

On π Gr-Separation Axioms

C.Janaki¹, V.Jeyanthi²

¹Asst.Professor, Department of Mathematics, L.R.G. Govt. Arts College for Women, Tirupur-4 ²Asst.Professor, Department of Mathematics, Sree Narayana Guru College, Coimbatore-105

Abstract: In the present paper, we introduce and study the concept of πgr - T_i -space (for i = 0, 1, 2) and obtain the characterization of πgr -regular space, πgr -normal space by using the notion of πgr -open sets. Further, some of their properties and results are discussed.

Key Words: $\pi gr-T_0$ -space, $\pi gr-T_1$ - space, $\pi gr-T_2$ -space, πgr - Normal, πgr - Regular. *AMS Subject Classification:* 54A05, 54D10, 54D15.

I. Introduction

In 1970, Levine[8] introduced the concept of generalized closed set and discussed the properties of closed and open maps, compactness, normal and separation axioms. Later in 1996 Andrijivic [1]gave a new type of generalized closed set in topological space called b closed sets. The concept of regular continuous functions was introduced by Arya.S.P and Gupta.R [3]. Later Palaniappan.N and Rao. K.C[12] studied the concept of regular generalized continuous functions. Also, the concept of generalized regular closed sets in topological space was introduced by Bhattacharya.S[4,5].Zaitsev [14]defined the concept of π -closed sets and a class of topological spaces called quasi- normal spaces. Dontchev and Noiri [6] defined the notion of π g-closed sets and ved this notion to obtain a characterization , preservation theorem for quasi- normal spaces. Maheswari and Prasad[10,11] first defined the notion of S-normal spaces by replacing open sets in the definition of normal spaces called mildly normal spaces.!n 1990, Arya and Nour[2] studied the characterizations of s-normal spaces. In 2012, Jeyanthi.V and Janaki.C[7] introduced π gr-closed sets in topological spaces.

The purpose of this paper is to introduce and study π gr-separation axioms in topological spaces. Further we introduced the concepts of π gr-regular space, π gr-Normal Space and study their behaviour.

II. Preliminaries

Throughout this paper (X,τ) , (Y,σ) (or simply X, Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated.

For a subset A of a topological space X, the closure and interior of A with respect to τ are denoted by Cl(A) and Int(A) respectively.

Definition: 2.1

A subset A of X is said to be regular open [12]if A=int(cl(A)) and its complement is regular closed.

The finite union of regular open set is π -open set[6,14] and its complement is π -closed set. The union of all regular open sets contained in A is called rint(A)[regular interior of A] and the intersection of regular closed sets containing A is called rcl(A)[regular closure of A]

Definition: 2.2

A subset A of X is called π gr-closed[7] if rcl(A) \subset U whenever A \subset U and U is π -open,. The complement of π gr-closed set is π gr-open set. The family of of all π gr-closed subsets of X is denoted by π GRC(X) and π gr-open subsets of X is denoted by π GRO(X)

Definition: 2.3

The intersection of all π gr-closed containing a set A is called π gr-closure of A and is denoted by π gr-Cl(A). The union of π gr-open sets contained in A is called π gr-interior of A and is denoted by π gr-int(A).

Definition: 2.4

- A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called
- 1. Continuous [9] if $f^{1}(V)$ is closed in X for every closed set V in Y.
- 2. Regular continuous (r-continuous) [3] if $f^{1}(V)$ is regular-closed in X for every closed set V in Y.
- 3. An R-map[6] if $f^{1}(V)$ is regular closed in X for every regular closed set V of Y.
- 4. π gr-continuous[7] if f¹(V) is π gr-closed in X for every closed set V in Y.
- 5. π gr-irresolute[7] if f¹(V) is π gr-closed in X for every π gr -closed set V in Y.

Definition: 2.5

A space X is called a π gr-T_{1/2} space [7] if every π gr-closed set is regular closed. **Definition: 2.6**

A map f: $X \rightarrow Y$ is called

- 1. Closed [9] if f(U) is Y for every closed set U of X.
- 2. R-closed (i.e, regular closed) [12] if f(U) is regular closed in Y for every closed set U of X
- 3. rc-preserving [6]if f(U) is regular closed in Y for every regular closed set U of X

Definition: 2.7

A map f: $X \rightarrow Y$ is called

- 1. π gr-open map f(V) is π gr-open in Y for every open set V in X.
- 2. strongly π gr-open map (M- π gr-open) if f(V) is π gr-open in Y for every π gr-open set V in X.
- 3. Quasi π gr-open if f(V) is open in Y for every π gr-open set V in X.
- 4. Almost π gr-open map if f(V) is π gr-open in Y for every regular open set V in X.

Definition: 2.8

A space X is said to be R-regular [10] if for each closed set F and each point $x \notin F$, there exists disjoint regular open sets U and V such that $x \in U$ and $F \subset V$.

Definition: 2.9

A space X is said to be R-Normal[11,13] (Mildly Normal) if for every pair of disjoint regular closed sets E and F of X, there exists disjoint open sets U and V such that $E \subset U$ and $F \subset V$.

III. π Gr Separation Axioms

In this section, we introduce and study π gr-separation axioms and obtain some of its properties.

Definition: 3.1

A space X is said to be π gr-T_o -space if for each pair of distinct points x and y of X, there exists a π gr-open set containing one point but not the other.

Theorem: 3.2

A space X is $\pi gr-T_o$ -space iff πgr -closures of a distinct points are distinct.

Proof: Let x and y be distinct points of X. Since X is a $\pi \text{gr-}T_0$ -space, there exists a $\pi \text{gr-}open$ set G such that $x \in G$ and $y \notin G$.

Consequently, X–G is a π gr-closed set containing y but not x. But π gr-cl(y) is the intersection of all π gr-closed sets containing y. Hence $y \in \pi$ gr-cl(y), but $x \notin \pi$ gr-cl(y) as $x \notin X$ -G. Therefore, π gr-cl(x) $\neq \pi$ gr-cl(y).

Conversely, let π gr-cl(x) $\neq \pi$ gr-cl(y) for x \neq y.

Then there exists at least one point $z \in X$ such that $z \notin \pi gr-cl(y)$.

We have to prove $x \notin \pi gr\text{-}cl(y)$, because if $x \in \pi gr\text{-}cl(y)$, then $\{x\} \subset \pi gr\text{-}cl(y)$

 $\Rightarrow \pi \text{gr-cl}(x) \subset \pi \text{gr-cl}(y)$.So, $z \in \pi \text{gr-cl}(y)$, which is a contradiction. Hence $x \notin \pi \text{gr-cl}(y)$. $\Rightarrow x \in X - \pi \text{gr-cl}(y)$, which is a $\pi \text{gr-open set containing } x$ but not y. Hence X is a $\pi \text{gr-T}_0$ -space.

Theorem: 3.3

If f:X \rightarrow Y is a bijection, strongly- π gr-open and X is a π gr-T_o-space, then Y is also π gr-T_o-space.

Proof:Let y_1 and y_2 be two distinct points of Y. Since f is bijective, there exists points x_1 and x_2 of X such that $f(x_1) = y_1$ and $f(x_2) = y_2$.Since X is a $\pi \text{gr-}T_0$ -space, there exists a $\pi \text{gr-}open$ set G such that $x_1 \in G$ and $x_2 \notin G$. Therefore, $y_1 = f(x_1) \in f(G)$, $y_2 = f(x_2) \notin f(G)$. Since f is strongly $\pi \text{gr-}open$ function, f(G) is $\pi \text{gr-}open$ in Y. Thus, there exists a $\pi \text{gr-}open$ set f(G) in Y such that $y_1 \in f(G)$ and $y_2 \notin \pi \text{gr-}T_0$ -space.

Definition: 3.4

A space X is said to be π gr-T₁-space if for any pair of distinct points x and y, there exists π gr-open sets G and H such that $x \in G, y \notin G$ and $x \notin H$, $y \in H$.

Theorem: 3.5

A space X is π gr-T₁-space iff singletons are π gr-closed sets.

Proof: Let X be a π gr-T₁-space and $x \in X$. Let $y \in X - \{x\}$. Then for $x \neq y$, there exists π gr-open set U_y such that $y \in U_y$ and $x \notin U_y$.

Conversely, $y \in U_v \subset X - \{x\}$.

That is $X - \{x\} = \bigcup \{ U_y : y \in X - \{x\} \}$, which is π gr-open set.

Hence $\{x\}$ is π gr-closed set.

Conversely, suppose {x} is π gr-closed set for every $x \in X$. Let $x, y \in X$ with $x \neq y$. Now, $x \neq y \Rightarrow y \in X - \{x\}$. Hence $X - \{x\}$ is π gr-open set containing y but not x. Similarly, $X - \{y\}$ is π gr-open set containing x but not y. Therefore, X is a π gr-T₁-space.

Theorem: 3.6

If $f: X \rightarrow Y$ is strongly πgr -open bijective map and X is πgr -T₁-space, then Y is πgr -T₁-space.

Proof: Let $f: X \rightarrow Y$ be bijective and strongly- π gr-open function. Let X be a π gr-T₁-space and y₁,y₂ be any two distinct points of Y.

Since f is bijective, there exists distinct points x_1 , x_2 of X such that $y_1=f(x_1)$ and $y_2=f(x_2)$. Now, X being a π gr-T₁-space, there exists π gr-open sets G and H such that $x_1 \in G, x_2 \notin G$ and $x_1 \notin H, x_2 \in H$. Since $y_1=f(x_1) \in f(G)$ but $y_2=f(x_2)\notin f(G)$ and $y_2=f(x_2)\in f(H)$ and $y_1=f(x_1) \notin f(H)$.

Now, f being strongly- π gr-open, f(G) and f(H) are π gr-open subsets of Y such that $y_1 \in f(G)$ but $y_2 \notin f(G)$ and $y_2 \in f(H)$ and $y_1 \notin f(H)$. Hence Y is π gr-T₁-space.

Theorem: 3.7

If $f: X \rightarrow Y$ is πgr -continuous injection and Y is T_1 , then X is πgr - T_1 -space.

Proof: Let $f:X \rightarrow Y$ be πgr - continuous injection and Y be T_1 . For any two distinct point x_1, x_2 of X, there exists distinct points y_1, y_2 of Y such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$.

Since Y is T_1 - space, there exists open sets U and V in Y such that $y_1 \in U$ and $y_2 \notin U$ and

 $y_1 \not\in V \;, \;\; y_2 \in V.$

i.e. $x_1 \in f^1(U), x_1 \notin f^1(V)$ and $x_2 \in f^1(V), x_2 \notin f^1(U)$

Since f is πgr - continuous, $f^{-1}(U)$, $f^{-1}(V)$ are πgr -open sets in X.

Thus for two distinct points x_1, x_2 of X, there exists πgr - open sets $f^1(U)$ and $f^1(V)$ such that $x_1 \in f^1(U)$, $x_2 \notin f^1(V)$ and $x_2 \in f^1(V)$, $x_2 \notin f^1(U)$.

Therefore, X is π gr -T₁ - space.

Theorem: 3.8

If $f: X \to Y$ be πgr –irresolute function, and Y is $\pi gr - T_1$ - space, there X is $\pi gr - T_1$ -space.

Proof: Let x_1 , x_2 be distinct points in X. Since f in injective, there exists distinct points y_1 , y_2 of Y such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$.

Since Y is $\pi gr - T_1$ -space, there exists πgr - open sets U and V in Y such that $y_1 \in U$ and $y_2 \notin U$ and $y_1 \notin V$, $y_2 \in V$.

i.e. $x_1 \in f^1(U), x_1 \notin f^1(V)$ and $x_2 \in f^1(V), x_2 \notin f^1(U)$.

Since f is πgr - irresolute, $f^{1}(U)$, $f^{1}(V)$ are πgr - open sets in X.

Thus, for two distinct points x_1, x_2 of X, there exists πgr - open sets $f^1(U)$ and $f^1(V)$ such that $x_1 \in f^1(U)$, $x_1 \notin f^1(V)$ and $x_2 \in f^1(V)$, $x_2 \notin f^1(U)$.

Hence X is π gr - T₁ - space.

Definition: 3.9

A space X is said to be π gr-T₂-space, if for any pair of distinct points x and y, there exists disjoint π gr-open sets G and H such that $x \in G$ and $y \in H$.

Theorem: 3.10

If $f: X \to Y$ be πgr -continuous injection, and Y is T_2 -space, then X is πgr - T_2 -space.

Proof: Let $f : X \to Y$ be the πgr continuous injection and Y be T_2 . For any two distinct points x_1 and x_2 of X, there exists distinct points y_1 , y_2 of Y such that $y_1 = f(x_1)$, $y_2 = f(x_2)$. Since Y is T_2 -space, there exists disjoint open sets U and V in Y such that $y_1 \in U$ and $y_2 \in V$.

i.e. $x_1 \in f^1(U), x_2 \in f^1(V).$

Since f is πgr - continuous, $f^{1}(U) \& f^{1}(V)$ are πgr - open sets in X.

Further f is injective, $f^{1}(U) \cap f^{1}(V) = f^{1}(U \cap V) = f^{1}(\phi) = \phi$.

Thus, for two disjoint points x_1, x_2 of X, there exists disjoint π gr-open sets $f^1(U)$ & $f^1(V)$ such that $x_1 \in f^1(U)$ and $x_2 \in f^1(V)$. Hence X is π gr-T₂-space.

Theorem: 3.11

If $f: X \to Y$ be the πgr irresolute injective function and Y is πgr -T₂-space, then X is πgr -T₂-space.

Proof : Let x_1, x_2 be any two distinct points in X. Since f in injective, there exists distinct points y_1, y_2 of Y such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$.

Since Y is $\pi gr-T_2$, there exist disjoint πgr -open sets U and V in Y such that $y_1 \in U$ and $y_2 \in V$.

i.e, $x_1 \in f^1(U), x_2 \in f^1(V).$

Since f is π gr-irresolute injective, f¹(U), f¹(V) are disjoint π gr-open sets in X.

Thus, for two distinct points x_1, x_2 of X, there exists disjoint π gr-open sets $f^1(U)$ and $f^1(V)$ such that $x_1 \in f^1(U)$ and $x_2 \in f^1(V)$.

Hence X is π gr-T₂-space.

Theorem: 3.12

In any topological space, the following are equivalent.

1. X is π gr-T₂-space.

2. For each $x \neq y$, there exists a π gr-open set U such that $x \in U \& y \notin \pi$ gr-cl(U)

3. For each $x \in X$, $\{x\} = \cap \{\pi gr \text{ -cl}(U): U \text{ is a } \pi gr \text{ - open set in } Z \text{ is } x \in U\}$.

Proof: (1) \Rightarrow (2):Assume (1) holds.

Let $x \in X$ and $x \neq y$, then there exists disjoint π gr-open sets U and V such that $x \in U$ and $y \in V$. Clearly, X–V is π gr-closed set. Since $U \cap V = \phi$, $U \subset X-V$.

Therefore, $\pi \text{gr-cl}(U) \subset \pi \text{gr-cl}(X-V)$

 $Y \notin X-V \Rightarrow y \notin \pi gr-cl(X-V)$ and hence $y \notin \pi gr-cl(U)$, by the above argument.

(2) \Rightarrow (3):For each x \neq y; there exists a π gr-open set U such that x \in U and y $\notin \pi$ gr-cl(U)

So, $y \notin \cap \{\pi gr \ \text{-cl}(U): U \text{ is a } \pi gr \ \text{- open set in } X \text{ and } x \in U\} = \{x\}.$

(3) \Rightarrow (1):Let $x, y \in X$ and $x \neq y$.

By hypothesis, there exists a π gr-open set U such that $x \in U$ and $y \notin \pi$ gr-cl(U).

⇒ There exists a π gr-closed set V set y \notin V. Therefore, y \in X–V and X–V is a π gr -open set.

Thus, there exists two disjoint π gr-open sets U and X–V such that $x \in U$ and $y \in X-V$.

Therefore, X is π gr-T₂-space.

IV. π Gr- Regular Space

Definition: 4.1

A space X is said to be π gr-regular if for each closed set F and each point $x \notin F$, there exists disjoint π gr-open sets U and V such that $x \in U$ and $F \subset V$.

Theorem: 4.2

Every π gr-regular T_o - space is π gr-T₂.

Proof: Let $x, y \in X$ such that $x \neq y$.

Let X be a T_o -space and V be an open set which contains x but not y.

Then X-V is a closed set containing y but not x. Now, by π gr-regularity of X, there exists disjoint π gr-open sets U and W such that $x \in U$ and X-V \subset W.

Since $y \in X - V$, $y \in W$.

Thus, for $x, y \in X$ with $x \neq y$ there exists disjoint open sets U and W such that $x \in U$ and $y \in W$.

Hence X is π gr-T₂-space.

Theorem: 4.3

If f: X \rightarrow Y is continuous bijective, π gr- open function and X is a regular space, then Y is π gr-regular.

Proof: Let F be a closed set in Y and $y \notin F$. Take y=f(x) for some $x \in X$.

Since f is continuous, $f^{1}(F)$ is closed set in X such that $x \notin f^{1}(F)$. (since $f(x) \notin F$)

Now, X is regular, there exists disjoint open sets U and V such that $x \in U$ and $f^{1}(F) \subset V$.

i.e. $y=f(x) \in f(U)$ and $F \subset f(V)$.

Since f is π gr-open function, f(U) and f(V) are π gr-open sets in Y.

Since f is bijective, $f(U) \cap f(V) = f(U \cap V) = f(\phi) = \phi$.

\Rightarrow Y is π gr-regular.

Theorem: 4.4

If $f: X \rightarrow Y$ is regular continuous bijective, almost π gr-open function and X is R-regular space, then Y is π gr-regular.

Proof:

Let F be a closed set in Y and $y \notin F$.

Take y=f(x) for some $x \in X$.

Since f is regular continuous function , $f^{1}(F)$ is regular closed in X and hence closed in X.

 \Rightarrow x = f⁻¹(y) \notin f⁻¹(F).

Now, X is R-regular, there exists disjoint regular open sets U and V such that $x \in U$ and $f^{1}(F) \subset V$.

i.e. $y=f(x) \in f(U)$ and $F \subset f(V)$.

Since f is almost π gr-open function f(U) and f(V) are π gr-open sets in Y and also f is bijective, f(U) \cap f(V) = f(U \cap V)

 $=f(\phi)=\phi.$

 \Rightarrow Y is π gr-regular.

Theorem: 4.5

If f: $X \rightarrow Y$ is continuous, bijective, strongly π gr-open function(quasi π gr-open) and X is π gr-regular space, then Y is π gr-regular(regular).

Proof :Let F be a closed set in Y and $y \in F$.

Take y=f(x) for some $x \in X$.

Since f is continuous bijective, $f^{1}(F)$ is closed in X and $x \notin f^{1}(F)$.

Now, since X is π gr-regular, there exists disjoint π gr-open sets U and V such that $x \in U$ and

 $f^{1}(F) \subset V.$

i.e. $y=f(x) \in f(U)$ and $F \subset f(V)$.

Since f is strongly π gr-open (quasi π gr-open) and bijective, f(U) and f(V) are disjoint π gr-open(Open) sets in Y. \therefore Y is π gr-regular(regular).

Theorem: 4.6

If f:X \rightarrow Y is π gr-continuous, closed, injection and Y is regular, then X is π gr-regular.

Proof: Let F be a closed in X and $x \notin F$.

Since f is closed injection, f(F) is closed set in Y such that $f(x) \notin f(F)$.

Now, Y is regular, there exists disjoint open sets G and H such that $f(x) \in G$ and $f(F) \subset H$.

This implies $x \in f^{1}(G)$ and $F \subseteq f^{1}(H)$.

Since f is π gr-continuous, f¹(G) and f¹(H) are π gr-open sets in X.

Further, $f^{1}(G) \cap f^{1}(H) = \phi$.

Hence X is π gr-regular.

Theorem: 4.7

If f:X \rightarrow Y is almost π gr- continuous, closed injection and Y is R-regular, then X is π gr-regular.

Proof: Let F be a closed set in X and $x \notin F$. Since f is closed injection. f(F) is closed set in Y such that $f(x)\notin f(F)$.Now, Y is R-regular, there exists disjoint regular open sets G and H such that $f(x)\in G$ and $f(F) \subset H$. $\Rightarrow x \in f^{-1}(G) \& F \subset f^{-1}(H)$

Since f is almost π gr-continuous, f¹(G) & f¹(H) are π gr-open sets in X.

Further, $f^{1}(G) \cap f^{1}(H) = \phi$.

Hence X is π gr-regular.

Theorem: 4.8

If f: $X \rightarrow Y$ is πgr -irresolute, closed, injection and Y is πgr -regular, then X is πgr -regular.

Proof: Let F be a closed set in X and $x \notin F$. Since f is closed injection, f(F) is closed set in Y such that $f(x) \notin f(F)$. Now, Y is π gr-regular, there exists disjoint π gr-open sets G and H such that $f(x) \in G$ and $f(F) \subset H$. $\Rightarrow x \in f^{-1}(G) \& F \subset f^{-1}(H)$.

Since X is π gr-irresolute, $f^1(G)$ and $f^1(H)$ are π gr-open sets in X. Further, $f^1(G) \cap f^1(H) = \phi$ and hence X is π gr-regular.

V. πGr-Normal Spaces

Definition: 5.1

A space X is said to be π gr-Normal if for every pair of disjoint closed sets E & F of X, there exists disjoint π gr-open sets U & V such that E \subset U and F \subset V.

Theorem:5.2

The following statements are equivalent for a Topological space X:

1.X is π gr- normal.

2. For each closed set A and for each open set U containing A, there exists a π gr-open set V containing A such that π gr-cl(V) \subset U

3. For each pair of disjoint closed sets A and B, there exists π gr-open set U containing A such that π gr-cl(U) \cap B = ϕ .

Proof:(1) \Rightarrow (2):Let A be closed set and U be an open set containing A.

Then $A \cap (X-U) = \phi$ and therefore they are disjoint closed sets in X.

Since X is π gr-normal, there exists disjoint π gr-open sets V and W such that A \subset V, X–U \subset W. i.e. X–W \subset U.

Now, $V \cap W = \phi$, implies $V \subset X - W$

Therefore, $\pi \text{gr-cl}(V) \subset \pi \text{gr-cl}(X-W) = X-W$, Because X-W is $\pi \text{gr-closed set}$.

Thus, $A \subset V \subset \pi \text{gr-cl}(V) \subset X - W \subset U$.

i.e. $A \subset V \subset \pi gr - cl(V) \subset U$.

(2) \Rightarrow (3):Let A and B be disjoint closed sets in X, then A \subset X–B and X–B is an open set containing A. By hypothesis, there exists a π gr-open set U such that A \subset U and π gr-cl(U) \subset X–B, which implies π gr-cl(U) \cap B = ϕ

(3)⇒(1): Let A and B be disjoint closed sets in X. By hypothesis (3), there exists a π gr-open set U such that A⊂ U and π gr-cl(U)∩B = ϕ (or) B⊂X – π gr-cl(U).

Now, U and X- π gr-cl(U) are disjoint π gr-open sets such that $A \subset U$ and $B \subset X - \pi$ gr-cl(U).

Hence X is π gr-normal.

Definition: 5.3

A space X is said to be mildly π gr-Normal if for every pair of disjoint regular closed sets E & F of X, there exists disjoint π gr-open sets U & V such that E \subset U and F \subset V.

Theorem: 5.4

If f:X \rightarrow Y is continuous bijective, π gr-open function from a normal spaces X onto a space Y, then Y is π gr-normal.

Proof: Let E and F be disjoint closed sets in Y,

Since f is continuous bijective $f^{1}(E)$ and $f^{1}(F)$ are disjoint closed sets in X.

Now, X is normal, there exists disjoint open sets U and V such that $f^{1}(E) \subset U$, $f^{1}(F) \subset V$.

i.e. $E \subset f(U)$, $f \subset f(V)$.

Since f is π gr-open function, f(U) and f(V) are π gr-open sets in Y and f is injective, f(U) \cap f(V) = f(U \cap V) = f(ϕ) = ϕ . Hence Y is π gr-Normal.

Theorem: 5.5

If $f:X \rightarrow Y$ is regular continuous bijective, almost πgr -open function from a mildly normal space X onto a space Y, then Y is πgr -normal.

Proof: Let E and F be disjoint closed sets in Y, Since f is regular continuous bijective $f^{1}(E)$ and $f^{1}(F)$ are disjoint regular closed sets in X.

Now, X is mildly normal, there exists disjoint regular open sets U and V, such that $f^{1}(E) \subset U$,

 $f^{1}(F) \subset V.$

i.e. $E \subseteq f(U)$, $F \subseteq f(V)$. Since f is almost π gr-open function, f(U) & f(V) are π gr-open sets in Y and f is injective, $f(U) \cap f(V) = f(U \cap V)$

 $= f(\phi) = \phi.$

Thus, Y is π gr-Normal.

Theorem: 5.6

If $f:X \rightarrow Y$ is π gr-continuous, closed, bijective, and Y is normal, then X is π gr-normal.

Proof: Let E and F be disjoint closed sets in Y, since f is closed injection, f(E) and f(F) are disjoint closed sets in Y.

Now Y is normal, there exists disjoint open sets G and H such that $f(E) \subset G$, $f(F) \subset H$.

 \Rightarrow E \subset f¹(G) & F \subset f¹(H).

Since f is π gr-continuous, f¹(G) and f¹(H) are π gr-open sets in X.

Further, $f^{1}(G) \cap f^{1}(H) = \phi$. Hence X is π gr-Normal.

Theorem: 5.7

If f:X \rightarrow Y is almost π gr-continuous, R-closed injective, and Y is R- normal, then , X is π gr-normal.

Proof: Let E and F be disjoint closed sets in Y. Since f is R-closed injection, f(E) and f(F) are disjoint regular closed sets in Y.

Now Y is Mildly Normal, (i.e, R- normal), there exists disjoint regular open sets G and H such that $f(E) \subset G$, $f(F) \subset H$.

 $\Rightarrow E \subset f^{1}(G) \& F \subset f^{1}(H).$

Since f is almost π gr-continuous, f¹(G) and f¹(H) are π gr-open sets in X.

Further, $f^{1}(G) \cap f^{\tilde{1}}(H) = \phi$.

Hence X is π gr-Normal.

Theorem: 5.8

If $f:X \rightarrow Y$ is almost π gr-irresolute, R-closed injection, and Y is π gr - normal, then, X is π gr-normal.

Proof: Let E and F be disjoint closed sets in Y. Since f is R-closed injection, f(E) and f(F) are disjoint regular closed sets in Y.

Now Y is π gr -Normal, there exists disjoint π gr-open sets G and H such that $f(E) \subset G$, $f(F) \subset H$.

This implies $E \subset f^{1}(G)$ and $F \subset f^{1}(H)$.

Since f is π gr-irresolute, f¹(G) and f¹(H) are π gr-open sets in X.

Further, $f^{1}(G) \cap f^{1}(H) = \phi$.

 \Rightarrow X is π gr-Normal.

Theorem: 5.9

If $f:X \rightarrow Y$ is continuous, bijective, M- π gr-open (quasi π gr-open) function from a π gr - normal space X onto a space Y, then Y is π gr-normal (normal).

Proof: Let E and H be disjoint closed sets in Y. Since f is continuous bijective, $f^{-1}(E)$ and $f^{-1}(F)$ are disjoint closed sets in X. Now, X is π gr-normal, there exists π gr-open sets U and U such that $f^{-1}(E) \subset U$ and $f^{-1}(F) \subset V$. That is $E \subset f(U)$ and $F \subset f(V)$. Since f is M- π gr-open(quasi π gr-open) function, f(U) and f(V) are π gr-open sets(open sets) in Y and f is bijective,

 $f(U) \cap f(V) = f(U \cap V) = f(\phi) = \phi$.

Hence Y is π gr-normal (normal).

BIBLIOGRAPHY

- [1] D.Andrijevic, Semi-pre open sets mat. Vesnik 38 (1) 1986, 24-32.
- [2] S.P.Arya and T.Nour, Characterizations of s-normal spaces, Indian J.Pure and Applied Maths 21 (8) (1990) 717-719.
- [3] Arya. S.P and Gupta.R (1974), On Strongly Continuous function. Kyunkpook Math. J., 14:131-143.
- [4] Bhattacharya.S (2011), On Generalized Regular Closed sets, Int. J. Contemp. Math.sciences, 6: (3) 145-152.
- [5] P.Bhattacharya and B.K.Lahiri, Semi-generalized closed sets on topology, Indian J.Maths 29 (3) (1987) 375-382.
- [6] J.Dontchev and T.Noiri, Quasi -normal and π g-closed sets, Acta Math . Hungar, 89(3)(2000), 211-219.
- [7] Jeyanthi.V and Janaki.C, "πgr-closed sets in topological spaces", Asian Journal of Current Engg. And Maths, 1:5 Sep 2012,241-246.
- [8] N.Levine, Generalized closed sets in topology, Tend Circ., Mat. Palermo (2) 19 (1970), 89-96.
- [9] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math. Monthly 70 (1963)), 36-41
- [10] S.N. Maheswari and R.Prasad, On S-regular spaces, Glasnik Math., 10(30): 347:350, 1975.
- [11] S.N. Maheshwari and R.Prasad, On S- normal spaces, Bull. Math. Soc. Sci. R.S. Roumanie, 22(70); 27:29, 1978.
- [12] Palaniappan .N and Rao.K.C (1993), Regular Generalized Closed Sets, Kyungpook Math, J., 33: (2) 211-219.
- [13] Singal M.K, Singal A.R, Mildly Normal spaces, Kyunkpook Math J 1973: 13:27-31.
- [14] V. Zaitsav, On Certain classes of topological spaces and their bicompactifications, Dokl Akad Nauk SSSR(178), 778-779.