
International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com                Vol.2, Issue.1, Jan-Feb 2012 pp-417-423                ISSN: 2249-6645 

                 www.ijmer.com  417 | P a g e  

 

 

 
 

K.Ruth Ramya
1
,K.Priyanka

2
,K.Anusha

 2
,K.Brahmini

 2, 
G.Mohana 

Lakshmi
2
,K.Abraham

2
 

1(Assistant Professor, Dept. of Computer Science And Engineering, KL University.) 

2(B.Tech Scholars, Dept. of Computer Science And Engineering, KL University.) 

 

ABSTRACT 
This paper presents a novel approach to overcome the 

difficulty and complexity in addressing the issues of 

location updating in terms of monitoring accuracy, 

efficiency, and privacy. Various distressing privacy 

violations caused by sharing sensitive location 

information with potentially malicious services have 

highlighted the importance of location privacy research 

aiming to protect users’ privacy while interacting with 

Location Based Services. This paper presents a 

taxonomy of different approaches proposed to enable 

location privacy in LBS. Location privacy may be 

obtained at the cost of query performance and query 

accuracy. The challenge addressed is how to obtain the 

best possible performance, subjected to given 

requirements for location privacy and query accuracy. 

Our proposed framework uses the spacetwist and 

SCUBA techniques to obtain the privacy and efficiency 

for continuously moving objects. This approach is 

flexible, needs no trusted middleware, and requires 

only well-known incremental NN query processing on 

the server. This framework offers very good 

performance and high privacy, at low communication 

cost thereby providing higher efficiency. 

Keywords- Cloaked region, Clusters, Granular Search, 

Spatiotemporal. 

 

I.INTRODUCTION 
Every day we witness technological advances in wireless 

communications and positioning technologies. These 

developments paved the way to a tremendous amount of 

research in recent years in the field of real-time streaming 

and spatio- temporal databases[9,2].  As the number of 

users of location-based devices (e.g., GPS) continues to 

soar, new applications dealing with extremely large 

numbers of moving objects begin to emerge. These 

applications, faced with limited system resources and near 

real time response obligation call for new real-time 

spatiotemporal query processing algorithms[4].Such 

algorithms must efficiently handle extremely large 

numbers of moving objects and efficiently process large 

numbers of continuous spatiotemporal queries. The 

challenge addressed is how to obtain the best possible 

performance, subjected to given requirements for location 

privacy and efficiency at low query evaluation cost. 

 

 

In a location based  service(LBS) scenario, users query a 

server for nearby points of interest but they may not want 

to disclose their locations to the service. The benefits of  

LBS come at the cost of sharing private identity and 

location information of users with potentially untrusted 

entities offering such services. Sharing such sensitive 

information  with untrusted servers has recently resulted in 

various distressing violations of users’ privacy. To protect 

against various privacy threats while using LBS, several 

studies have proposed different approaches to protect the 

privacy Intuitively, location privacy may be obtained at the 

cost of query performance and query accuracy. 

A taxonomy of approaches have been used for the location 

privacy problem.These approaches are based on 

anonymity/cloaking, transformation and private 

information retrieval (PIR) techniques. Our paper uses  

SpaceTwist to  rectifiy the shortcomings of above 

techniques for k nearest neighbor (kNN) queries. This 

approach is flexible, needs no trusted middleware, requires 

only well-known incremental NN query processing on the 

server and also  offers very good performance and high 

privacy, at low communication cost. 

As for efficiency, two dominant costs are: the wireless 

communication cost for location updates and the query 

evaluation cost at the database server, both of which 

depend on the frequency of location updates. Present range 

and knn queries process and materialize every location 

update individually there by increasing query evaluation 

cost. With an extremely large number of objects and 

queries, this may simply become impossible. In order to 

reduce the cost i.e to increase the efficiency, here we now 

propose a two-pronged strategy towards combating this 

scalability problem. Our solution is based on the fact that 

in many applications objects naturally move in clusters. 

We take the concept of moving micro-clusters and exploit 

this concept towards the optimization of the execution of 

the spatio-temporal queries on moving objects.We propose 

the Scalable Cluster-Based Algorithm (SCUBA) for 

evaluating continuous spatio-temporal queries on moving 

objects.  

 

 

Advanced Query Evaluation Techniques for Preserving Privacy and 

Efficiency of Mobile Objects 

 

 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com                Vol.2, Issue.1, Jan-Feb 2012 pp-417-423                ISSN: 2249-6645 

                 www.ijmer.com  418 | P a g e  

 

II. RELATED WORK 
We review existing location privacy protection techniques, 

which use either spatial cloaking or transformation-based 

matching. 

2.1.Related Work on Preseving Efficiency 

2.1.1.Spatial Cloaking 

With cloaking, the user location q is enlarged into a 

cloaked region Q
1
 that is then used for querying the server 

[16]. This way, q is hidden in Q
1
. The existing cloaking 

solutions differ with respect to (i) the representation of Q
1
, 

(ii) the architecture for cloaking, and (iii) the query 

processing.  

 

Cloaked Region Representation: Cloaked regions come 

in two forms: they are either plain, connected regions (e.g., 

rectangles) or they are discrete and posses “multiple parts” 

(e.g., sets of point locations). Q
1
 by a K-anonymous [13]  

rectangle, which contains the query location q and at least 

K − 1 other user locations. Figure 1a illustrates a 4-

anonymous region Q
1
, where u1,u2, and u3 are (4 − 1) user 

locations.Other work uses circular cloaked regions. The 

study of Ardagnae al. [17]  takes location positioning 

inaccuracy into account, models the user location as a 

circular region, and develops several geometric operators 

for deriving cloaked regions. The cloaked region has also 

been represented by a point set containing q and a number 

of dummy locations (generated by the client) . In Figure 

1b, q1, q2, q3 are dummy locations, and the cloaked region 

is Q0 = {q, q1, q2, q3}.  

Cloaking Architecture:A simple approach to construct a 

cloaked region is to do so at the client [16], [17], 
[11].However, client-based cloaking does not support the 

use of K-anonymous regions. This requires knowing the 

locations of other users, which may be achieved by 

introducing a trusted, third party, location anonymize that 

knows the locations of a population of users. 

 
            (a) K-anonymous                    (b) dummies  

Fig1. Example Cloaked Regions. 

Server Side Query Processing: A discrete cloaked region 

query may be processed by processing each point in the 

query in turn, returning the union of results[12].In this 

setting, a negotiation protocol for trading between privacy 

and result accuracy has also been proposed.The processing 

of plain cloaked regions is more complex. Specialized 

(server-side) algorithms have been proposed for 

identifying a candidate set that includes the NN for any 

location in a cloaked region These algorithms go beyond 

well-known point NN algorithms and introduce 

complexity. 

2.1.2.Transformation-Based Matching 

Recently, transformation-based matching techniques have 

been proposed to enable location privacy. However, these 

do not offer query accuracy guarantees. A theoretical study 

on a client-server protocol for deriving the nearest 

neighbor of q has recently been reported. Its 

communication cost is asymptotic to pN, where N is the 

number of POIs. No experimental evaluation of the 

communication cost and result accuracy of the protocol 

with real data is available. 

2.2.Related Work on Preseving Efficiency 

Spatio-Temporal Query Processing: Efficient evaluation 

of spatio-temporal queries on moving objects has been an 

active area of research for quite some time. Several 

optimization techniques have been developed. These 

include Query Indexing and Velocity Constrained 

Indexing (VCI) [5],, shared execution[14], incremental 

evaluation [14], and query- aware moving objects 

involving high cost.To reduce wireless communication and 

query reevaluation costs, Hu et. al  utilize the notion of 

safe region, making the moving objects query aware. 

Query reevaluation in this framework is triggered by 

location updates only. In this case, the authors combine it 

with different join policies to filter out the objects and 

queries that are guaranteed not to join. The limitations of 

this approach is that the devices may not have enough 

battery power and memory capacity to perform the 

complex computations. Our study falls into this category 

and distinguishes itself from these previous works by 

focusing on utilizing moving clusters abstracting similar 

moving entities to optimize the execution and minimize 

the individual processing[1, 25, 41]. We apply clustering 

as means to achieve scalable processing of continuous 

queries on moving objects. 

III.FRAMEWORK OVERVIEW 

As shown in Fig.2, the PAM[19]  framework consists of 

components located at both the database server and the 

moving objects. At the database server side, we have the 

moving object index, the query index, the query processor, 

and the location manager. The object index is the server-

side view on all objects. More specifically, to evaluate 

queries, the server must store the spatial range, in the form 

of a bounding box, within which each object can possibly 

locate. For each registered query, the query index stores: 1) 

the query parameters (e.g., the rectangle of a range query, 

the query point, and the k value of a kNN query); 2) the 

current query results; and 3) the quarantine area of the 

query. The quarantine area is used to identify the queries 

whose results might be affected by an incoming location 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com                Vol.2, Issue.1, Jan-Feb 2012 pp-417-423                ISSN: 2249-6645 

                 www.ijmer.com  419 | P a g e  

 

update. At moving objects’ side, we have location 

updaters.  

Without loss of generality, we make the following 

assumptions for simplicity: 

 The number of objects is some orders of magnitude 

larger than that of queries. As such, the query index 

can accommodate all registered queries in main 

memory, while the object index can only 

accommodate all moving objects in secondary 

memory. This assumption has been widely adopted in 

many existing proposals[7], [10], [11]. 

 The database server handles location updates 

sequentially; in other words, updates are queued and 

handled on a first-come-first-serve basis. This is a 

reasonable assumption to relieve us from the issues of 

read/write consistency. 

 The moving objects maintain good connection with 

the database server. Furthermore, the communication 

cost for any location update is a constant. With the 

latter assumption, minimizing the cost of location 

updates is equivalent to minimizing the total number 

of updates.  

       

 

Fig2. PAM framework overview. 

PAM framework works as follows (see Fig2): At any time, 

application servers can register spatial queries to the 

database server (step _1). When an object sends a location 

update (step_2), the query processor identifies those 

queries that are affected by this update using the query 

index, and then, reevaluates them using the object index 

(step _3). The updated query results are then reported to 

the application servers who register these queries. 

Afterward, the location manager computes the new safe 

region for the updating object (step _4), also based on the 

indexes, and then, sends it back as a response to the object 

(step _5). The procedure forprocessing a new query is 

similar, except that in step _2 , the new query is evaluated 

from scratch instead of being reevaluated incrementally, 

and that the objects whose safe regions are changed due to 

this new query must be notified.  

Algorithm 1 summarizes the procedure at the database 

server to handle a query registration/ deregistration or a 

location update. 

 

Algorithm 1: Overview of Database Behavior 

1: while receiving a request do 

2: if the request is to register query q then 

3: evaluate q; 

4: compute its quarantine area and insert it into the query 

index; 

5: return the results to the application server; 

6: update the changed safe regions of objects; 

7: else if the request is to deregister query q then 

8: remove q from the query index; 

9: else if the request is a location update from object  p 

then 

10: determine the set of affected queries; 

11: for each affected query q
1
 do 

12: reevaluate q
1
; 

13: update the results to the application server; 

14: recomputed its quarantine area and update the query 

index; 

15: update the safe region of p; 

 

IV.SPACE TWIST 
In this section we present different aspects of privacy 

related techniques and algorithms. Our proposed 

framework, called SpaceTwist, rectifies these 

shortcomings for k nearest neighbor(kNN) queries. 

Starting with a location different from the user’s actual 

location, nearest neighbors are retrieved incrementally 

until the query is answered correctly by the mobile 

terminal. 

4.1.The SpaceTwist Client Algorithm 

We proceed to present the client-side algorithm for 

accurate kNN retrieval. We use the notation dist(q, p) to 

denote the Euclidean distance between two points q and p. 

The client (i.e., user) executes Algorithm 1 to obtain its k 

nearest objects from the server (i.e., query processor). The 

anchor location q
1
 is first sent to the server. On the other 

hand, the user location q is known only by the client. 

Intuitively, if q and q
1
are close then few objects are 

retrieved (i.e., low cost) but less location privacy is 

achieved. A max-heap Wk, initialized with k virtual 

objects, maintains the k nearest objects (of q) seen so far. 

Let γ be the maximum distance in Wk. The demand space 

is then the circle with radius γ and center q (see Line 3). 

Let τ be the largest distance to q
1
of any object examined so 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com                Vol.2, Issue.1, Jan-Feb 2012 pp-417-423                ISSN: 2249-6645 

                 www.ijmer.com  420 | P a g e  

 

far. The supply space is then the circle with radius τ and 

center q
1
 (see Line 4). Next, the server is requested to 

return incremental nearest neighbors (INNs) [1]  of q
1
. 

Algorithm 2 Space Twist Client (for kNN query) 

algorithm SpaceTwistClient(Value k, Point q, Point 

q
1
)system parameter: packet capacity β 

1: Wk            new max-heap of pairs <p, dist(q, p)>; 

2: insert k pairs of <NULL,1> into Wk; 

3: γ           the top distance of Wk; (kth best distance 

from q) 

4: τ                    0; ( furthest distance seen from q
1
) 

5: send an INN query with q
1
 to the server; 

6: while  γ  + dist(q, q1) > τ do 

7: S        get the next packet of points from the server; 

8: τ          maxp€S dist(q
1
, p); (update supply space) 

9: for all p€ S do 

10: if dist(q, p) < γ then ( check demand space) 

11: update Wk (and γ) by using p; 

12: terminate the INN query at the server; 

13: return Wk;  

The following discuss a search technique that supports 

user specified granularities. 

4.2. Granular Search 

We develop a server-based granular search technique that 

is capable of retrieving data points from the server with a 

user specified granularity. This technique enables 

communication cost reduction and location privacy 

improvement while providing strict guarantees on the 

accuracies of the query results. Section 2.1 describes 

granular search for the case k=1; its implementation is 

covered in Section 2.2.  

4.2.1.Basic Granular NN Search 

Recall that the client-side algorithm requests POIs from 

the server in ascending order of their distance to anchor q1. 

For the example in Figure 3a, the server returns points in 

the order: p1, p2, p3, p4. Although p4 is the actual NN of 

q, it cannot be obtained early by the client. 

           

         (a) Set of points                       (b) Grid cells  Fig. 3. 

Granular Search 

The communication cost can be reduced by returning only 

a sample of the reported POIs. A threshold ϵ is then 

introduced for controlling the result accuracy. 

4.2.2.Implementation of Granular Search 

We proceed to consider the implementation of the above 

method. If the error bound €is given in advance, then it is 

possible to preselect a data point from each (non-empty) 

cell and index those points by another (small) R-tree, 

which is then used at query time. This pre-computation 

approach becomes impractical when different users use 

different values for € and may choose these values at run 

time. In the context of data streams, efficient main-

memory data structures for maintaining relaxed results for 

NN queries with fixed error bounds have been proposed . 

We are unable to use these because (i) we deal with large, 

disk-based point sets, and (ii) they require the error bound 

to be known in advance. Algorithm 2 shows our granular 

incremental NN algorithm, which takes the user-specified 

error bound € as input. A conceptual grid with cell extent λ 

(=€/√2) is imposed on the returned points during runtime. 

The algorithm also takes an R-tree R (of the data points) 

and an anchor q
1
 as arguments. The notation mindist(q1, e) 

(maxdist(q
1
, e)) represents the minimum (maximum) 

possible distance between q
1
 and an Rtree entry e [1], [1]. 

Next, Cλ(p) denotes the cell containing point p.The 

algorithm applies INN search [1]  around anchor q
1
, with 

two modifications: (i) a set V is employed (Line 3) for 

tracking the grid cells of the reported points (Line12),and 

(ii) only qualifying entries that are not covered by the 

union of cells in V are further processed (Line9). 

Algorithm 3 Granular Incremental NN 

algorithm GranularINN(R-Tree R, Point q
1
, Value €) 

1: λ           €/√2; 

2: H          new min-heap (mindist to q
1
 as key); 

3: V   new set; ( cells of reported points) 

4: for all entries e € R.root do 

5: insert <e,mindist(q
1
, e)> into H; 

6: while H is not empty do 

7: deheap <e,mindist(q
1
, e)> from H; 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com                Vol.2, Issue.1, Jan-Feb 2012 pp-417-423                ISSN: 2249-6645 

                 www.ijmer.com  421 | P a g e  

 

8: remove each cell c from V satisfying maxdist(q
1
, c) < 

mindist(q
1
, e); 

9: if e is not covered by the union of cells in V then 

10: if e is a point p then 

11: report p to the client; 

12: V          V € {Cλ(p)}; 

13: else 

14: read the child node CN
1
 pointed to by e; 

15: for all entries e
1
 € CN

1
 do 

16: insert <e
1
,mindist(q

1
, e

1
)>into H; 

These client-side processing algorithm and a server-side 

granular search technique  supports user-defined (relaxed) 

query accuracies. SpaceTwist offers systematic support for 

managing the tradeoffsamong location privacy, query 

performance, and query accuracy in mobile services. 

Empirical studies with real-world datasets demonstrate that 

SpaceTwist is capable of providing high degrees of 

location privacy as well as very accurate results at low 

communication cost. 

V.SCALABLE CLUSTER BASED 

ALGORITHM(SCUBA) 
The Scalable Cluster-Based Algorithm (SCUBA) is used 

for evaluating  continuous spatio-temporal queries on 

moving objects. SCUBA exploits a shared cluster-based 

execution paradigm, where moving objects and queries are 

grouped together into moving clusters based on common 

spatio-temporal attributes. Then execution of queries is 

abstracted as a join-between clusters and a join-within 

clusters executed periodically (every  time units). In join-

between, two clusters are tested for overlap (i.e., if they 

intersect with each other) as a cheap pre-  filtering step. If 

the clusters are filtered out, the objects and queries 

belonging  to these clusters are guaranteed to not join at an 

individual level. Thereafter, in join-within, individual 

objects and queries inside clusters are joined with each 

other. This two-step filter-and-join process helps reduce 

the number of unnecessary spatial joins.  

 

5.1.The Notion of Moving Clusters 

A moving cluster abstracts a set of moving objects and 

moving queries. We group both moving objects and 

moving queries into moving clusters based on common 

spatiotemporal properties i.e., with the intuition that the 

grouped entities travel closely together in time and space 

for some period. We consider the following attributes 

when grouping moving objects and queries into clusters: 

(1) speed, (2) direction of the movement (e.g., connection 

node on the road network), (3) relative spatial distance, 

and (4) time of when in that location. Moving objects and 

queries that don’t satisfy conditions of any other existing 

clusters form their own clusters, single-member moving 

clusters. 

Fig4:Moving cluster in SCUBA 

5.2.The SCUBA Algorithm 

SCUBA execution has three phases: (1) cluster prejoin 

maintenance, (2) cluster based joining, and (3) cluster 

post-join maintenance as depicted in Fig. 5.The cluster 

pre-join maintenance phase is continuously running where 

it receives incoming information from moving objects and 

queries and applies in memory clustering. In this phase, 

depending on the incoming location updates, new clusters 

may be formed, “empty” clusters may be dissolved, and 

existing clusters  may be expanded. The clusterbased 

joining phase is activated every time units where join-

between and join within moving clusters is executed. The 

cluster post join phase is started by the end of the joining 

phase to perform a cluster  maintenance for the next query 

evaluationtime. 

 
Fig5. State Diagram 

Algorithm4 SCUBA() 

 

1: loop 

2: //*** CLUSTER PRE-JOIN MAINTENANCE PHASE 

*** 

3: Tstart = current time //initialize the execution interval 

start time 

4: while (current time - Tstart) <      do 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com                Vol.2, Issue.1, Jan-Feb 2012 pp-417-423                ISSN: 2249-6645 

                 www.ijmer.com  422 | P a g e  

 

5: if new location update arrived then 

6:    Cluster moving object o/query q //procedure described 

in Section 3.2// expires. Begin evaluation of queries 

7: //*** CLUSTER-BASED JOINING PHASE *** 

8: for c = 0 to MAX GRID CELL do 

9: for every moving cluster mL € Gc do 

10: for every moving cluster mR € Gc do 

11: //if the same cluster, do only join-within 

12: if (mL == mR) then 

13: //do within-join only if the cluster contains members of 

different types 

14: if ((mL.OIDs > 0) && (mL.QIDs > 0)) then 

15: Call DoWithinClusterJoin(mL,mL) 

16: else 

17: //do between-join only if 2 clusters contain members of 

different types 

18: if ((mL.OIDs > 0) && (mR.QIDs > 0)) || 

((mL.QIDs > 0) && (mR.OIDs > 0)) then 

19: if DoBetweenClusterJoin(mL,mR) == TRUE then 

20: Call DoWithinClusterJoin(mL,mR) 

21: Send new query answers to users 

22: //*** CLUSTER POST-JOIN MAINTENANCE 

PHASE *** 

23: Call PostJoinClustersMaintenance() //do some cluster 

maintenance 

Algorithm5 DoBetweenClusterJoin(Cluster mL, 

Cluster mR) 

1: //Check if two circular clusters mL and mR overlap 

2:if((mL.Loct.x-mR.Loct.x)2+(mL.Loct.y -mR.Loct.y)2) < 

(mL.R - mR.R)2 then 

3: return TRUE; //the clusters overlap 

4: else 

5: return FALSE; //the clusters don’t overlap 

Algorithm4 shows the pseudo code for SCUBA execution. 

For each execution  interval    ,  SCUBA first initializes the 

interval start time (Step 3). Before     time  interval 

expires, SCUBA receives the incoming location updates 

from moving objects and queries and incrementally 

updates existing moving clusters or creates new ones (Step 

6). When time interval expires (location updating is done), 

SCUBA starts the query execution (Step 8) by performing 

join-between clusters and join-within  clusters. If two 

clusters are of the same type (all objects, or all queries), 

they arenot considered for the join-between. Similarly, if 

all of the members of the cluster are of the same type, no 

join-within is performed. The join-between checks if the 

circular regions of the two clusters overlap (Algorithm 2), 

and join-within performs a spatial join between the objects 

and queries of the two clusters (Algorithm 3). If join-

between does not result in intersection, join-within is 

skipped.   

Algorithm6 DoWithinClusterJoin(Cluster mL, Cluster 

mR) 

1: R = Ø//set of results 

2: Sq = Set of queries from mL U mR //query members 

from both clusters 

3: So = Set of objects from mL U mR //object members from 

both clusters 

//join moving objects with queries from both clusters 

4: for every moving object oi €So do 

5: for every moving query qj € Sq do 

6: spatial join between object oi with query qj                (oi             

qj   ) 

7: Sr=Set of queries from joining oi with queries in Sq 

8: for each Q  €Sq do 

9: add (Q, oi) to R 

10: return R; 

After the joining phase, cluster maintenance is performed 

(Step 23). Due to space limitations, we don’t include the 

pseudo-code for PostJoinClusters Maintenance().The 

operations performed during post-join cluster maintenance 

include  dissolving “expiring” clusters and re-locating the 

“non-expiring” clusters (in the ClusterGrid) based on their 

velocity vectors for the next execution interval time  (i.e.T 

+                                           . ).If at time T +    the cluster 

passes its destination node, the cluster  gets 

dissolved.SCUBA combines motion clustering with shared 

execution for query execution optimization. Given a set of 

moving objects and queries, SCUBA groups them into 

moving clusters based on common spatio-temporal 

attributes. To optimize the join execution, SCUBA 

performs a two-step join execution process by first pre-

filtering a set of moving clusters that could produce 

potential results in the join-between moving clusters stage 

and then proceeding with the individual join-within 

execution on those selected moving clusters. 

Comprehensive experiments show that the performance of 

SCUBA is better than traditional grid-based approach 

where moving entities are processed individually. In 

particular the experiments demonstrate that SCUBA: (1) 

facilitates efficient execution of queries on moving objects 

that have common spatio-temporal attributes, (2) has low 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com                Vol.2, Issue.1, Jan-Feb 2012 pp-417-423                ISSN: 2249-6645 

                 www.ijmer.com  423 | P a g e  

 

cluster maintenance/overhead cost, and (3) naturally 

facilitates load shedding using motion clusters while 

optimizing the processing time with minimal degradation 

in result quality. 

VI.CONCLUSION 
This paper proposes a framework for monitoring 

continuous spatial queries over moving objects. The 

framework is the first to holistically address the issue of 

location updating with regard to monitoring accuracy, 

efficiency, and privacy. We provide detailed algorithms for 

query evaluation/Re evaluation and for protecting location 

privacy. Existing location privacy solutions either incur 

high server load, require specialized server 

implementations, or produce results without practical 

guarantees on accuracy bounds of query results. This paper 

concerns the efficient support for location privacy 

protection  by using space twist algorithm. In this paper, 

we also proposed a unique algorithm for efficient 

processing of large numbers of spatio-temporal queries on 

moving objects termed SCUBA. SCUBA combines motion 

clustering with shared execution for query execution 

optimization.  

VII.FUTURE WORK 
Several promising research directions exist. First, it is 

relevant to extend the cost model to cover real data 

distributions, as the current model assumes uniform data 

and may not accurately reflect the distributions found in 

real-world data. Second, our proposal considers snapshot k 

nearest neighbor queries. It is of interest to extend them to 

support also continuous queries. As future work, we plan 

to further refine and validate moving cluster-driven load 

shedding, enhance SCUBA to produce results 

incrementally and explore further through additional 

experimentation. 

 

REFERENCES 
1. G. R. Hjaltason and H. Samet, “Distance Browsing in 

Spatial Databases,” TODS, 24(2): 265–318, 1999. 

2. S. E. Hambrusch, C.-M. Liu, W. G. Aref, and S. 

Prabhakar. Query processing in broadcasted spatial 

index trees. In SSTD, pages 502–521, 2001. 

3. A. Okabe, B. Boots, K. Sugihara, and S. Chiu, Spatial 

Tessellations: Concepts and Applications of Voronoi 

Diagrams, 2nd ed. Wiley, 2000. 51(10), 2002. 

4. M. F. Mokbel and et. al. Towards scalable location-

aware services: requirements and research issues. In 

GIS, pages 110–117, 2003. 

5. S. Prabhakar and et.al. Query indexing and velocity 

constrained indexing: Scalable techniques for 

continuous queries on moving objects. IEEE Trans. 

Computers. 

6. Y. Li, J. Han, and J. Yang. Clustering moving objects. 

In KDD, pages 617–622, 2004. 

7. D.V. Kalashnikov, S. Prabhakar, and S.E. Hambrusch, 

“Main Memory Evaluation of Monitoring Queries 

over Moving Objects”. 

8. M. F. Mokbel, X. Xiong, and W. G. Aref. Sina: 

Scalable incremental processing of continuous queries 

in spatio-temporal databases. In SIGMOD, pages 623–

634, 2004. 

9. B. Gedik and L. Liu. Mobieyes: Distributed 

processing of continuously moving queries on moving 

objects in a mobile system. In EDBT, pages 67–87, 

2004. 

10. H. Hu, J. Xu, and D.L. Lee, “A Generic Framework 

for Monitoring Continuous Spatial Queries over 

Moving Objects,” Proc. ACM SIGMOD, pp. 479-490, 

2005. 

11. X. Yu, K.Q. Pu, and N. Koudas, “Monitoring k-

Nearest Neighbor Queries over Moving Objects,” 

Proc. IEEE Int’l Conf. Data Eng. (ICDE), 2005. 

12. M. Duckham and L. Kulik, “A Formal Model of 

Obfuscation and Negotiation for Location Privacy,” in 

PERVASIVE, pp. 152–170, 2005. 

13. H. Kido, Y. Yanagisawa, and T. Satoh, “An 

Anonymous Communication Technique using 

Dummies for Location-based Services,” in IEEE 

14. X. Xiong, M. F. Mokbel, and W. G. Aref. Sea-cnn: 

Scalable processing of continuous k-nearest neighbor 

queries in spatio-temporal databases. In ICDE, pages 

643–654, 2005. 

15. C.-Y. Chow, M. F. Mokbel, and X. Liu, “A Peer-to-

Peer Spatial Cloaking Algorithm for Anonymous 

Location-based Services,” in GIS, pp. 171–178, 2006. 

16. M. F. Mokbel, C.-Y. Chow, and W. G. Aref, “The 

New Casper: Query Processing for Location Services 

without Compromising Privacy,” in VLDB, pp. 763–

774, 2006. 

17. C. A. Ardagna, M. Cremonini, E. Damiani, S. D. C. di 

Vimercati, and P. Samarati, “Location Privacy 

Protection Through Obfuscation-Based Techniques,”. 

18. G. Ghinita, P. Kalnis, and S. Skiadopoulos, “PRIV´ E: 

AnonymousLocation-Based Queries in Distributed 

Mobile Systems,” in WWW, pp. 371–380, 2007. 

19.Haibo Hu, Jianliang Xu, Senior Member, IEEE, and 

Dik Lun Lee "PAM: An Efficient and Privacy-Aware 

Monitoring Framework for Continuously Moving 

Objects" IEEE ,TRANSACTIONS ON 

KNOWLEDGE AND DATA ENGINEERING,  

March 2010. 


