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Abstract: This paper describes a approach to text-to-speech synthesis (TTS) based on HMM. In the proposing approach, 

speech   spectral    parameter    sequences are generated from HMMs directly based on maximum likelihood criterion. By 

considering relationship between static and dynamic features during parameter generation, smooth spectral sequences are 

generated according to the statistics of static and dynamic parameters modelled by HMMs, resulting in natural sounding 

speech. In this paper, first, the algorithm for parameter generation is derived, and then the basic structure of an HMM based 

TTS system is described. Results of subjective experiments show the effectiveness of dynamic feature. 
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I.    INTRODUCTION 
A Hidden Markov Model (HMM) is finite state machine which generates a sequence of discrete time observation. 

At each time unit (frame) the HMM changes state according to state transition probability distribution, and then generates an 

observation ot at time t according to output probability distribution of the current state .Hence the HMM is doubly stochastic 

random process model. 

 

An N state HMM is defined by state transition probability distribution A= 𝑎𝑖𝑗 𝑁 𝑖, 𝑗 = 0and output probability 

B={bj(o)}
N

j=0  and initial state probability distribution  π= {πi}
N

i=0  . For convenience the compact notation.        
 λ  =(A,B,π) 

 
Figure 1. Examples of HMM parameter is used to indicate parameter set of the model 

 

Figure 1 shows the HMM model  Figure 1 (a) shows  the 3 state ergodic state  ,in every state of model could be 

reached from every other state  of the model in single step figure 1(b) shows the a 3 state left to right model in which the 

state index increases or stays same as time increase. Generally left to right HMMs are used to model speech parameter 

sequence since they can appropriate model signal whose property changes in successive manner. The output probability 

distribution bj(ot) can be discrete or continuous depending on the observation. Usually in continuous distribution HMM 

(CDHMM) an output probability distribution is modelled by mixture of multivariate Gaussian distribution which as follows  

              M  

  bj(o)= ∑wjmN(o|µjm,,Ujm) 

               m=1 

Where M= number of mixture component wjm, μjm, Ujm are weight, a mean vector, and covariance matrix component m 

of state j, respectively. A Gaussian distribution N (o|µjm,,Ujm)    is defined by 

N(o|µjm,,Ujm)  =  ( 1/( 2𝜋  )d |𝑈|)   exp(−1/2(𝑜 − µµjm)
Τ
Ujm

-1
(o  -  µjm) 

Where d is dimensionality of o. mixture weight wjm satisfies the stochastic constraint  

∑wjm =1      1≤ j≤ N 

Wjm ≥ 0     1≤ j≤ N,    1≤ m ≤ M 

So that bj(o) are properly normalized . 

ᶋ𝑏𝑗 𝑜 𝑑𝑜 =   1       1≤ j≤ N 

When the observation vector o is divided into S independent data stream i.e.  o = [o1
Τ
,o2

Τ
 , o3

Τ
,....................oS

Τ
]

Τ
 bj(o) is 

formulated by product  of Gaussian mixture densities. 

             S  

bj(o)=Π bjs(os) 

           s=1 

HMM-Based Speech Synthesis 
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                 S    Ms 

      bj(o)= Π{ΠwjsmN(os|µjsm,Ujsm )} 

                s=1  m=1 

Likelihood calculation  

When the state sequence is determined as Q= (q1 q2 q3 q 4….qT ), the likelihood of generating an observation sequence 

O=(o1, o2, o3, o4,….oT) is calculated by multiplying the state transition probabilities and output probabilities for each state  

𝑃  𝑂,
𝑄

𝜆
 =  𝑨𝒒𝒕 − 𝟏,𝑨𝒒𝒕,𝑩𝒒𝒕,𝑶 𝒕 

𝑻

𝒕=𝟏

 

Where Aq0j denote πj. The likelihood of generating O from HMM 𝞴 is calculated by summing P(O,Q/𝞴) for all possible 

sequences  

𝑃  
𝑜

𝞴
 =   𝑨𝒒𝒕 − 𝟏,𝑨𝒒𝒕,𝑩𝒒𝒕,𝑶(𝒕)

𝑻

𝒕=𝟏𝑸𝒂𝒍𝒍

 

The likelihood of above equation is sufficiently calculated using forward and/or backward procedure . 

The forward and backward variables are 

αt(i)=P(o1,o2,...........oT,qt=i/λ) 

βt(i)=P(ot+1 ,ot+2, ...................oT,q=i,λ) 

can be calculated individually as  

1. Initialization 

       α1(i)=Π bi(o1)                                       1<i<N 

       βT (i) = 1                                               1<i<N` 

2. Recursion  

         αT+1(i)=   αt (j)aji   𝑁
𝑗=1  𝑏i(t+1)     1 <i<N 

                       t=2,.....................T              

3. Termination 

                      P* =max[(δT(i) ] 

                    q*=argmax[(δT(i) ] 

4.   Path back tracking 

             qt
*
 = Ψt+1(q

*
t+1) 

 

Maximum Likelihood Estimation of HMM parameter  

There is no known method to analytically obtain the model  parameter set based on maximum likelihood based on 

maximum likelihood (ML) criterion ., that is to obtain which maximises likelihood P(O/λ) for a given observation 

sequence O , in a closed form. Since this problem is a high dimensional nonlinear optimization problem, and there will be 

number of local maxima . , it is difficult to obtain λ which globally maximizes P(O/λ) and can be obtained using an 

iterative procedure such as the expectation –maximization (EM) algorithm ( which is often referred to as Baum-Weich 

algorithm), and the obtained parameter set will be  a good estimate if a good initial estimate is provided . 

      In the following , the EM algorithm for the CD-HMM are described . The algorithm for the HMM with discrete output 

distribution can also be derived in the straight forward manner 

 

Q-Function 

     In the E M algorithm , an auxiliary function Q(λ’,λ) of current parameter set λ’ and new parameter set λ is defined 

as follows  

       Q(λ’,λ)=
1

𝑃(
𝑂

𝜆
)
 𝑃 𝑂,𝑄 𝜆′ logP(O, Q\λ). 

Here , each mixture component is decomposed into a substrate and Q is redefined as a substrate sequence i.e. 

Q=((q1 ,s1) ,(q2 ,s2 ), ......................(qT,sT)            

Where (qT,sT)  represents the being substrate st of state qt  at time t. 

       At each iteration of procedure current parameter set λ’ is replace by new parameter set which maximises Q(λ’,λ). 

This iterative procedure can be provided to increase likelihood P(O|λ) monotonically and converge to a certain critical 

point since it can provide that Q- function satisfies the following theorem 

Theorem 1  

Q(λ’,λ)≥ Q(λ’,λ’)  i.e. P(O|λ)≥P(O|λ’) 

Theorem 2 

The auxiliary function Q(λ’,λ) has a unique global maximum as a function of λ and this is the one and the critical point. 

Theorem 3  

     A parameter set λ is the critical point of the likelihood  P(O|λ) if and only if it is a critical point of the Q- function. 

 

Maximization of the Q-Function   

logP(O, O|λ) can be written as  

logP(O, O|λ)= 𝑎𝑞𝑡 − 1𝑞𝑡𝑇
𝑡=1  + 𝑤𝑞𝑡𝑠𝑡𝑇

𝑡=1  +  log(𝒩 (𝑜𝑡|µ𝑞𝑡 𝑠𝑡,Uqt st), 

where aq0q1 denotes Πq1. Hence the Q function can be written as  
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Q(λ’,λ)= 𝑃(𝑂, 𝑞1 = 𝑖|𝑁
𝑖=1 λ’)logΠi  

+   𝑃 𝑂, 𝑞𝑡 = 𝑖, 𝑞𝑡 + 1 = 𝑗 𝜆′ 𝑙𝑜𝑔𝑎𝑖𝑗𝑇−1
𝑡=1

𝑁
𝑗=1

𝑁
𝑖=1 +   𝑃 𝑂, 𝑞𝑡 = 𝑖, 𝑠𝑡 = 𝑘 𝜆′ 𝑙𝑜𝑔𝑤𝑞𝑡𝑠𝑡𝑇

𝑡=1
𝑁
𝑗=1

𝑁
𝑖=1 +

   𝑃 𝑂, 𝑞𝑡 = 1, 𝑠𝑡 = 𝑘 𝜆 𝑙𝑜𝑔𝒩(𝑜𝑡|µ𝑞𝑡𝑠𝑡,𝑈𝑞𝑡𝑠𝑡𝑇
𝑡=1

𝑀
𝑘=1

𝑁
𝑖=1 ) 

 𝛱𝑖 = 1

𝑁

𝑖=1

 

                                                                                          𝑎𝑖𝑗 = 1           𝑁
𝐽=1   1≤i≤N 

                                                                                                   𝑤𝑖𝑘 = 1𝑀
𝑘=1  1≤i≤N 

can be derived from lagaranges or differential calculs. 

Πi = γ1(i),  aij=
 𝜉 ′𝑡(𝑖 ,𝑗 )𝑇−1
𝑡=1

 𝛾𝑡 (𝑖)𝑇−1
𝑡=1

   ;  𝑤𝑖𝑘 =    
 𝛾𝑡 (𝑖 ,𝑘  )𝑇
𝑡−1

 𝛾𝑡 (𝑖)𝑇
𝑡−1

;  µ𝑖𝑘 =
 𝛾𝑡  𝑖 ,𝑘 .𝑂𝑡𝑇
𝑡−1

 𝛾𝑡 (𝑖 ,𝑘)𝑇
𝑡=1

  ;       𝑈𝑖𝑘 =  
 𝛾𝑡  𝑖 ,𝑘 . 𝑜𝑡− µ𝑖𝑘 .(𝑜𝑡− µ𝑖𝑘 )𝑇
𝑡−1

 𝛾𝑡 (𝑖 ,𝑘)𝑇
𝑡−1

 

Probability of state i being at t and probability of state i being at t+1 are    

𝛾𝑡 𝑖 = 𝑃 𝑂, 𝑞𝑡 = 𝑖 𝜆 =
𝛼𝑖  𝑡 𝛽𝑡 (𝑖)

 𝛼𝑡  𝑗  𝛽𝑡 (𝑗 )𝑁
𝑗=1

;      γt(i,k)=P(O,qt=1,st=k|λ)=  
𝛼𝑡  𝑖 𝛽𝑡 (𝑖)

 𝛼𝑡  𝑗  𝛽𝑡 (𝑗 )𝑁
𝑗=1

.
𝑤𝑗𝑘𝒩 (𝑜𝑡 |µ𝑗𝑘 ,𝑈𝑗𝑘 )

 𝑤𝑗𝑚𝒩 (𝑜𝑡 |µ𝑗𝑚 ′𝑈𝑗𝑚 )𝑀
𝑚 =1

 

       ξt(i,j)=P(O,qt=i,qt+1=j|λ)=
𝛼𝑡  𝑖 𝑏𝑗  𝑜𝑡+1 𝛽𝑡+1(𝑗 )

  𝛼𝑡  𝑙 𝛼𝑙𝑛𝑏𝑛  𝑜𝑡+1 𝛽𝑡+1(𝑛)𝑁
𝑛=1

𝑁
𝑡=1

 

 

II.     METHOD 
The system consists of two stages : the training stage and the synthesis stage.First in training stage mel-cepstrumm 

coffecient are obtained from the speech signal by delta –delta  mel-cepstral coefficient.Then phoneme HMM are trained 

using mel-cepstral coefficient and their deltas and deltas-deltas .  

In the synthesis stage  an arbitrary given text to be synthesized is transformed into phoneme sequence . According 

to phoneme sequence , a sentence HMM  which represents the whole text to be synthesized is constructed by concatening 

phoneme HMMs. From the sentence HMM ,a speech parameter is generated using the algorithm for  speech parameter 

generation for HMM By using Mel-Log spectral Approximation speech is synthesized from the generated mel-spectral 

coefficient. 

Speech data base  

HMM are trained using 503 phonetically balance sentences uttered by male speaker . Speech signal is sampled at 

20KHz and downsampled to 10KHz and re-labelled using 60 phonemes and silence  given in table 1. Unvoiced vowles 

with previous consonants are treated as individual phonemes e.g  shi is composed of unvoiced i with previous sh. 
Vowels  

  a , i, u,e,o 

Consonants  

       N, m , n ,y,w,r,p,pp,t,tt,k,kk,b,d,dd, 

        g, ch cch ts tts s ss sh, ssh, h,f ,ff,z 

        j, my ny ry by gyp y ppy ky kky hy   

Unvoiced vowels with previous consonants  

        pi, pu,ppi,ki,ku,kku,chi,cchi,tsu,su,shi, 

         shu, sshi,sshu, hi, fu  

Table :1 Phoenems used in system 

 
Figure:2 Block diagram of HMM based speech synthesis system. 

Speech Analysis 

Speech signal are windowed by 25.6ms Blackman window  with 5ms shift , then mel cepstral  coefficients are obtained by 

15 th order mel-cepstral analysis. The dynamic feature Δct and ΔΔct  i.e. delta and delta –delta mel-cepstral coefficient  at 

frame t are calculated as 

Δct  =
1

2     
 (ct+1 – ct-1), Δ

2
ct = 

1

2
(Δct+1  -  Δct-1) 

   The feature vector is composed of  16 mel- cepstral coefficient including the zeroth coefficient and their delta and delta-

delta coefficient . 
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 Training of HMM 

All HMM used in system were left- to – right model with no skip . each state has single Gaussian distribution with 

diagonal convergence . Initially a set of microphone models were trained . These models were cloned to produce a triphone 

model for all distinct triphones  in the training data. The triphone models were reestimated with the embedded version of 

Bauman Welch version algorithm. All the states at same position of the triphone HMM  derived from same microphone 

HMM were clustered using further neighbourhood hierarchical clustering algorithm. The output distribution in the same 

cluster were tied to reduce the number of parameters and to balance the complexity against the available data  .Tied 

triphone models were    re estimated   with embedded  training again. 

Finally the data was aligned to the models via viterbi algorithm to obtain state duration densities . each of the state duration 

densities  was modelled by single Gaussian distribution . 

Speech Synthesis  

An aritbitrary given text to be synthesized is converted in phoneme sequence Then triphone HMM corresponding to 

the phoneme sequence are concatenated to  obtain HMM sentence which represents the whole text to be synthesized . 

Instead of triphones which did not exist in the training data , monophone models are used .. From the sentence HMM , a 

speech parameter sequence is generated using algorithm. By using MLSA  filter speech is synthesized from the generated 

mel cepstral coefficient directly  . 

Subjective Experiments 

Subjective test were conducted to evaluate the effect of including dynamic feature and to investigate the 

relationship between the number of states of tied triphone HMMs and the quality of speech synthesized .The test sentence 

consisted of twelve sentences which were not included in training sentences. Fundamental frequency contours were 

extracted from natural utterances, and used for speech synthesis using linear  time warping within each phoneme to adjust 

phoneme duration of extracted fundamental frequency contours to generated parameter  sequence . In the test sentences set, 

there exist 619 distinct triphonens in which 38(5.8%) triphones where not included in training data and replaced by 

monophones. The test sentence set where divided into three set and each set was evaluated by individual subjects . Subjects 

were presented  with a pair of synthesized set at each trial, and asked to judge which of two  speech samples sounded better   

. 

Effect of dynamic features   

To investigate the effect of dynamic features , a pared compression test was conducted . Speech samples used in the 

test were synthesized using (1) speech spectral sequence generated without dynamic feature from model stringed using 

static features 

(2) spectral sequence generated using only static features and then linearly interpolated between the centers of state 

duration. 

(3) Spectral sequence generated using static and delta parameters from the models trained using static and dynamic 

parameter  

(4) Spectral parameters generated using static , delta and delta –delta from the models trained using static, delta and delts-

delta parameters. All the models were triphone models without sate tying.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure:3 Effects of dynamic features 

Figure:3 shows the results of the paired comparison test. Vertical axis denotes the preference score . From the result it can be 

seen that the score for synthetic speech generated using dynamic feature are much higher than those synthetics speech 

generated using static features with and without linear interpolation. This is due that by exploiting statics of dynamic features 

for speech parameter generation, generated spectral sequence can reflect not  only shapes spectra but also transition 

appropriately comparing to spectral sequence generated using static features only with linear interpolation.  

 

State tying 

To investigate the relationship between total number of state  of tied tri phone HMMs and quality of speech 

synthesized speech, paired comparison test were conducted  using 3 and 5 tied  triphone HMMs .By modifying stop character 

for state clustering several sets  of HMMs which had different numbers of states were prepared for test. For 3-stse HMMs 

comparison were performed using triphone model without state tying(totally 10,544 states ) tied triphone models with totally 

1,961and 1,222 states  and monophone models (183 states) and for 5 state HMMs  triphone models without state tying 

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

Series1



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com             Vol.3, Issue.4, Jul - Aug. 2013 pp-1894-1899             ISSN: 2249-6645 

www.ijmer.com                                                                         1898 | Page 

(totally 17,590 states ), tied triphone models with totaly 2,040 and 1,199 states and monophone models (305 states). It is 

noted that sate duration distribution of triphone models were also used for monophone models to avoid of phoneme duration 

on speech quality. 

 
Figure: 4a   3 state HMMs 

 

 
Figure:4b 5 state model 

 

Figure: 4a and Figure:4b shows the result for 3 state and 5 state HMM. From the result , it can be seen that the quality of 

synthetic speech degrade as the number of states decrease .From informal listening test and investigation of generated 

spectra , it was observed that shapes of spectra were getting flatten as the number of state decreases and this cause 

degrading of in intelligibility . It was observed that that the audible discontinuity in synthetic speech increased as the 

number of state increased , meanwhile the generated spectra varied smoothly when the number of states were small. The 

discontinuity caused in the lower score for 5 state triphone models compared to 3 – state triphone models. It is  noted that 

significant degradation in communicability was not observed even if the mono phone models were used for speech 

synthesis .   
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Figure: 5 Comparison of 3-state and 5- state HMMs 

 

Along x-axis 

1  3-state HMM          (1961 states) 

2   3-state HMM          (1222 states) 

3  5-state HMM         (2040 states) 

4  5-state HMM          (1199 states) 

From the above figure it can be seen that scores for 3-state and 5-state models  were almost equivalent when number of 

states were almost 2000, the score of 5-state models was better when the number states were 1200. When the total number 

of tied states  were almost the same , 5- sate model has higher resolution in time than 3- sate model reversely, 3-sate model 

has better resolution in parameter space than 5-state model .From the result if total number of state state  is limited, models 

with higher resolution in time can synthesize more naturally sounding speech  than model with higher parameter resolution 

in space . 

 

III. CONCLUSION 
In parameter generation algorithm a speech generation sequence is obtained so that likelyhood of HMM for 

generated parameter sequence is maximized. By exploiting the constraints between static and dynamic features the 

generated parameter sequence results not only for static of shapes of spectra but also transition obtained from training data  

appropriately, resulting in smooth and realistic spectral sequence .In parameter generation algorithm a problem of 

generating parameter speech was simplified assuming that parameter sequence was generated along single path. The 

extended parameter algorithm using multi-mixture HMMs model has more ability to generate natural soundings speech, 

however extended algorithm has more computational complexity since it is based on expectation- maximization algorithm 

,which results in iteration of forward –backward algorithm and parameter generation algorithm.    
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