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Abstract: In this paper area-power efficient modulo 2
n
+1 multiplier is proposed. The result and one operand for the new 

modulo multipliers use weighted representation, while the other uses the diminished- 1. By using the radix-4 Booth recoding, 

the new multipliers reduce the number of the partial products to n/2 for even and (n+1)/2 for odd except for one correction 

term. According to our algorithm, the resulting partial products are added through inverted end around carry save adder 

into two operands, which are finally adder by a 2-stage n-bit adder containing 2:1 multiplexer. By using the purposed adder, 

the new multipliers reduce the area and power. The analytical and experimental result indicates that the new modulo 2
n
+1 

multipliers, offer reduced power and more compact area among all the existing structures. 
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I. INTRODUCTION 
Residue number systems (RNS) reduce the delay of carries propagation, thus suitable for the implementation of 

high-speed digital signal processing devices. Some arithmetic operations, such as addition and multiplication, can be carried 

out more efficiently in RNS than in conventional two’s complement systems. RNS has been adopted in the design of Digital 

Signal Processors (DSP), Finite Impulse Response (FIR) filters], image processing units, Discrete Cosine Transform (DCT) 

processors, communication components, cryptography, and other DSP applications . In recent years, efficient schemes for 

modulo multipliers have been studied intensively. Generally, modulo 2
n
+1 multipliers can be divided into three categories, 

depending on the type of operands that they accept and output: 

i. the result and both inputs use weighted representation; 

ii. the result and both inputs use diminished-1 representation; 

iii. The result and one input use weighted representation, while the other input uses diminished-1. 

 

For the first category, Zimmermann et al. [1] used Booth encoding to realize, but depart from the diminished-1 

arithmetic, which leads to a complex architecture with large area and delay requirements. For the second category, Wang et 

al. [2] proposed diminished-1 multipliers with -bit input operands. The multipliers use a non-Booth recoding and a zero 

partial-product counting circuit. The main drawback in this architecture was handling of zero inputs and results were not 

considered. 

Curiger et al. [3] proposed new modulo multipliers by using the third category. This architecture use ROM based 

look-up methods are competitive. The main drawback in this architecture increasing n-bit, they become infeasible due to 

excessive memory requirements. 

Jian et al. [4] also proposed for the third category architecture and reduce the memory requirement and speed up. 

The new architecture is based on n-bit addition and radix-4 booth algorithm, which is efficient and regular. We are replaced 

diminished-1 modulo 2
n
+1 adder by 2-stage n-bit adder.  

The remainder of the paper is organized as follows: mathematical formulation of Diminished-1 number 

representation computation of modulo multiplier is presented in Section II. The proposed structures are presented in Section 

III. Hardware and time complexity of the proposed structures are discussed and compared with the existing structures in 

Section IV. Conclusion is presented in Section V. 

 

II. DIMINISHED -1 NUMBER REPRESENTATION 
The modulo 2

n
+1 arithmetic operations require (n+1) bit operands. To avoid (n+1)-bit circuits, the diminished-1 

number system [15] has been adopted. Let d[A] be the diminished-1 representation of the normal binary number 

]2,0[ nA , namely 

                      
12

1][


 nAAd                                        (i) 

In (i), when ]12,0[][,0  nAdA ,is an n -bit number, therefore (n+1) -bit circuits can be avoided in this case. 

However, 
n

ndAdA 21]0[][,0
12



        (ii) 

 

Is an (n+1) -bit number. This leads to special treatment for d [0]. The diminished-1 arithmetic operations [15] are defined as 

 

           ]12,0[][,][][  nAifdAdAd                 (iii)                                  

Area and Power Efficient Modulo 2^n+1 Multiplier 
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Where ][Ad  represents the one’s complement of d[A]. In (vii) and (viii) iCLS (d[a], k) is the k -bit left-circular 

shift of in which the bits circulated into the LSB are complemented. 

 

III. PROPOSED ARCHITECTURE  
In the new modulo 2

n
+1 multiplication, the result and one input use weighted representations, while the other input 

uses diminished-1 representation. Let d[A]=(anan-1…a1a0)2 be the diminished-1 representation of weighted A , B=(bnbn-

1…b1b0)2 and 
202112

)....( pppBAP nnn 
 all be weighted one. According toradix-4 booth recording [15] the 

product can be written as 
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From (ix) it is clear that the  architecture consists of the partial products generator (PPG),   the correction tern 

generator (CTG), the inverted end-around-carry carry save adder (EAC CSA) and 2-stage n-bit adder. Based on this 

architecture, a solution which is more effective is proposed. 

The encoding scheme accordant with the radix-4 Booth recoding [4], the partial product generator (PPG) can be 

constructed with the well-known Booth encoder (BE) and Booth selector (BS). The different blocks used in PPG and EAC 

CSA are taken from [4]. 

In this paper, we modified BE block which take successive overlapping triplets ( 12212  iii bbb ) and encodes each as 

an element of the set {-2,-1, 0, 1 2}. Each BE block produces 3 bits: 1x, 2x and Sign. The 3 bits along with the multiplicand 

are used to form partial products. 
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  The CTG produces which has the form ( 011 00......00...... xxxx ii ) with }1,0{ix  . Since the 2i-th bit ix  is 1 

when the iBE  block encodes 0, otherwise ix  is 0, one XNOR gate accepting the 1x and 2x bits of the block can generate 

the 2i-th bit ix . 

The inverted EAC CSA tree can reduce the Partial Products to two numbers. The CSA tree is usually constructed 

with full adders (FA).Then the final two numbers from the tree is passed through the 2-stage n-bit adder. The 2-stage n-bit 

adder is consisting of two ripple carry adder with Cin=0 and Cin=1and one 2:1 multiplexer. The Cout of first n-bit ripple carry 

adder is act as control signal to the multiplexer. The two n-bit sum of the ripple carry adder is given to the multiplexer. If 

Cout=0 then the final sum is the sum where the Cin =1 as shown in fig.(3). 

 

 
Figure 2(a): Booth encoder  



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.3, Issue.3, May-June. 2013 pp-1372-1376             ISSN: 2249-6645 

 

www.ijmer.com                                                                   1375 | Page 

Input  Output  Code  

b2i+1 b2i b2i-1 Sign  2x 1x 

0 0 0 0 0 0 0 

0 0 1 0 0 1 1 

0 1 0 0 0 1 1 

0 1 1 0 1 0 2 

1 0 0 1 1 0 -2 

1 0 1 1 0 1 -1 

1 1 0 1 0 1 -1 

1 1 1 1 0 0 -0 

Figure 2(b): Truth table 

 

 
 

Example: When, n=8 ,Let A=(227)10, B=(157)10, then d[A]=(226)10,   1012
)173(8 


BA . 

                                Example 

n=8,d[A]=(11100010)2,B=(10011101)2,a8=0,b8=0 

               Encode                                Partial Products 

)())(( 780178 bbbbbb  --- 011---PP0---11111111 

                  b3       b2       71 bb    ---110---PP1---01110111 

                  b5       b4        b3          ---011---PP2---01000011 

                  b7       b6        b5          ---100---PP3---11110001 

                                                                  CT=00000001 

 

Calculation 
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IV. RESULT AND SIMULATION 
The proposed architecture has very low hardware complexity compared to [4], which consist of modulo 2

n
+1 adder. 

In the proposed architecture, we use the 2-stage inverted n-bit adder. And calculate the output for 8, 12, 16-bit. To estimate 

the timing, area and power information for ASIC design, we have used Synopsys Design Compiler to synthesize the design 

into gate Level. 

Comparison of Synopsys result in the proposed architecture and diminished-1 modulo 2
n
+1 architecture is given in 

Table 1 and Table 2 respectively.   

These improvements are reasonable. When compared with Diminished-1 modulo 2
n
+1 multipliers for weighted 

representation; the blocks of the new multipliers are based on inverted n-bit adder architecture and use area-power efficient 

in n-bit adders.  

 

Table 1: Synopsys Result for Area 

Area(µm
2
) 

Multiplier 8 bit 12 bit 16 bit 

Proposed 4755.2651 8984.3446 15124.7143 

Jian et al[4] 4901.5240 9127.5707 15370.098 

 

Table 2: Synopsys Result for Power 

Power at 50Hz(µW) 

Multiplier 8 bit 12 bit 16 bit 

Proposed 13.6532 15.6768 29.0434 

Jian et al[4] 14.2816 16.2569 30.0773 

 

V. CONCLUSION 
In this paper, we proposed the area-power efficient a modulo 2

n
+1 multiplier. This architecture uses 2-stage n-bit 

adder, Booth recoding which reduces the number of the partial products to n/2 for even and (n+1)/2 for odd, this is the least 

number of the partial products among all modulo multipliers published. The reduction scheme uses the well-known inverted 

EAC CSA tree and the final 2-stage inverted n-bit adder generates the result. The circuit to handle the zero-input case is 

merged into the first Booth encoder and there is no extra delay to be added. The new multipliers, compared to existing 

implementations, offer better power while being more compact and their regular structure allows efficient VLSI 

implementations. 
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