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Abstract 

In this paper we present an improved version of HF-hash [DMS] viz., GB-hash: Hash Functions 

Using Groebner Basis. In case of HF-hash, the compression function consists of 32 polynomials with 

64 variables, which were taken from the first 32 polynomials of hidden field equations challenge-1 

by forcing last 16 variables as 0. In GB-hash we have designed the compression function in such 

way that these 32 polynomials with 64 variables form a minimal Groebner basis of the ideal 

generated by them with respect to graded lexicographical (grlex) ordering as well as with respect to 

graded reverse lexicographical (grevlex) ordering. In this paper we will prove that GB-hash is more 

secure than HF-hash as well as it is little bit faster than HF-hash.  

 

Keywords: Dedicated hash functions, differential attack, Groebner basis, preimage attack. 

1 Introduction 
After recent cryptanalytic attack on MD5 [WY] and SHA-1 [WYY], the security of their successor, SHA-2 family [NIST], 

against all kinds of cryptanalytic attacks has become an important issue. Although many attacks [GH], [MPRR], [MPRR1], 

[NB], [IMPR], [SS] on the reduced round of SHA-256 are published between 2003 to 2008, but no result gives any practical 

threat to the security of SHA-256 till now. In the mean time NIST announced SHA-3 competition in 2007 and the final SHA-3 

candidate will be declared by the second quarter of this year. All hash functions submitted for the SHA-3 competition [NIST1] 

are divided on the following broad category: balanced Feistel network, unbalanced Feistel network, wide pipe design, key 

schedule, MDS matrix, output transformation, S-box and feedback register. But it is still an important issue to analyse the hash 

function based on the design principle of MD4 family. 

We have already designed a cryptographic hash function viz. HF-hash [DMS] in which we have designed the compression 

function consisting of 32 polynomials with 64 variables which were taken from the first 32 polynomials of hidden field equations 

challenge-1 by forcing last 16 variables as 0. The leading monomials of 32 polynomials with respect to graded lexicographical 

ordering used in HF-hash are the following: 
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Therefore, there are only six different leading monomials viz. .&,,,, 716151413121 xxxxxxxxxxxx  

 

To improve the design of the compression function of HF-hash function, we have designed a new hash function viz. GB-hash. 

The leading monomials of the compression function of 32 polynomials with respect to grlex ordering as well as with respect to 

grevlex ordering used in GB-hash are given below: 
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These 32 polynomials form a minimal Groebner basis for the ideal they generate with respect to grlex ordering as well as with 

respect to grevlex ordering. But if any one wants to solve the system of equations formed by these polynomials, (s)he cannot 

reduce the number of polynomials 8  with respect to any monomial ordering with the assumption that they form a Groebner 

basis. So the number of equations cannot be reduced to less than 8. 

GB-hash: Hash Functions Using Groebner Basis 
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In this paper we prove that GB-hash is more secure than HF-hash with respect to the preimage resistance as well as the collision 

search attack in the subsequent sections. 

 

2 GB-hash 

GB-hash function can take arbitrary length )2( 64  of input and gives 256 bits output. We have designed GB-hash by changing 

the compression function. The compression function is designed by taking a set of 32 polynomials with 64 variables over GF(2) 

which form a minimal Groebner basis of an ideal they generate with respect to grlex or grevlex ordering; where as the 

compression function of HF-hash consists of 32 polynomials with 64 variables which were taken from the first 32 polynomials 

of hidden field equations challenge-1 by forcing last 16 variables as 0. For computation of GB-hash, we have taken the padding 

and parsing procedure, initial value and the 64 constants are the same as HF-hash. For completeness of the algorithm, the 

computation of hash value of a message M of length l bits is given below: 

 

Padding: First we append 1 to the end of the message M. Let k be the number of zeros added for padding. The 64-bit 

representation of l is appended to the end of k zeros. The padded message M is shown in the following figure. Now k will be the 

smallest positive integer satisfying the following condition: 

448mod383.,.

448mod0641





lkei

kl
 

 

 

 

Parsing: Let 'l  be the length of the padded message. Divide the padded message into )448/'( ln   448-bit block i.e. fourteen 

32-bit words. Let 
)(iM  denote the 

thi  block of the padded message, where ni1  and each word of 
thi  block is denoted by 

.141)(  jforM i

j
 

Initial Value: Take the first 256 bits initial value i.e., eight 32-bit words from the expansion of the fractional part of   and 

hexadecimal representation of these eight words are given below: 

.8964,98082,031299,4093822
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Hash Computation: For each 448-bit block ,,,, )()2()1( nMMM   the following four steps are executed for all the values of i 

from 1 to n. 

1. Initialization  

.70)1(   jforhH i

jj  

2. Expansion  

i. 00 HW   

ii. 141,)(  jforMW i

jj  

iii. 715 HW   

M 1 k-bit 64-bit 

Padded Message 

M 
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iv. ,6316),( 1814163   jforWWWWrotlW jjjjj where krotl  denotes the left rotation 

by k. 

This is the expansion of the message blocks without padding. In the last block we apply padding rule. If 

384)1( l bits, then we have two extra blocks in the padded message. Otherwise we have one extra block in the 

padded message. In both the cases, we apply the following expansion rule for the last block so that the length of the 

message appears in the end of the padded message. 

i. 00 HW   

ii. 71 HW   

iii. 152,)(  jforMW i

jj
 

iv. 6316),( 1814163   jforWWWWrotlW jjjjj  

3. Iteration for j = 0 to 63  

i. jKHHpHHT  )||( 03211
1 

ii. jWHHpHHT  )||( 67542  

iii. 67 HH   

iv. 56 HH   

v. 45 HH   

vi. )( 2354 THrotlH   

vii. 23 HH   

viii. 12 HH   

ix. 01 HH   

x. ,210 TTH   where 1T  and 2T  are two temporary variables and 3264 22
: ZZp  be a 

function defined by  

).,,(.1),,(.2),,(.2)( 641326412

30

6411

31 xxpxxpxxpxp    

Since any element 642
Zx can be represented by ,6421 xxx   where 6421 xxx   denotes the bits of 

x in decreasing order of their significance. The list of polynomials ),,( 641 xxpi   for 321 i  is 

given in https://docs.google.com/file/d/0ByA1ZE-

dqRLQaDFvRWZGZHVUNFNpS1otWjdTVk8tZw/edit 

The 64 constants jK are taken from the fractional part of e and are given below: 

                                                           
1 The operation || denotes the concatenation and + denotes the addition mod

322 . 

https://docs.google.com/file/d/0ByA1ZE-dqRLQaDFvRWZGZHVUNFNpS1otWjdTVk8tZw/edit
https://docs.google.com/file/d/0ByA1ZE-dqRLQaDFvRWZGZHVUNFNpS1otWjdTVk8tZw/edit
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K0 = AC211BEC  K1 = 5FEFE110  K2 = 112276F8  K3 = 8AE122A4 

K4 = 18B3488B  K5 = 00921A36  K6 = 40C045F8  K7 = C8C0A3DA 

K8 = C4ABF676  K9 = 6A68C750  K10 = A37AFE0F  K11 = 732806F3 

K12 = 25722CB7  K13 = 3FF43825  K14 = ACDF96D7  K15 = 9B53BCD3 

K16 = E34950DE  K17 = D9780CCB  K18 = 8B5F9BB7  K19 = 3D1182ED 

K20 = 1921B44A K21 = 7003F30D  K22 = 42657E31  K23 = 231E7B55 

K24 = 91E3A28E  K25 = 95CD4AB0  K26 = 0A0AC2E3  K27 = FCDEBE5E 

K28 = FCF1E321  K29 = 1D136560  K30 = 2974BF63  K31 = 70963992 

K32 = 4F5B5107  K33 = 0072C0C1  K34 = C99F3C1D  K35 = C56598D9 

K36 = 77A1D027  K37 = 36675FB6  K38 = A40C34E8  K39 = 46764EAD 

K40 = F8823861  K41 = 19F66E64  K42 = 87E10299  K43 = 4311C8C2 

K44 = 07C102B9  K45 = 9F4EC8CE  K46 = 29D81EBA  K47 = 992744F9 

K48 = 4CDA6790  K49 = 13DA5357  K50 = BA6D7772  K51 = 80673F08 

K52 = B049EE4C K53 = 839F8647  K54 = 736F658B  K55 = EBE90F9B 

K56 = FA6DC4D1  K57 = E951630E  K58 = AFC453E4  K59 = 159B7483 

K60 = 45EABF9D  K61 = 4292A60E  K62 = 17AA0ABD  K63 = 94E81C30 

4. Intermediate Hash Value 

The 
thi intermediate hash value 
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j
 This 

)(ih  will be the initial value for the message block .)1( iM   

The final hash value of the message M will be 
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i  

Process of Implementation: In order to compute GB-hash(M), first the padding rule is applied and then the padded message is 

divided into 448-bit blocks. Now each 448-bit block is divided into fourteen 32-bit words and each 32-bit word is read in little 

endian format. For example, suppose we have to read an ASCII file with data „abcd‟, it will be read as 0x64636261. 

Test Value of GB-hash 

Test values of the three inputs are given below: 

GB-hash(a)  =  f1887394 23fab8a8 0512448e 43d6755e 

da90c8d0 c38c38d0 db7ab991 4645e099 

GB-hash(ab)  =  b302d927 033fd17e 1e2ff903 839e4b35 

1feb55e2 fadd9f8b dca0adbf 1c719df9 

 

GB-hash(abc)  =  59d647e2 765243b3 49d01559 8392ba30 

 476c5c65 dfacc415 a7a9de8c 794e8bb9 
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3. Analysis of GB-hash 

In this section we present the complete analysis of GB-hash which includes properties, efficiency as well as the security analysis 

of this function. 

 

3.1 Properties of GB-hash 

This subsection describes the properties of GB-hash required for cryptographic applications. 

 

i. Easy to compute: For any given value x it is easy to compute GB-hash(x) and the efficiency of this hash function is 

given in section 3.2.  

ii. One-wayness: Suppose one knows the GB-hash(x) for an input x. Now to find the value of x, (s)he has to solve the 

system of polynomial equations consisting of 32 polynomials with 64 variables given in the site for each round 

operation. Since this system of equations is underdefined, the XL [CKPS] method or any variant of XL [YC] cannot be 

applied to solve this system. 

 

We will prove that this system of equations cannot be solve in polynomial time using the method described for solving 

underdefined system of equation in [KPG]. 

 

Proposition 3.1. Let G denote the set of polynomials },,,{ 3221 ppp  , where spi '  are defined above and G 

generates an ideal I. Then  

 

(i) G is a Groebner basis for I with respect to the monomial order grlex as well as with respect to grevlex.  

(ii) If 'G  is a non-empty subset of G and if 'G  is a Groebner basis for I with respect to some monomial order, 

then .8'# G  

Proof 3.1.  

(i) The leading term (lt) of 3221 ,,, ppp   in G with respect to the monomial order grlex as well as with respect to 

grevlex are x1x2, x3x4, x5x6, x7x8, x9x10, x11x12, x13x14, x15x16, x17x18, x19x20, x21x22, x23x24, x25x26, x27x28, x29x30, x31x32, x33x34, 

x35x36, x37x38, x39x40, x41x42, x43x44, x45x46, x47x48, x49x50, x51x52, x53x54, x55x56, x57x58, x59x60, x61x62, x63x64 respectively. 

 

 Since ))(),(()()( jiji pltpltlcmpltplt   i.e. )( iplt  and )( jplt  are relatively prime then S-polynomial 

),( ji ppS  reduces to zero for }.32,,2,1{,&  jiji   

 

 This shows that the set of polynomials },,,{ 3221 ppp   forms a Groebner basis with respect to grlex or grevlex 

ordering. Furthermore, no leading monomial of ip  divides the leading monomials of jp for .ji  Thus 

},,,{ 3221 ppp   forms a minimal Groebner basis with respect to grlex or grevlex ordering. 

(ii) Let },,,{&},,,{},,,,{},,,,{ 322625424181731610928211 pppGpppGpppGpppG    and 

}.,,,{&},,,{},,,,{},,,,{ 64504944834333321817216211 xxxVxxxVxxxVxxxV    Therefore, 

4321 GGGGG   and .jiforGG ji    We have chosen the sets sGi '  in such a way that the 

linear terms of Gi consist of the variables from the set Vi for .1 ji  And the non-linear terms of the form kj xx  are 

chosen in such a way that ij Vx   and 

},,,{ 6421 xxxx jjk  ,1161  iifjfor ,23217  iifjfor  

 34833  iifjfor  and .46349  iifjfor    

 

The sets Gi are selected in a manner that no monomial will appear more than 7 times. Now suppose that the monomial 

ba xx  appears 7 times in some Gi. Then if we consider the variable order , ba xx  there exists 7 polynomials 

whose leading terms will be ba xx . If we compute Groebner basis of these 7 polynomials, there will be only one 

polynomial in the Groebner basis. Since each Gi contains 8 polynomials, so one has to take at least 2 elements from 

each Gi to form a Groebner basis with respect to any monomial order. 
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Thus if 'G  is a non-empty subset of G and if 'G  is a Groebner basis for the ideal I with respect to some monomial 

order, then '#G  is at least 8. 

 

Since the set of polynomials used in designing the compression function of GB-hash can not be reduced to a set 

consisting of < 8 polynomials such that they form a Groebner basis with respect to any monomial ordering, so by 

[KPG], we can say that the system of polynomials equations taken from the compression function of GB-hash cannot be 

solved in polynomial time. 

 

Now, in order to solve this system of equations using the 
2
Algorithm A given by Courtois et. al. in [CGMT], at least 

272  operations are required to solve for one round of GB-hash. Since GB-hash has 64 rounds one has to compute 
64272 

 operations to get back the value of x, for a given GB-hash(x). This is far beyond the today's computation power. 

 

Thus, for any given GB-hash(x), it is difficult to find the input x. 

 

iii. Randomness:  We have taken an input file M consisting of 448 bits and computed GB-hash(M). By changing the 
thi  

bit of M, the files iM  have been generated, for .4481  i  We then computed GB-hash( iM ) of all the 448 files 

iM , computed the Hamming distances id  between GBhash(M) and GB-hash( iM ), for 4481  i  and finally 

computed the distances between corresponding eight 32-bit words of the hash values. The following table shows the 

maximum, the minimum, the mode and the mean of the above distances. 

Changes 
1W

 2W
 3W

 4W
 5W

 6W
 7W

 8W
 

GB-hash HF-hash 

Max 24 23 25 24 24 23 24 24 157 149 

Min 8 7 8 7 6 7 8 8 107 103 

Mode 16 16 15 15 15 16 15 16 129 132 

Mean 16 16 16 16 16 16 16 16 128 128 

 

Ideally id  should be 128 for .4481  i  But we have found that sd i '  were lying between 107 and 157 for the 

above files. The following table and the figure show the distribution of the 448 files with respect to their distances.  

 

 

                                                           
2 which is the best algorithm for solving our system of equations among Algorithms A, B & C 
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iv.  The Bit-Variance Test: The bit variance test consists of measuring the impact of changing input message bits on the 

digest bits. More specifically, given an input message, all the small changes as well as the large changes of this input 

message bits occur and the bits in the corresponding digest are evaluated for each such change. Afterwards, for each digest 

bit the probabilities of taking on the values of 1 and 0 are measured considering all the digests produced by applying input 

message bit changes. If 2/1)0()1(  ii PP  for all digest bits ,,,2,1 ni   where n is the digest length, then, the 

one-way hash function under consideration has attained maximum performance in terms of the bit variance test [KZ]. 

Therefore, the bit variance test actually measures the uniformity of each bit of the digest. Since it is computationally 

difficult to consider all input message bit changes, we have evaluated the results for only up to 449 files and found the 

following results: 

  

  Number of digests = 449 

  Mean frequency of 1s (expected) = 224.50 

  Mean frequency of 1s (calculated) = 223.72 

  

The above analysis shows that GB-hash exhibits a reasonably good avalanche effect. Thus it can be used for cryptographic 

applications. 

 

3.2 Efficiency of GB-hash 
The following table gives a comparative study in the efficiency of GB-hash and HF-hash in HP Pentium - D with 3 GHz 

processor and 512 MB RAM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The efficiency of GB-hash can be improved by choosing the reduced Groebner basis instead of a minimal Groebner basis. 

 

3.3 Security Analysis 

In this paper we have applied a new method for expanding a 512-bit message block into 2048-bit block. For this purpose we 

have to change the padding rule and the procedure of parsing a padded message. In case of MD-5, SHA-1 & SHA-256, the 

padded message is divided into 512-bit blocks whereas in case of GB-hash, the padded message is divided into 448-bit blocks. 

Then two 32-bit words are added to construct a 512-bit block as the input for each iteration, where these two words depend on 

the previous internal hash updates or chaining variables. So, in each iteration, the 512-bit blocks are not independent from the 

previous message blocks as in the case of MD-5, SHA-1 or SHA-256. Message expansion algorithm of GB-hash is dependent on 

Range 

of Distance 

No. of 

Files 

Percentage 

GB-hash 

Percentage 

HF-hash 

5128   241 53.79 47.99 

10128   366 81.70 80.80 

15128   425 94.87 93.97 

20128   444 98.88 98.88 

File Size 

(in MB) 

GB-hash 

(in Sec) 

HF-hash 

(in Sec) 

1.4 18.76 20.02 

4.84 65.45 67.72 

7.48 105.28 109.73 

12.94 174.87 181.01 
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the first and last word of the previous hash. Now if small change is occurred in the inputs, the intermediate hash values will be 

different. Thus we will get the differences in first and last words of intermediate hash values. These differences along with the 

rotation in the message expansion formula make impossible to find corrective pattern described in [CJ]. Thus, differential attack 

by Chabaud and Joux is not applicable to our hash function because one does not have any control over two 32-bit words coming 

from the previous internal hash updates. 

 

Moreover, a 1-bit difference in any one of 14 initial 32-bit words propagates itself to at least 162 bits of the expanded message 

since we have taken the 64 round operations. Less than 70 bit difference in expanded message and input message is obtained by 

changing 1-bit input when 32 or 48 round operations are performed. That is why we have taken 64 round operations for GB-hash 

function. This makes it impossible to find corrective patterns used by Chabaud and Joux in [CJ], due to the reason that 

differences propagate to other positions. 

 

The idea of Wang et. al. for finding collision in SHA-0 [WYY1] and SHA-1 [WYY] is to find out the disturbance vectors with 

low Hamming weight first and then to construct a differential path. To construct a valid differential path, it is important to 

control the difference propagation in each chaining variable. After identifying the wanted and unwanted differences one can 

apply the Boolean functions (mainly IF) and the carry effect to cancel out these differences. In particular, when an input 

difference is 1, the output difference can be 1, -1 or 0. Hence, the function can preserve, flip or absorb an input difference. This 

gives a good flexibility to construct a differential path. The key of these attacks was the Boolean functions used in compression 

function which in combination with carry effect facilitate the differential attack. 

 

We have replaced the Boolean functions with 32 polynomials having 64 variables, which form a Groebner basis for the ideal 

they generate. Now if we change 1 bit in the inputs of GB-hash, the outputs will be the same after one round of operation of the 

compression function. Because, this input difference will not effect since in our case .00 HW   But this input difference will 

appear in 1W . Thus, the output differences will be found after two rounds of computing compression function. We have 

computed the difference propagation of chaining variables for several files having 1 bit input difference and the result is given in 

the following table. 

 

 
 

This shows that it is impossible to control the difference propagation of chaining variable after round two as in the case of GB-

hash. Therefore, these attacks also are not applicable to GB-hash hash function. Although the cross dependence equation 

described by Sanadhya and Sarkar in [SS] can be formed in case of GB-hash, the procedure of message expansion as well as the 

compression function of GB-hash being different from SHA-2 family, this procedure for finding collision cannot be applied in 

our hash function. Thus, this hash function is also collision resistance against the method described by Sanadhya and Sarkar. 

 

Thus the compression function of GB-hash is collision-resistant against existing attacks. Since IV of GB-hash is fixed and the 

padding procedure of GB-hash includes the length of the message, therefore by Merkle-Damgard theorem [Dam] [Mer] we can 

say that GB-hash is collision-resistant against existing attacks. 

 

4 Conclusion 
In this paper a dedicated hash function GB-hash has been presented. A system of multivariate polynomials which form a minimal 

Groebner basis with respect to grlex or grevlex ordering is applied for designing the compression function of our proposed hash 

function. Analysis of this hash function viz. randomness as well as security proof are also described here. GB-hash differs from 

the MD family and the SHA family mainly in the procedure of message expansion and the compression function. The advantages 

of our proposed hash function over the most commonly used hash functions, are that the differential attack applied by Chabaud 

and Joux in SHA-0 as well as collision search for SHA-1 by Wang et. al. and collision search method applied by Sarkar et. al. for 

SHA-2 family are not applicable. Further work is going on regarding the improvement of the efficiency as well as the security of 

GB-hash. 
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