On Contra – RW Continuous Functions in Topological Spaces

M. Karpagadevi¹, A. Pushpalatha²

¹ Assistant Professor, S.V.S. College of Engineering, Coimbatore, India ² Assistant Professor, Government Arts College, Udumalpet, India

ABSTRACT: In this paper we introduce and investigate some classes of functions called contra-rw continuous functions. We get several characterizations and some of their properties. Also we investigate its relationship with other types of functions. **Mathematics Subject Classification**: 54C08, 54C10

Keywords: Contra rw-continuous, Almost Contra rw-continuous, Contra rw-irresolute

I. Introduction

In 1996, Dontchev[1] presented a new notion of continuous function called contra-continuity. This notion is a stronger form of LC-Continuity. In 2007, Benchalli.S.S. and Wali.R.S.[2] introduced RW-closed set in topological spaces. In 2012, Karpagadevi.M. and Pushpalatha.A.[3] introduced RW-continuous maps and RW-irresolute maps in topological spaces. The purpose this paper is to define a new class of continuous functions called Contra-rw continuous functions and almost Contra rw-Continuous function and investigate their relationships to other functions.

II. Preliminaries

Throughout this paper X and Y denote the topological spaces (X,τ) and (Y,σ) respectively and on which no separation axioms are assumed unless otherwise explicitly stated. For any subset A of a space (X,τ) , the closure of A, the interior of A and the complement of A are denoted by cl(A), int(A) and A^c respectively. (X,τ) will be replaced by X if there is no chance of confusion. Let us recall the following definitions as pre requesters.

Definition 2.1: A Subset A of (X, τ) is called

(i) generalized closed set (briefly g-closed) [5] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(ii) regular generalized closed set (briefly rg-closed)[6] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

The Complement of the above mentioned closed sets are their respective open sets.

Definition 2.2: A Subset A of a Space X is called rw-closed [2] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semiopen in X.

Definiton 2.3: A Map f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be

(i) rw-continuous[3] if $f^{-1}(V)$ is rw-closed in (X,τ) for every closed set V in (Y,σ)

(ii) rw-irresolute[3] if $f^{1}(V)$ is rw-closed in (X,τ) for every rw-closed set V of (Y,σ)

(iii) rw-closed[2] if f(F) is rw-closed in (Y, σ) for every rw-closed set F of (X, τ)

(iv) rw-open[2] if f(F) is rw-open in (Y,σ) for every rw-open set F of (X,τ)

Definiton 2.4: A Map f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be contra-continuous [1] if $f^{1}(V)$ is closed in (X,τ) for every open set V in (Y,σ) .

III. Contra RW-Continuous Function

In this section we introduce the notions of contra rw-continuous, contra rw-irresolute and almost contra rw-continuous functions in topological spaces and study some of their properties.

Definition 3.1: A function f: $(X,\tau) \to (Y,\sigma)$ is called contra rw-continuous if $f^{-1}(V)$ is rw-closed set in X for each open set V in Y.

Example 3.2: Let $X=Y=\{a,b,c\}$ with topologies $\tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}$ and $\sigma = \{Y,\phi,\{a,b\}\}$. Let $f: X \to Y$ be a map defined by f(a) = a, f(b) = b and f(c) = c. Clearly f is contrar w-continuous.

Theorem 3.3: Every contra-continuous function is contra rw-continuous. **Proof:** The proof follows from the fact that every closed set is rw-closed set.

Remark 3.4: The converse of the above theorem need not be true as seen from the following example.

Example 3.5: Let $X=Y=\{a,b,c\}$ with topologies $\tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}$ and $\sigma = \{Y,\phi,\{a,b\}\}$. Let f: $X \to Y$ be a map defined by f (a) = a, f (b) = b and f(c) = c. Clearly f is contra rw-continuous but not contra-continuous since f⁻¹($\{a,b\}$) = {a,b} which is not closed in X.

Theorem 3.6: If a function $f: X \to Y$ is contra rw-continuous, then f is contra-continuous. **Proof:** Let V be an open set in Y. Since f is contra rw-continuous, $f^{-1}(V)$ is closed in X. Hence f is contracontinuous.

Remark 3.7: The concept of rw-continuity and contra rw-continuity is independent as shown in the following examples.

Example 3.8 : Let $X=Y=\{a,b,c\}$ with topologies $\tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}$ and $\sigma = \{Y,\phi,\{b,c\}\}$. Let f: $X \to Y$ be a map defined by f (a) = a, f (b) = b and f(c) = c. Clearly f is contra rw-continuous but not rw-continuous since $f^{-1}(\{a\}) = \{a\}$ is not rw-closed in X where $\{a\}$ is closed in Y.

Example 3.9 : Let X=Y={a,b,c} with topologies $\tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}$ and $\sigma = \{Y,\phi,\{b\}\}$. Define f: X \rightarrow Y identity mapping. Then c learly f is rw-continuous but not contra rw-continuous since f⁻¹({b}) = {b} is not rw-closed in X where {b} is closed in Y.

Theorem 3.10: Every contra rw-continuous function is contra rg-continuous. **Proof:** Since every rw-closed set is rg-closed, the proof is obvious.

Remark 3.11: The converse of the above theorem need not be true as seen from the following example.

Example 3.12: Let $X=Y=\{a,b,c,d\}$ with topologies $\tau=\{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$ and $\sigma = \{Y,\phi,\{a\},\{b\},\{a,b,c\}\}$. Let f: $X \to Y$ be a map defined by f (a) = c, f (b) = d, f(c) = a and f (d) = b. Clearly f is contra rg-continuous but not contra rw-continuous since f $^{-1}(\{a\}) = \{c\}$ is not rw-closed in X where $\{a\}$ is open in Y.

Remark 3.13: The composition of two contra rw-continuous functions need not be contra rw-continuous as seen from the following example.

Example 3.14: Let $X=Y=Z=\{a,b,c\}$ with topologies $\tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}$ and $\sigma = \{Y,\phi,\{a,b\}\}$ and $\eta = \{Z, \phi,\{a\}\}$. Let f: $X \to Y$ be a map defined by f (a) = c, f (b) = b and f(c) = a and g: $Y \to Z$ is defined by g (a) =b, g (b) =c and g(c) =a. Then clearly f and g are contra rw-continuous. But g o f: $X \to Z$ is not contra rw-continuous since (g o f)⁻¹{a} = f⁻¹(g⁻¹{a}) = f⁻¹({c}) = {a} is not rw-closed in X.

Theorem 3.15: If f: $(X,\tau) \to (Y,\sigma)$ is contra rw-continuous and g: $Y \to Z$ is a continuous function, then g o f: $X \to Z$ is contra rw-continuous.

Proof: Let V be open in Z. Since g is continuous, $g^{-1}(V)$ is open in Y. Then $f^{-1}(g^{-1}(V))$ is rw-closed in X since f is contra rw-continuous. Thus (g o f)⁻¹(V) is rw-closed in X. Hence g o f is contra rw-continuous.

Theorem 3.16: If f: $X \to Y$ is rw-irresolute and g: $Y \to Z$ is contra continuous function then g o f: $X \to Z$ is contra rw-continuous.

Proof: Since every contra continuous is contra rw-continuous, the proof is obvious.

Theorem 3.17: If f: $X \to Y$ is contra rw-continuous then for every $x \in X$, each $F \in C(Y, f(x))$, there exists $U \in RWO(X,x)$ such that $f(U) \subset F$ (ie) For each $x \in X$, each closed subset F of Y with $f(x) \in F$, there exists a rw-open set U of Y such that $x \in U$ and $f(U) \in F$.

Proof: Let $f: X \to Y$ be contra rw-continuous. Let F be any closed set of Y and $f(x) \in F$ where $x \in X$. Then $f^{-1}(F)$ is rw-open in X. Also $x \in f^{-1}(F)$. Take $U = f^{-1}(F)$. Then U is a rw-open set containing x and $f(U) \subseteq F$.

Theorem 3.18: Let (X,τ) be a rw-connected space (Y,σ) be any topological space. If $X \to Y$ is surjective and contra rw-continuous then Y is not a discrete space.

Proof: Suppose Y is discrete space. Let A be any proper non-empty subset of Y. Then A is both open and closed in Y. Since f is contra rw-continuous, $f^{-1}(A)$ is both rw-open and rw-closed in X. Since X is rw-connected, the only subset of Y which are both rw-open and rw-closed are X and ϕ . Hence $f^{-1}(A) = X$. Then it contradicts to the fact that f: $X \to Y$ surjective. Hence Y is not a discrete space.

Definition 3.19: A function f: $X \to Y$ is called almost contra rw-continuous if $f^{-1}(V)$ is rw-closed set in X for every regular open set V in Y.

Example 3.20: Let X=Y=Z={a,b,c} with topologies $\tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}\$ and $\sigma = \{Y,\phi,\{a\},\{c\},\{a,c\}\}$. Define f: X \rightarrow Y by f (a) =a, f (b) =b and f(c)=c. Here f is almost contra rw-continuous since f⁻¹({a}) = {a} is rw-closed in X for every regular open set {a} in Y.

Theorem 3.21: Every contra rw-continuous function is almost contra rw-continuous. **Proof:** The proof follows from the definition and fact that every regular open set is open.

Definition 3.22: A function f: $X \to Y$ is called contra rw-irresolute if $f^{-1}(V)$ is rw-closed in X for each rw-open set V in Y.

Definition 3.23: A function f: $X \to Y$ is called perfectly contra rw-irresolute if $f^{-1}(V)$ is rw-closed and rw-open in X for each rw-open set V in Y.

Theorem 3.24: A function f: $X \rightarrow Y$ is perfectly contra rw-irresolute if and only if f is contra rw-irresolute and rw-irresolute.

Proof: The proof directly follows from the definitions.

Remark 3.25: The following examples shows that the concepts of rw-irresolute and contra rw-irresolute are independent of each other.

Example 3.26: Let $X=Y=Z=\{a,b,c\}$ with topologies $\tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}$ and $\sigma = \{Y,\phi,\{a\},\{c\},\{a,c\}\}$. Define f: $X \rightarrow Y$ by f (a) = a, f (b) = b and f(c) = c. Here f is contra rw-irresolute but not rw-irresolute since $f^{-1}(\{a,b\}) = \{a,b\}$ is not rw-open in X.

Example 3.27: Let X=Y=Z={a,b,c} with topologies $\tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}\$ and $\sigma = \{Y,\phi,\{a\},\{c\},\{a,c\}\}$. Define f: X \rightarrow Y by f (a) = a, f (b) = b and f(c) = c. Here f is rw-irresolute but not contra rw-irresolute since $f^{-1}(\{b\}) = \{b\}$ is not rw-closed in X.

Theorem 3.28: Let $f: X \to Y$ and $g: Y \to Z$ be a function then

(i) If g is rw-irresolute and f is contra rw-irresolute then g o f is contra rw-irresolute

(ii) If g is contra rw-irresolute and f is rw-irresolute then g o f is contra rw-irresolute

Proof: (i) Let U be a rw-open in Z. Since g is rw-irresolute, $g^{-1}(U)$ is rw-open in Y. Thus $f^{-1}(g^{-1}(U))$ is rw-closed in X. Since f is contra rw-irresolute (ie) (g o f)⁻¹(U) is rw-closed in X. This implies that g o f is contra rw-irresolute.

(ii) Let U be a rw-open in Z. Since g is contra rw-irresolute, $g^{-1}(U)$ is rw-closed in Y. Thus $f^{-1}(g^{-1}(U))$ is rw-closed in X since f is rw-irresolute (ie) (g o f) $^{-1}(U)$ is rw-closed in X. This implies that g o f is contra rw-irresolute.

Theorem 3.29: Every perfectly contra rw-irresolute function is contra rw-irresolute and rw-irresolute. **Proof:** The proof directly follows from the definitions.

Remark 3.30: The following two examples shows that a contra rw-irresolute function may not be perfectly contra rw-irresolute and rw-irresolute function may not be perfectly contra rw-irresolute.

Example 3.31: In example 3.29, f is rw-irresolute but not perfectly contra rw-irresolute and in example 3.28, f is contra rw-irresolute but not perfectly contra rw-irresolute.

Theorem 3.32: A function is perfectly contra rw-irresolute iff f is contra rw-irresolute and rw-irresolute. **Proof:** The proof directly follows from the definitions.

REFERENCES

- Dontchev.J."Conra-continuous functions and strongly s closed spaces", International J.Math&Math.Sci.19 (1996).303-310.
- [2]. Benchalli.S.S. and Wali.R.S, "On RW-closed sets in topological spaces", Bull. Malays. Math. Sci. Soc (2) 30(2) (2007), 99-110.
- [3]. Karpagadevi.M. and Pushpaltha. A., "RW-Continuous maps and RW-irresolute maps in topological spaces", International Journal of Mathematics Trends and Technology, Vol.4, Issue 2-2013, 21-25.
- [4]. Karpagadevi.M. and Pushpaltha. A., "RW-Closed maps and RW- Open maps in topological spaces", International Journal of Computer Applications Technology and Research, Vol.2, Issue 2-2013, 91-93.
- [5]. Levine.N. "Generalized closed sets in topology", Rend.Circ.Mat.Palermo 19.1970,89-96.
- [6]. Palaniappan.N and Rao.K.C. "Regular generalized closed sets", Kyungpook Math J 33, 1993, 211-219.
- [7]. Syed Ali Fathima.S. and Mariasingam.M. "On contra #rg-Continuous functions", International Journal of Modern Engineering Research, Vol.3.Issue.2, March-April.2013 pp.939-943