STUDY OF EFFECTS OF VIBRATION ON GRIP STRENGTH

¹Akhilesh.H.Gaidhane,²Dr S. G. Patil

¹(Reader Mech.engg.deptt, RSR RCET Raipur) ²(Proff.Mech.Engg Deptt, P.R.M.I.T & R Amravati)

Introduction

Hand Arm Vibration Syndrome (HAVS) - A collective term that includes a number of disease patterns involving the vascular, neurological and musculoskeletal systems. These disease patterns are associated with exposure to hand-arm vibration and are experienced in particular in the hands and forearms of the exposed worker.

Carpal Tunnel Syndrome (CTS) - Carpal tunnel syndrome is a condition caused by compression of the median nerve within the carpal tunnel at the wrist. CTS is characterised by numbness, tingling, burning, or pain in the thumb, index, and middle fingers.Significant exposure to handarm vibration – Employees whose exposure to hand-arm vibration represents a risk to their health as determined by a risk assessment. This means:

- 1) All workers regularly exposed to hand-arm vibration above the action level of 2.5 m/s^2 .
- 2) Workers who are only occasionally exposed above the action level but a risk assessment or other factors indicate that the pattern of exposure may pose a risk to health, for example:
- a. Use of specific tools or in specific jobs where a detailed risk assessment shows greater than 2.0 m/s².
- b. Pragmatic, based on combination of risk assessment, knowledge of tools and uncertainty regarding the frequency or duration of exposure,
- c. Any job where the worker experiences numbress or tingling in fingers after 5-10 minutes of continuous use of tool,
- d. Jobs where a claims history indicates that HAVS may be a problem.

As Vibration exposure is difficult to assess directly using many fast Fourier (FFT) spectral analyzers because of long task cycle times. Exposure time can-not be accurately estimated using time standards because of high variability between operators and work methods. It is difficult to record vibration without interfering with the operation. Alternately, it is divided into Hand-arm vibration (HAV), affecting workers who use all manner of vibrating pneumatic, electrical. Hydraulic and gasoline powered hand held tools. Due to the weight of the tool and awkward positions that a hand tool operator has to adapt to sometimes, he/she is forced to let the tool rest against his/her torso in an attempt to make the task more comfortable and also to damp the vibration. This results in vibration being transmitted to the body through hand-arm system.

Methodology

For this project a experimental setup is made for identifying and measuring the grip exertion before work while working and after the work of vibration. For this The participants taken were 40 unpaid volunteers (20 men and 20 women) with varied backgrounds in manual work. Participants were not recruited based on their history of work in any particular industry or history of performing specific work tasks. All were in good health at the time of the study, and no participants had acute or chronic musculoskeletal injuries to their upper extremities. Each provided written informed consent before participation. Some of the participants were right handed that is their right had been dominant and some were of left handed that is their left hand is dominant and other non dominant. Different variables are independent and dependent.

Independent variable are

- Vibration level i.e cycles per second and amplitude.
- Dominant and non dominant.
- Male and female participants.
- Peak Grip force in Kgf.
- Average of two values i.e I Maximum voluntary exertion and II Maximum voluntary exertion.

Dependent variables are-

- 1. effect on grip strength, Kg f
- 2. Other symptoms

Experimental setup

A vibrator of around 2500-3500cycles per min is developed for this experiment using mechanical attachment attached to a single phase brushed motor of rating 3500rpm make Volco. The vibration is given by connecting rod connected offset to the motor, and is given to the pvc handle attached on the top of the box. This box is connected to a electronic circuit which calculate the voltage , frequency . this experiment is designed for single minute and for more time it can be adjusted as required. For experiment subject is told to hold the vibratory handle and it is started in timer mode. After one minute he machine automatically stops and frequency is displayed on the screen provided. As due to the force exerted by the subjects the frequency changes www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-454-457 for every person so it can't be fixed as per the rating. For this reason the same as been provided in the machine.

Experimental Task

Participants / Subjects

To study the influence of segmental vibration on the workers, 20 participants were taken among them 10 are males and 10 are females . Each participant was in good participant had healthand no acute or chronic musculoskeletal injuries to their upper extremities. during the experiment and had their breakfast during the experiment. participants were not recruited based on their history of work in any particular industry or history of performing specific work task. Grip strength were measured before the experiment, after one minute of vibration then after 3 minutes of vibration and after 5 minutes of vibration. Anthropometric data taken of the subjects is given further.

First the subject is told to take some breakfast and then the experiment is started.

- 1. Grip strength is recorded using the analog grip strength meter.
- 2. Subject is told to sit on the chair and hold the vibrator machine handle.
- 3. The machine is set in timer mode and is started.
- 4. After one minute it stops automatically and frequency is displayed on the screen and again the grip strength is taken. The same is noted down,
- 5. subject is told to get ready for next minute reading.
- 6. This same procedure is repeated for three minute and five minute and the record is noted in the table.

Experimental setup

GRIP STRENGTH DYNAMOMETER

Electronic circuit box

Anthropometric data

la no	Age	Sex	Weigh	Height	Hand	Circumference	Hand Width		Wrist
				CUE	without thumb	with thumb	without thumb	with thumb	
1	30	M	75	165.1	21	25	10.5	115	17
2	32	М	65	170.18	20	26	95	12	18
3	50	М	65	175.26	22	27	11	13	20
4	52	М	60	167.64	21	24	10	115	16
5	48	М	55	175.26	20	23	95	10.5	15
6	49	М	80	160.02	22	25	11	12	18
7	40	М	60	167.64	20	23	9	10.5	17
8	32	М	60	154.94	23	27	11	13	19
9	36	М	70	177.8	22	26	10.5	13	17
10	59	М	90	180.34	23	27	13	15	21
11	25	F	50	162.56	18	21	85	10	15
12	56	F	85	139.7	19	22	85	10	17
13	29	F	80	149.86	20	22	9	11	16
14	20	F	55	134.62	18	21	85	10	16
15	29	F	57	162.56	19	21	95	12	16
16	48	F	65	177.8	20	22	10	11	15
17	18	F	55	177.8	19	21	9	11	16
18	28	F	60	152.4	18	22	85	10	15
19	27	F	62	165.1	20	23	9	12	17
20	19	F	65	167.64	21	20	8	10	16

Results & discussions

www.ijmer.com

Analysis of data for males

s.no	Grip Strength in Kgf						
	Before experim ent	After 1min	After 3 min	After Smin			
m1	62	55	50	45			
m2	70	62	56	50			
m3	85	75	68	61			
m4	60	52	47	42			
m5	60	53	48	43			
m6	62	54	49	44			
m7	65	57	51	45			
m8	70	62	56	50			
m9	60	53	48	44			
m10	80	71	63	57			

Analysis of data for females

S.no	Grip Strength in Kgf						
	Before experiment	After 1min	After 3 min	After 5min			
F1	30	25	20	18			
F2	15	15	10	12			
F3	25	20	18	15			
F4	45	39	35	30			
F5	35	30	28	25			
F6	30	26	23	20			
F7	35	30	27	24			
F8	30	26	23	20			
F9	25	22	20	17			
F10	40	35	31	27			

General grip strength equation For Male

From the analysis we can generate the general line trend Equation for males i.e:

Y= - 7.2 **x** + 81.5

General grip strength equation For Female

www.ijmer.com

From the analysis we can generate the general line trend Equation for females **i.e:**

Y = -3.5 x + 36.71

Effect of sex on grip strength

As per the experimented data it is seen that the average grip strength of male is 74 Kgf and that of female is 31 Kgf. This indicates that females have **54%** less grip strength than males.

Effect of weight on grip strength for males

For males that their grip strength in general matches with their weight. For different males it can be seen that the value of their grip strength is near to the value of their weight.

Effect of weight on grip strength for females

it can be seen that for overweight females (weight more than 55kg) there is a large difference in their grip strength. Or we can say for overweight females they have very low grip strength value as compare to average weight females. And about the average weight females they show the same trend as males i.e their grip strength value remains nearer to their weight taken in Kg

Standard deviation Using the formula for standard deviation

$$\sigma^{1} = V \sqrt{\sum \left(\frac{Dm - D'm}{n - 1}\right)^{2}}$$

Between one minute and 3 minute data

for male is 2.06 for female is 1.16

Between three minute and five minute data

for male is 1.95 for female is 1.127

CONCLUSION

(a) General line trend equation for male considering all the trends comes to be

www.ijmer.com Vol.2, Issue.1, Jan-Feb 2012 pp-454-457

ISSN: 2249-6645

(b) General line trend equation for male considering all the trends comes to be

Y= - 3.58 X+ 36.71

- (c) Females have **54%** less grip strength force than males
- (d) For males that their grip strength in general matches with their weight. For different males it can be seen that the value of their grip strength is near to the value of their weight
- (e) For females it can be seen that for overweight females (weight more than 55kg) there is a large difference in their grip strength. Or we can say for overweight females they have very low grip strength value as compare to average weight females.

And about the average weight females they show the same trend as males i.e their grip strength value remains nearer to their weight taken in Kg

(f) Between one minute and three minute the standard deviation for male is 2.06
Between three minute and five minute the standard deviation for male is 1.95
Between one minute and three minute the standard deviation for female is 1.16
Between three minute and five minute the standard deviation for female is 1.127
Between three minute and five minute the standard deviation for female is 1.127

References

1. Muscle response to pneumatic hand tool torque reaction forces

Robert G. Radwin; Ernst Vanbergeijk; Thomas J. Armstrong

Ergonomics, 1366-5847, Volume 32, Issue 6, 1989, Pages 655 – 673

2. Effect of Grip Span on Lateral Pinch Grip Strength

Carrie L. Shivers North Carolina State University, Raleigh, North Carolina

Gary A. Mirka North Carolina State University, Raleigh, North Carolina

David B. Kaber North Carolina State University, Raleigh, North Carolina

- 3. The effect of thumb interphalangeal joint position on strength of key pinch. Apfel,E.(1986). Journal of hand surjury, 11A, 47-51
- 4. A comparison of dominant and non dominant hand strengths.

Armstrong, C.A.,& Oldham,J.A.(1999).Journal of hand surjury,24B,421-425.

- 5. Carpal tunnel syndrome and selected personal attributes. Armstrong, T.J.& Chaffin, D.B. (1979). Journal of occupational medicine. 21.481-486.
- 6. The effects of instruction of finger strength measurements: Applicability of the cadwell regimen. Berg, V.J., Clay, D.J., Fathallah, F.A., & Higginbotham, V.L. (1988). In F.Aghazadeh (Ed.). Trends in

ergonomics/human factors V (pp.191-198).Amsterdam:Elsevier Science

7. A proposed standard procedure for static muscle strength testing. Caldwell,L.S.,Chaffin,D.B.,DukesDubos,F.N.,Kromer

K.H.E.,Laubacj,L.L.,Snook,S,H.,&

Wasserman, D.E. (1974) Amrican industrial Hygiene Association journal. 201-206.

Books-

- 1. Human factor ergonomics for building and construction by Martin halander
- 2. Ergonomics by Murrell K.H.F
- 3. Advances in industrial ergonomics and safety by Anil mital