, ppp  in G with respect to the monomial order grlex as well as with respect to

grevlex are x1x2, x3x4, x5x6, x7x8, x9x10, x11x12, x13x14, x15x16, x17x18, x19x20, x21x22, x23x24, x25x26, x27x28, x29x30, x31x32, x33x34,

x35x36, x37x38, x39x40, x41x42, x43x44, x45x46, x47x48, x49x50, x51x52, x53x54, x55x56, x57x58, x59x60, x61x62, x63x64 respectively.

 Since))(),(()()(jiji pltpltlcmpltplt  i.e.)(iplt and)(jplt are relatively prime then S-polynomial

),(ji ppS reduces to zero for }.32,,2,1{,&  jiji

 This shows that the set of polynomials },,,{ 3221 ppp  forms a Groebner basis with respect to grlex or grevlex

ordering. Furthermore, no leading monomial of ip divides the leading monomials of jp for .ji Thus

},,,{ 3221 ppp  forms a minimal Groebner basis with respect to grlex or grevlex ordering.

(ii) Let },,,{&},,,{},,,,{},,,,{ 322625424181731610928211 pppGpppGpppGpppG   and

}.,,,{&},,,{},,,,{},,,,{ 64504944834333321817216211 xxxVxxxVxxxVxxxV   Therefore,

4321 GGGGG  and .jiforGG ji   We have chosen the sets sGi ' in such a way that the

linear terms of Gi consist of the variables from the set Vi for .1 ji And the non-linear terms of the form kj xx are

chosen in such a way that ij Vx  and

},,,{ 6421 xxxx jjk  ,1161  iifjfor ,23217  iifjfor

 34833  iifjfor and .46349  iifjfor

The sets Gi are selected in a manner that no monomial will appear more than 7 times. Now suppose that the monomial

ba xx appears 7 times in some Gi. Then if we consider the variable order , ba xx there exists 7 polynomials

whose leading terms will be ba xx . If we compute Groebner basis of these 7 polynomials, there will be only one

polynomial in the Groebner basis. Since each Gi contains 8 polynomials, so one has to take at least 2 elements from

each Gi to form a Groebner basis with respect to any monomial order.

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.2, Mar-Apr 2012 pp-462-470 ISSN: 2249-6645

 www.ijmer.com 467 | P a g e

Thus if 'G is a non-empty subset of G and if 'G is a Groebner basis for the ideal I with respect to some monomial

order, then '#G is at least 8.

Since the set of polynomials used in designing the compression function of GB-hash can not be reduced to a set

consisting of < 8 polynomials such that they form a Groebner basis with respect to any monomial ordering, so by

[KPG], we can say that the system of polynomials equations taken from the compression function of GB-hash cannot be

solved in polynomial time.

Now, in order to solve this system of equations using the
2
Algorithm A given by Courtois et. al. in [CGMT], at least

272 operations are required to solve for one round of GB-hash. Since GB-hash has 64 rounds one has to compute
64272 

 operations to get back the value of x, for a given GB-hash(x). This is far beyond the today's computation power.

Thus, for any given GB-hash(x), it is difficult to find the input x.

iii. Randomness: We have taken an input file M consisting of 448 bits and computed GB-hash(M). By changing the
thi

bit of M, the files iM have been generated, for .4481  i We then computed GB-hash(iM) of all the 448 files

iM , computed the Hamming distances id between GBhash(M) and GB-hash(iM), for 4481  i and finally

computed the distances between corresponding eight 32-bit words of the hash values. The following table shows the

maximum, the minimum, the mode and the mean of the above distances.

Changes
1W

 2W
 3W

 4W
 5W

 6W
 7W

 8W

GB-hash HF-hash

Max 24 23 25 24 24 23 24 24 157 149

Min 8 7 8 7 6 7 8 8 107 103

Mode 16 16 15 15 15 16 15 16 129 132

Mean 16 16 16 16 16 16 16 16 128 128

Ideally id should be 128 for .4481  i But we have found that sd i ' were lying between 107 and 157 for the

above files. The following table and the figure show the distribution of the 448 files with respect to their distances.

2 which is the best algorithm for solving our system of equations among Algorithms A, B & C

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.2, Mar-Apr 2012 pp-462-470 ISSN: 2249-6645

 www.ijmer.com 468 | P a g e

iv. The Bit-Variance Test: The bit variance test consists of measuring the impact of changing input message bits on the

digest bits. More specifically, given an input message, all the small changes as well as the large changes of this input

message bits occur and the bits in the corresponding digest are evaluated for each such change. Afterwards, for each digest

bit the probabilities of taking on the values of 1 and 0 are measured considering all the digests produced by applying input

message bit changes. If 2/1)0()1( ii PP for all digest bits ,,,2,1 ni  where n is the digest length, then, the

one-way hash function under consideration has attained maximum performance in terms of the bit variance test [KZ].

Therefore, the bit variance test actually measures the uniformity of each bit of the digest. Since it is computationally

difficult to consider all input message bit changes, we have evaluated the results for only up to 449 files and found the

following results:

 Number of digests = 449

 Mean frequency of 1s (expected) = 224.50

 Mean frequency of 1s (calculated) = 223.72

The above analysis shows that GB-hash exhibits a reasonably good avalanche effect. Thus it can be used for cryptographic

applications.

3.2 Efficiency of GB-hash
The following table gives a comparative study in the efficiency of GB-hash and HF-hash in HP Pentium - D with 3 GHz

processor and 512 MB RAM.

The efficiency of GB-hash can be improved by choosing the reduced Groebner basis instead of a minimal Groebner basis.

3.3 Security Analysis

In this paper we have applied a new method for expanding a 512-bit message block into 2048-bit block. For this purpose we

have to change the padding rule and the procedure of parsing a padded message. In case of MD-5, SHA-1 & SHA-256, the

padded message is divided into 512-bit blocks whereas in case of GB-hash, the padded message is divided into 448-bit blocks.

Then two 32-bit words are added to construct a 512-bit block as the input for each iteration, where these two words depend on

the previous internal hash updates or chaining variables. So, in each iteration, the 512-bit blocks are not independent from the

previous message blocks as in the case of MD-5, SHA-1 or SHA-256. Message expansion algorithm of GB-hash is dependent on

Range

of Distance

No. of

Files

Percentage

GB-hash

Percentage

HF-hash

5128  241 53.79 47.99

10128  366 81.70 80.80

15128  425 94.87 93.97

20128  444 98.88 98.88

File Size

(in MB)

GB-hash

(in Sec)

HF-hash

(in Sec)

1.4 18.76 20.02

4.84 65.45 67.72

7.48 105.28 109.73

12.94 174.87 181.01

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.2, Mar-Apr 2012 pp-462-470 ISSN: 2249-6645

 www.ijmer.com 469 | P a g e

the first and last word of the previous hash. Now if small change is occurred in the inputs, the intermediate hash values will be

different. Thus we will get the differences in first and last words of intermediate hash values. These differences along with the

rotation in the message expansion formula make impossible to find corrective pattern described in [CJ]. Thus, differential attack

by Chabaud and Joux is not applicable to our hash function because one does not have any control over two 32-bit words coming

from the previous internal hash updates.

Moreover, a 1-bit difference in any one of 14 initial 32-bit words propagates itself to at least 162 bits of the expanded message

since we have taken the 64 round operations. Less than 70 bit difference in expanded message and input message is obtained by

changing 1-bit input when 32 or 48 round operations are performed. That is why we have taken 64 round operations for GB-hash

function. This makes it impossible to find corrective patterns used by Chabaud and Joux in [CJ], due to the reason that

differences propagate to other positions.

The idea of Wang et. al. for finding collision in SHA-0 [WYY1] and SHA-1 [WYY] is to find out the disturbance vectors with

low Hamming weight first and then to construct a differential path. To construct a valid differential path, it is important to

control the difference propagation in each chaining variable. After identifying the wanted and unwanted differences one can

apply the Boolean functions (mainly IF) and the carry effect to cancel out these differences. In particular, when an input

difference is 1, the output difference can be 1, -1 or 0. Hence, the function can preserve, flip or absorb an input difference. This

gives a good flexibility to construct a differential path. The key of these attacks was the Boolean functions used in compression

function which in combination with carry effect facilitate the differential attack.

We have replaced the Boolean functions with 32 polynomials having 64 variables, which form a Groebner basis for the ideal

they generate. Now if we change 1 bit in the inputs of GB-hash, the outputs will be the same after one round of operation of the

compression function. Because, this input difference will not effect since in our case .00 HW  But this input difference will

appear in 1W . Thus, the output differences will be found after two rounds of computing compression function. We have

computed the difference propagation of chaining variables for several files having 1 bit input difference and the result is given in

the following table.

This shows that it is impossible to control the difference propagation of chaining variable after round two as in the case of GB-

hash. Therefore, these attacks also are not applicable to GB-hash hash function. Although the cross dependence equation

described by Sanadhya and Sarkar in [SS] can be formed in case of GB-hash, the procedure of message expansion as well as the

compression function of GB-hash being different from SHA-2 family, this procedure for finding collision cannot be applied in

our hash function. Thus, this hash function is also collision resistance against the method described by Sanadhya and Sarkar.

Thus the compression function of GB-hash is collision-resistant against existing attacks. Since IV of GB-hash is fixed and the

padding procedure of GB-hash includes the length of the message, therefore by Merkle-Damgard theorem [Dam] [Mer] we can

say that GB-hash is collision-resistant against existing attacks.

4 Conclusion
In this paper a dedicated hash function GB-hash has been presented. A system of multivariate polynomials which form a minimal

Groebner basis with respect to grlex or grevlex ordering is applied for designing the compression function of our proposed hash

function. Analysis of this hash function viz. randomness as well as security proof are also described here. GB-hash differs from

the MD family and the SHA family mainly in the procedure of message expansion and the compression function. The advantages

of our proposed hash function over the most commonly used hash functions, are that the differential attack applied by Chabaud

and Joux in SHA-0 as well as collision search for SHA-1 by Wang et. al. and collision search method applied by Sarkar et. al. for

SHA-2 family are not applicable. Further work is going on regarding the improvement of the efficiency as well as the security of

GB-hash.

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.2, Mar-Apr 2012 pp-462-470 ISSN: 2249-6645

 www.ijmer.com 470 | P a g e

References

[CGMT] N. Courtois, L. Goubin, W. Meier & J. Tacier, “Solving Under-defined Systems of Multivariate Quadratic

Equation”, PKC 002, LNCS 2274, pages 211 - 227, Springer-Verlag, 2002.

[CJ] F. Chabaud & A. Joux, “Differential Collisions in SHA-0”, Advances in Cryptology - CRYPTO 098, LNCS 1462,

pages 56 - 71, Springer-Verlag, 1998.

[CKPS] N. Courtois, A. Klimov, J. Patarin & A. Shamir, “Efficient Algorithms for Solving Over-defined Systems of

Multivariate Polynomial Equations”, EUROCRYPT 2000, LNCS 1807, pages 392 - 407, Springer-Verlag, 2000.

[Dam] I. B. Damgard, “A Design Principle for Hash Functions”, in Advances in Cryptology Crypto 089 pages 416 - 427,

Springer-Verlag, 1990.

[DMS] D. Dey, P. R. Mishra & I. Sengupta, “HF-hash: Hash Functions Using Restricted HFE Challenge-1”, in

International Journal of Advanced Science and Technology, Vol. 37, pp 129-140, 2011. Available online at

 http://www.sersc.org/journals/IJAST/Vol37/11.pdf

[GH] H. Gilbert & H. Handschuh, “Security Analysis of SHA-256 and Sisters”, Selected Areas in Cryptography, 10th

Annual International Workshop, SAC 2003, Revised Papers, LNCS 3006, Springer, 2003.

[IMPR] S. Indesteege, F. Mendel, B. Preneel & C. Rechberger, “Collisions and other Non-Random Properties for Step-

Reduced SHA-256”, Cryptology eprint Archive. Available online at

 http://eprint.iacr.org/2008/131.pdf

[KPG] A. Kipnis, J. Patarin & L. Goubin, “Unbalanced Oil and Vinegar Signature Schemes”, Advances in Cryptology

EUROCRYPT99, LNCS, 1592, pages 206 - 222 Springer Verlag, 1999.

[KZ] D.Karras & V. Zorkadis, “A Novel Suite of Tests for Evaluating One-Way Hash Functions for Electronic

Commerce Applications”, IEEE, 2000.

[Mer] R. C. Merkle, “One-way hash functions and DES”, in Advances in Cryptology Crypto 089, pages 428 - 446,

Springer-Verlag, 1990.

[MPRR] F. Mendel, N. Pramstaller, C. Rechberger & V. Rijmen, “Analysis of Step-Reduced SHA-256”, Fast Software

Encryption, FSE 2006, LNCS 4047, pages 126 - 143, Springer, 2006.

[MPRR1] F. Mendel, N. Pramstaller, C. Rechberger & V. Rijmen, “Analysis of Step-Reduced SHA-256”, Cryptology eprint

Archive. Available online at

 http://eprint.iacr.org/2008/130.pdf

[NB] I. Nikolic & A. Biryukov, “Collisions for Step-Reduced SHA-256”, Fast Software Encryption, FSE 2008, pages 1 -

16. Springer, 2008.

[NIST] National Institute of Technology, Secure Hash Standard, “FIPS Publication-180-2”, 2002. Available online at

 http://www.itl.nist.gov/_pspubs/.

[NIST1] National Institute of Standards and Technology, “Cryptographic Hash Project”. Available online at

 http://csrc.nist.gov/groups/ST/hash/index.html

[SS] S. Sanadhya & P. Sarkar, “Non-Linear Reduced Round Attacks Against SHA-2 Hash Family”, Information Security

and Privacy -ACISP 2008, LNCS, Springer, 2008.

[SS1] S. Sanadhya & P. Sarkar, “Attacking Step Reduced SHA-2 Family in a Unified Framework”, Available online at

 http://eprint.iacr.org/2008/271.pdf

[WY] X. Wang & H. Yu, “How to Break MD5 and Other Hash Functions”, Advances in Cryptology - EUROCRYPT

2005, LNCS 3494, pages 19 - 35, Springer, 2005.

[WYY] X. Wang, Y. Yin & H. Yu, “Finding Collisions in the Full SHA-1”, in Advances in Cryptology CRYPTO 005,

LNCS 3621, pages 17 - 36, Springer, 2005.

[WYY1] X. Wang, H. Yu & Y. Yin, “Efficient Collision Search Attacks on SHA-0”, in Advances in Cryptology CRYPTO

005, LNCS 3621, pages 1 - 16, Springer, 2005.

[YC] P. Yang & J. Chen, “All in the XL Family: Theory and Practice”, Preprint.

http://www.sersc.org/journals/IJAST/Vol37/11.pdf
http://eprint.iacr.org/2008/131.pdf
http://eprint.iacr.org/2008/130.pdf
http://www.itl.nist.gov/_pspubs/
http://csrc.nist.gov/groups/ST/hash/index.html
http://eprint.iacr.org/2008/271.pdf

