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ABSTRACT                                                       

Dry fingerprint has blurred image, because of 

overlapping of valleys, singular point to the fingertip 

and ridges. By using local entropy thresholding method, 

we extract the fingerprint images. This method is 

compared to canny filter images, sobel filter images and 

otsu algorithm images. This technique is used to 

enhance the contrast between valleys and ridges of the 

poor, medium and best image features. The 

experimental results gives the enhancement of the 

proposed method to get high performance compared 

with existing techniques.            Keywords - DWT, 

Enhancement, Histogram equalization, SVD, 

Thresholding. 

 

I. INTRODUCTION  
wavelet is a wave-like oscillation with an amplitude that 

starts out at zero, increases, and then decreases back to 

zero.[1] It can typically be visualized as a "brief oscillation" 

like one might see recorded by a seismograph or heart 

monitor. As a mathematical tool, wavelets can be used to 

extract information from many different kinds of data, 

including - but certainly not limited to - audio signals and 

images. Sets of wavelets are generally needed to analyze 

data fully. A set of "complementary" wavelets will 

deconstruct data without gaps or overlap so that the 

deconstruction process is mathematically reversible. Thus, 

sets of complementary wavelets are useful in wavelet based 

compression/decompression algorithms where it is 

desirable to recover the original information with minimal 

loss. Wavelets are mathematical functions defined over a 

finite interval and having an average value of zero that 

transform data into different frequency components, 

representing each component with a resolution matched to 

its scale. The basic idea of the wavelet transform is to 

represent any arbitrary function as a superposition of a set 

of such wavelets or basis functions. These basis functions 

or baby wavelets are obtained from a single prototype 

wavelet called the mother wavelet, by dilations or 

contractions (scaling) and translations (shifts).  They have 

advantages over traditional Fourier methods in analyzing 

physical situations where the signal contains discontinuities 

and sharp spikes. Many new wavelet applications such as 

image compression, turbulence, human vision, radar, and 

earthquake prediction are developed in recent years. 

 

 In wavelet transform the basic functions are wavelets. 

Wavelets tend to be irregular and symmetric. All wavelet 

functions, w(2kt - m), are derived from a single mother 

wavelet, w(t). 

 

II. DISCRETE WAVELET TRANSFORM 
Calculating wavelet coefficients at every possible scale is a 

fair amount of work, and it generates an awful lot of data. If 

the scales and positions are chosen based on powers of two, 

the so-called dyadic scales and positions, then calculating 

wavelet coefficients are efficient and just as accurate. This 

is obtained from discrete wavelet transform (DWT). 

2.1  2-D WAVELET TRANSFORM HIERARCHY 
The 1-D wavelet transform can be extended to a two-

dimensional (2-D) wavelet transform using separable 

wavelet filters. With separable filters the 2-D transform can 

be computed by applying a 1-D transform to all the rows of 

the input, and then repeating on all of the columns 
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Fig1.1: Subband Labeling Scheme for a one level, 2-D Wavelet 

Transform 

 

The original image of a one-level (K=1), 2-D wavelet 

transform, with corresponding notation is shown in Fig. 1. 

The example is repeated for a three level (K=3) wavelet 

expansion in Fig. 2. In all of the discussion K represents the 

highest level of the decomposition of the wavelet transform. 

The 2-D subband decomposition is just an extension of 1-D 

subband decomposition. The entire process is carried out by 

executing 1-D subband decomposition twice, first in one 
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direction (horizontal), then in the orthogonal (vertical) 

direction. For example, the low-pass subbands (L1) 

resulting from the horizontal direction is further 

decomposed in the vertical direction, leading to LL1 and 

LH1 subbands. 

 

LL1 HL1 

HL2 

HL3 
LH1 HH1 

LH2 HH2 

LH3 HH3 

Fig 2.1: Subband labeling Scheme for a Three Level, 2-D Wavelet 

Transform 

 

Similarly, the high pass subband (Hi) is further decomposed 

into HLi and HHi. After one level of transform, the image 

can be further decomposed by applying the 2-D subband 

decomposition to the existing LL1 subband. This iterative 

process results in multiple “transform levels”. To obtain a 

two-dimensional wavelet transform, the one-dimensional 

transform is applied first along the rows and then along the 

columns to produce four sub bands: low-resolution, 

horizontal, vertical, and diagonal. (The vertical sub band is 

created by applying a horizontal high-pass, which yields 

vertical edges.) At each level, the wavelet transform can be 

reapplied to the low-resolution sub band to further 

decorrelate the image. 

 

2.2 HAAR TRANSFORM  
In mathematics, the Haar wavelet is a certain sequence of 

rescaled "square-shaped" functions which together form a 

wavelet family or basis. Haar used these functions to give 

an example of a countable orthonormal system for the space 

of square-integrable functions on the real line. The study of 

wavelets, and even the term "wavelet", did not come until 

much later. As a special case of the Daubechies wavelet, it 

is also known asD2. Wavelet analysis is similar to Fourier 

analysis in that it allows a target function over an interval to 

be represented in terms of an orthonormal function basis. 

The Haar sequence is now recognised as the first known 

wavelet basis and extensively used as a teaching example in 

the theory of wavelets. 

 

The Haar wavelet's mother wavelet function    
      φ t  can be described as 

         𝝋 𝒕 = −𝟏    
𝟏

𝟐
≤ 𝒕 < 1, 

                  =  𝟏       𝟎 ≤ 𝒕 <
𝟏

𝟐
, 

                  =  𝟎       otherwise 

2.2.1 Propertiesi. 
Any continuous real function can be approximated by linear 

combinations ɸ(t), ɸ(2t)…….ɸ(2
k
t),…. and their shifted 

functions. This extends to those function spaces where any 

function therein can be approximated by continuous 

functions. 

ii. Any continuous real function can be approximated 

by linear combinations of the constant function, 

φ t , φ 2t …… .φ 2kt …… and their shifted functions. 

III. SVD                                  
In linear algebra, the singular value decomposition (SVD) 

is a factorization of a real or complex matrix, with many 

useful applications in signal processing and statistics. 

Formally, the singular value decomposition of an mxn real 

or complex matrix M is a factorization of the form 

M=UƩV* 

where U is an mxm real or complex unitary matrix, Σ is an 

mxn rectangular diagonal matrix with nonnegative real 

numbers on the diagonal, and V* (the conjugate transpose 

of V) is an nxn real or complex unitary matrix[2]. The 

diagonal entries Σi,i of Σ are known as the singular values of 

M. The m columns of U and the n columns of V are called 

the left singular vectors and right singular vectors of M, 

respectively. 

The singular value decomposition and the eigen 

decomposition are closely related. Namely: 

The left singular vectors of M are eigenvectors of MM 
*
. 

The right singular vectors of M are eigenvectors of M 
*
 M. 

The non-zero singular values of M (found on the diagonal 

entries of Σ) are the square roots of the non-zero eigen 

values of M 
*
 M or MM 

*
 . 

Applications which employ the SVD include computing the 

pseudo inverse, least squares fitting of data, matrix 

approximation, and determining the rank, range and null 

space of a matrix. 

IV. FUZZY MEASURES                        
The discovery of useful information is the essence of any 

data mining process. Decisions are not usually taken based 

on complete real world data, but most of the times they deal 

with uncertainty or lack of information[3]. Therefore the 

real world reasoning is almost always approximate. 

However it is not only necessary to learn new information 

in any data mining process, but it is also important to 
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understand why and how the information is discovered. 

Most data mining commercial products are black boxes that 

do not explain the reasons and methods that have been used 

to get new information.  

However the „why and how‟ the information is obtained 

can be as important as the information on its own. When 

approximate reasoning is done, measures on fuzzy sets and 

fuzzy relations can be proposed to provide a lot of 

information that helps to understand the conclusions of 

fuzzy inference processes.  

Those measures can even help to make decisions that allow 

to use the most proper methods, logics, operators for 

connectives and implications, in every approximate 

reasoning environment. The latest concepts of measures in 

approximate reasoning is discussed and a few measures on 

fuzzy sets and fuzzy relations are proposed to be used to 

understand why the reasoning is working and to make 

decisions about labels, connectives or implications, and so a 

few useful measures can help 

to have the best performance in approximate reasoning and 

decision making processes. 

Before some measures on fuzzy sets and fuzzy relations are 

proposed, this chapter collects all the latest new concepts 

and definitions on measures, and shows a few graphics that 

make a clear picture on how those measures can be 

classified. Some important measures on fuzzy sets are the 

entropy measures and specificity measures. The entropy 

measures give a degree of fuzziness of a fuzzy set, which 

can be computed by the premises or outputs of an inference 

to know an amount of uncertainty crispness in the process. 

Specificity measures of fuzzy sets give a degree of the 

utility of information contained in a fuzzy set. 

Other important measures can be computed on fuzzy 

relations. For example, some methods to measure a degree 

of generalisation of the MODUSPONENS property in 

fuzzy inference processes are proposed. 

 

4.1 Concept of fuzzy measures  
The concept of measure is one of the most important 

concepts in mathematics, as well as the concept of integral 

respect to a given measure. The 

classical measures are supposed to hold the additive 

property. Additivity can be very effective and convenient in 

some applications, but can also be somewhat inadequate in 

many reasoning environments of the real world as in 

approximate reasoning, fuzzy logic, artificial intelligence, 

game theory, decision making, psychology, economy, data 

mining, etc., that require the definition of non additive 

measures and a large amount of open problems. 

For example, the efficiency of a set of workers is being 

measured, the efficiency of the same people doing 

teamwork is not the addition of the efficiency of each 

individual working on their own. 

The concept of fuzzy measure does not require additivity, 

but it requires monotonicity related to the inclusion of sets. 

The concept of fuzzy measure 

can also be generalized by new concepts of measure that 

pretend to measure a characteristic not really related with 

the inclusion of sets. However those new measures can 

show that “x has a higher degree of a particular quality than 

y” when x and y are ordered by a preorder (not necessarily 

the 

set inclusion preorder). 

 

The term fuzzy integral uses the concept of fuzzy measure. 

There are some important fuzzy integrals, as Choquet 

integral in 1974, which does not require 

an additive measure (as Lebesgue integral does).  

 

4.2 Fuzzy set theory                       Fuzzy set 

theory defines set membership as a possibility distribution. 

The general rule for this can expressed as:  

f :[0,1]
n

 [0,1]  

where n some number of possibilities. This basically 

states that we can take n possible events and us f to generate 

as single possible outcome. This extends set membership 

since we could have varying definitions of, say, hot curries. 

One person might declare that only curries of Vindaloo 

strength or above are hot whilst another might say madras 

and above are hot[4]. We could allow for these variations 

definition by allowing both possibilities in fuzzy 

definitions. Once set membership has been redefined we 

can develop new logics based on combining of sets etc. and 

reason effectively.  

The membership degree can be expressed by a 

mathematical function that assigns, to each element in the 

set, a membership degree between 0 and 1.  

The -function is used for modeling the membership 

degrees. This type of function is suitable to represent the set 

of bright pixels and is defined as

 
where b=(1/2)(a+c) The -function can be controlled 

through parameters a and c. Parameter is called the 

crossover point where μAS(b)=0.5.The higher the gray level 

of a pixel (closer to white), the higher membership value 

and vice versa. A typical shape of the Z-function is 

presented in Fig. 1.  

The -function is used to represent the dark pixels and 

is defined by an expression obtained from -function as 

follows: 

μAZ(x)=Z(x;a,b,c)=1-S(x;a,b,c) 
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Both membership functions could be seen, simultaneously, 

in Fig. 2. The -function in the right side of the histogram 

and the Z-function in the left. 

 

 
 

Fig3.1: Typical shape of the S-function 

 

 
Fig3.2: Histogram and functions for the seed subsets 

 

V. MATLAB RESULTS AND GRAPHS 

     In this section, simulation results for different images 

(64x64) are shown. Their histogram measure graphs are 

also included. Considered the images fingerprint.jpeg form 

the MATLAB library 

 
Fig 4.1:original Image 

 
 

Fig 4.2 :Red Image 

 

 
Fig 4.3: Red histogram 

Histogram measuring pixel values 

 

 

 
 

Fig 4.4: Blue Image 
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Fig 4.5:Blue histogram 

 

 
Fig4.6 Green Image 

 

 
 

Fig 4.7:Green histogram 

 

 
Fig 4.8: Histogram of green and red 

 

 
Fig 4.9:Histogram of green and blue 

 

 
Fig 4.10:Histogram of red and blue 

 

 
Fig 4.11: Canny Image 
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Fig 4.12: Sobel Image 

 

 
                           

Fig 4.12 Prewitt Image 

 

5. CONCLUSION 

Our method gives the better performance, compare with 

existing algorithms. it is applicable for Dry finger images 

and blurred images. 
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