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Abstract:  This paper highlights three objectives of the quadratic iterator  

,...2,1,0   ,)( 2
1  nbxaxxFx nnnn                            

Where ],4 ,0[nx  a and b and are tunable parameters. Firstly, by adopting suitable numerical methods and computer 

programs we evaluate the period-doubling: ...8421   bifurcations, a route from order into chaos. Secondly, we 

analyze the stability of periodic points. Thirdly, we draw the bifurcation diagram in order to support our period doubling 

orbits and chaotic region, and some illuminating results are obtained as the measure of chaos.   
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I. Introduction 

 Period-doubling: chaos... 2 period  ...4 period2 period1 period k   

Bifurcations, as a universal route to chaos, is one of the most exciting discoveries of the last few years in the field of 

nonlinear dynamical systems. This remarkable discovery was made by the theoretical physicist Mitchell J. Feigenbaum in 

the mid-1970s. The initial universality discovered by  Feigenbaum in one-dimensional iterations with the logistic map, 

)1(1 nnn xxx  
 
and the trigonometric sine function, )sin(1 nn xAx  has successfully led to discover that large 

classes of nonlinear systems exhibit transitions to chaos which are universal and quantitatively measurable. 

 If S be a suitable function space and H, the hyper surface of co-dimension 1 that consists of the maps in S having 

derivative –1 at the fixed point, then the Feigenbaum universality is closely related to the doubling operator, T acting in S 
defined by 

     )),(())(( 1 SfxffxTf    

Where =2.5029078750957…, a universal scaling factor. The principal properties of T that lead to universality are  
(i) T has a fixed point  ‗g‘ ; 

(ii) The linearized transformation DT (g) has only one eigenvalue  greater than 1 in modulus; here = 4.6692016091029… 

(iii) The unstable manifold corresponding to  intersects the surface H transversally. In  
One dimensional case, these properties have been proved by Lanford [8]. Furthermore, one of his fascinating discoveries is 

that if a family f presents period doubling bifurcations then there is an infinite sequence }{ nb of bifurcation values such that  
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Where a universal number is already mentioned above. Moreover, his observation suggests that there might be a universal 

size-scaling in the period doubling sequence designated as the Feigenbaum    value 
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Where nd  is the size of the bifurcation pattern of period 
n2  just before it gives birth to period

12 n
? The birth and 

flowering of the Feigenbaum universality with numerous nonlinear models has motivated our research enterprise [1, 6, 7, 9, 

and 10]. 
 We now highlight some useful concepts which are absolutely useful for our purpose. 

 

1.1 Discrete dynamical systems   

Any )1( kC k

 
map 

n: UE  on the open set 
nU R   defines an n-dimensional discrete-time (autonomous) 

smooth dynamical system by the state equation  

                                                 
,.....3,2,1 ),x(x 1  tE tt                                                (1.1)                                             

A Study of Periodic Points and Their Stability on a One-Dimensional 

Chaotic System 
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Where 
n

t x  is the state of the system at time t and E  maps tx  to the next state 1x t . Starting with an initial 

data 0x , repeated applications (iterates) of E  generate a discrete set of points (the orbits) ,.....}3,2,1,0:)x({ 0 tE t
, 

where   


 times

)x(...)x(

t

t EEEE 

 

[9].      

1.2 Definition: A point
n*x is called a fixed point of E  if ,x)x( ** mE  for all m . 

1.3 Definition: A point
n*x is called a periodic point of E  if ,x)x( ** qE  for some integer 1q . 

1.4 Definition: The closed set
nA is called the attractor of the system  ),x(x 1 tt E  if (i) there exists an open 

set AA 0 such that all trajectories tx of system beginning in 0A are definite for all 0t and tend to A for t ,that 

is, 0),xdist( At  for ,t if 00  x A ,where yxinf),xdist( y  AA  is the distance from the point x  to the 

set ,A  and (ii) no eigensubset of A  has this property.  

1.5 Definition: A system is called chaotic if it has at least one chaotic attractor. 

1.6 Diffeomorphism:  Let A and B are open subsets of 
n . A map BAE :  is said to be a diffeomorphism if it is a 

bijection and both E  and 
1E  are differentiable mapping. E is called a kC differentiable if both  E  and 

1E is 

kC maps.   

1.7: Stability Theorem: A sufficient condition for a periodic point x  of period q for a diffeomorphism
nnE :  to 

be stable is that the eigenvalues of the derivative )x(qDE  are less than one in absolute value. 

      Armed with all these ideas and concepts, we now proceed to concentrate to our main aim and objectives 

 

II. Feigenbaum Universality 

 We consider a one-dimensional map of the interval ),()(1 bxFxFx nnn  , where b is a control parameter. 

We are interested in the maps with quadratic maxima where, as the key system parameter b increases, a stable fixed point 

gives birth to a stable 2-cycle, which then gives birth to a stable 4-cycle, and so on until at b = b∞ all cycles of order 2n are 

unstable and the invariant set of the map consists of 2∞ points. Our model belongs to this category. 

 The condition for a fixed point is that ),( ** bxFx   corresponding to a one-cycle.  In order to decide the 

stability of the fixed point, we set 
*xxx  and study the approximate linear map nn xbxFx  ),( *

1   
 

 
 

Fig2.1 Feigenbaum tree from order to chaos 

 

 

Whose solution is?                         
 0

1* ),( xbxFx n
n  

 

 A fixed point is stable if 1),( *  bxF   an unstable if 1),( *  bxF and the value b1 where 1),( 1
*  bxF  

signals a bifurcation. After the value b = b1 is passed, the point )(* bx  becomes unstable and there appear around it two 

points )(*
11 bx  and )(*

12 bx  forming a stable periodic trajectory of period-2. The differences  

)()( 1
**

11 bxbx 
 
And )()( 1

**
12 bxbx   

B 

b3 b2 b1 
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Are of order 
2/1

1)( bb   as 0)( 1 bb , while ).()()( 11
** bbobxbx   thus, under period-doubling 

bifurcations the previously stable fixed point becomes unstable, and a stable periodic trajectory of period-2 appears near it. 
 As the parameter is further increased, the original fixed point continues to exist as an unstable fixed point, and all 

the remaining points are attracted towards the stable periodic trajectory of period-2. This happens upto some value b = b2 at 

which the periodic trajectory of period-2 loses stability in such a way that 

1
),(),(

*
12

*
11

2
2

1
2



 xxxx
dx

bxdF

dx

bxdF
 

 We can then repeat the same arguments and find that the periodic trajectory of period-2 becomes unstable and a 

periodic trajectory of period-4 appears near it. As b is continuously increased, an infinite sequence }{ nb of parameter values 

emerges such that at nbb   there is a loss of stability of the periodic trajectory of period 
12 n

and a periodic  

Trajectory of period 
n2  arises. By now, we can imagine what happens when  

n
n

bbb


  lim ; 

  The map ),( bxF  has an invariant set, say A Cantor‘s type surrounded by infinitely many unstable periodic 

trajectories of periods
n2 . Moreover, all the points except those belonging to these unstable trajectories and their inverse 

images are attracted to A under the action of ),( bxF . Feigenbaum universality in its simplest form means that the 

sequence }{ nb
 
behaves in a universal manner, that is,

n
n Cbb 

   , where the constant C depends on the family F, 

while δ is the Feigenbaum universal constant. Moreover, the structure of the attractor A, in particular, its Housedroff 

dimension, and the behaviour of the iterates 
nF in a neighborhood of b = b∞ do not depend on A [2--5]. 

 

III. Feigenbaum δ (delta) to make predictions 
 One possible and very useful interpretation of the universality of the Feigenbaum constant δ would be by using it 

for quantitative prediction. At a more practical level, the existence of δ allows us to make quantitative predictions about the 

behavior of a nonlinear system, even if we cannot solve the equations describing the system. More importantly, this is true 
even if we do not know what the fundamental equations for the system are, as is often the case. For example, if we observe 

that a particular system undergoes a period-doubling bifurcation from period-1 to period-2 at a parameter value b1, and from 

period-2 to period-4 at a value 2b  , then we can use δ to predict that the system will make a transition from period-4 to 

period-8 at 3b  given by 

                                                           2
12

3 b
bb

b 





                                             (1.1) 

Observing the first two period-doublings produces no guarantee that a third will occur, but if it does occur, equation (1.1) 

gives us a reasonable prediction of the parameter value near  

Which we should look to see the transitions. Similarly  3
23

4 b
bb

b 





, and so on [10]. 

IV. Numerical method for obtaining periodic points 

To find a periodic point of our model we apply the Newton-Recurrence formula: 

   
1

1
( ),       where 1,2,3,...

( )
n n n

n

x x g x n
d

g x
dx

   
 
 
 

 

[We later see that this map g equals Fn-I , where  I  is the identity function] 

 The Newton formula actually gives the zero(s) of a map, and to apply this numerical    tool, one needs a number of 

recurrence formulae which are given below: 
Let the initial value of x be x0. Then  

2

0 0 0 1( ) ) ( ),F x ax bx x say  
 

2 2

0 0 1 1 1 2( ) ( ( )) ( ) ) ( ),F x F F x F x ax bx x say    
 

Proceeding in this manner, the following recurrence formula can be established: 
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2

1 1,n n nx ax bx  
        

1,2,3,.......n 
 

V. Numerical Method for Finding Bifurcation Values 

  
The derivative of 

nF  can be obtained as follows: 

              
0

02
x x

dF
ax b

dx 

 
 

Again, by the chain rule of differentiation we get 

0 00

2

1 0 1 0

( )

( )
(2 )(2 ),   where ( )

F x x xx x

d F dF dF
ax b ax b x F x

dx dx dx 

    
 

Proceeding in this way we can obtain 

0

1 0

( )
(2 )........(2 )

n

n

x x

d F
ax b ax b

dx




  

 

We recall that the value of b will be the bifurcation value for the map F
n
 when its derivative 

( )nd F

dx  at a periodic point 

equals -1. Also the Feigenbaum theory says that 

                                      

1
2 1 ,    where 1,2,3,...n n

n n

b b
b b n




 


  

                                (1.2) 

and δ is the Feigenbaum universal constant. We notice that if we put  

1
ndF

I
dx

 
, 

 Then I turn out to be a function of the parameter b. The bifurcation value of the parameter b of the period n occurs 

when I (b) equals zero. This means, in order to find a bifurcation value of period n, one needs the zero of the function I (b), 

which is given by the Secant method, applied to the function I (b) which is given by     

                                             1
1

1

( )( )

( ) ( )

n n n
n n

n n

I b b b
b b

I b I b







 


                                                   (1.3)

 

This method depends very sensitively on the initial condition. 

 

VI. Our model and associated universal results 
Our concerned model is  

                                                     
bxaxxF  2)(                                                           (1.4)                          

Where ],4,0[x  a and b are tunable parameters. To find points of period-one, it is necessary to solve the equation given 

by xxF )(  which gives the points that satisfy the condition nn xx 1  for all n. The solutions are 0*

1 x
 
and 

abx /)1(*
2  . If we fix ,1a  the function F is maximum at 2/bx   and its maximum value equals 4/2b . 

Taking this as 4, we have .4b  We again fix [1,4[ b  for our purpose. In this case, the fixed points of F are the 

intersection of the graphs of  )(xFy   and xy  .  

 

 
Figure 1.1 Graphs of y = F(x) and y = x for b = -4 

 

The periodic points 
*

1x  (Red) and
*

2x  (Blue) are shown in the figure (1.1). The stability of the critical points may be 

determined using the following theorem: 
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Using stability theorem, we have .1)( *
1  bxF

dx

d
 Thus the fixed point 0*

1 x  is always unstable for all 

[1,4[ b
 
and 2)( *

2  bxF
dx

d
, the point bx  1*

2  stable for .13  b  For example, if we take the 

parameter value b = -2.9, then the orbit generated by the initial point 5.10 x  attracted to the fixed point 9.1*
2 x  in the 

figure 1.2.
 

 
        Figure 1.2 Staircase for the initial point x0 = 1.5 and parameter b = -2.9  

 

 Having studied the dynamics of the quadratic iterator F  in detail for parameter values between -1 and -3, we 

continue to decrease b beyond -3. For such small parameter values the fixed point 
*

2x  is not stable anymore, it is unstable. 

Hence, the first bifurcation value is .31 b To find points of period 2, we consider the iterated map )(2 xF . Here,
  

2222 )()()( xbxxbxbxF   

The periodic points of )(2 xF  
 
are given by the equation

                                                             
 

                                                    
(1.5)                                                           )(2 xxF 

 

Which gives ,,,, *
12

*
11

*
2

*
1 xxxxx   where 

)231(2/1),231(2/1,1,0 2*
12

2*
11

*
2

*
1 bbbxbbbxbxx   

 

These four points are the intersection of the graphs of )(2 xFy   and y = x, in the figure 1.3. The periodic points
*
1x ,

*
2x , 

*
11x

 
and 

*
12x  are marked as  A1, A2, B1 and B2.  

 

Figure 1.3 Graphs of )(2 xFy   and y =  x  for  b= -4 

 

Stability of the first two fixed points is already discussed. Let us discuss the stability of the new points: 
*

11x
 
and

*

12x . We 

note that these new solutions are defined only for 3b . Moreover, at 3b , )1(
2

1*
12

*
11 bxx  , i.e., these two 

solutions bifurcate from the fixed point 
*
2x .  The points 

*

11x
 
and 

*
12x  form a two-cycle, one being the image of the other. 

Thus, at parameter 3b , our map orbits undergo period-doubling bifurcations. Just above 3b   the orbits converge to 

a single value of x. Just below 3b , the orbits tend to this alteration between two values of x.
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      Let us see how the derivatives of the map function )(xF  and of the second iterate function )(2 xF  change at the 

bifurcation value. The equation: 

                                                   2
)(

*
2




b
dx

xdF

xx

                                             (1.6) 

tells us that function 
dx

xdF )(
 passes through the value -1 as b decreases through -3. Next we can evaluate the derivative of 

the second iterate function by using the chain-rule of differentiation:                

xxF dx

dF

dx

dF
xFF

dx

d

dx

xdF

)(

2

))](([
)(

  

If we now evaluate the derivative at one of the above two new fixed points, say ,*
11x   then we find 

                                          
)()(

*
12

*
11

*
12

*
11

22

xxxx
dx

xdF

dx

dF

dx

dF

dx

xdF
                                (1.7)

 

 

In arriving at the last result, we made use of )( *
11

*
12 xFx   for the two fixed points. Equation (1.7) states a rather 

surprising and important result—
 

 The derivative of )(2 xF  are the same at both the fixed points that are actually part of the two-cycle. This result 

implies that both of these fixed points are either attracting or both are repelling, and that they have the same ‗degree‘ of 

stability or instability. Again, since the derivative of )(xF   equals -1 for the parameter 3b , equation (1.7) tells us that 

the derivative of )(2 xF
 
equals +1 for 3b . As b decreases further, the derivative of )(2 xF

 
increases and the fixed 

points become stable. Besides, the unstable fixed point of )(xF  located at 
*
2x  is also an unstable fixed point of )(2 xF . 

 The 2-cycle fixed points of )(2 xF
 

continue to be stable fixed points until parameter value 

...834494897427.32 b we have values of 
*

11x   and 
*
12x   as 1.5176380902051063…. and 2.931851652577893…. 

respectively at ...834494897427.32 b  Also for this value of b 

   1                1,

778939318516525.2

2

.02051063..1.51763809

2



 ..... x  x 
dx

(x)dF

dx

(x)dF

 
 The above results guarantee that if a system is stable or unstable at a periodic point, then the system is so at any 

other periodic point. So our study will be completed if we study the dynamics at any of the periodic points. We can find that 

for values of  b  smaller than 2b , the derivative is more negative than -1. Hence for b values smaller than 2b , the 2-cycle 

points are repelling fixed points. We find that for values just smaller than 2b , the orbits settle into a 4-cycle, that is, the orbit 

cycles among 4 values which we can label as

 
*
24

*
23

*
22

*
21  ,  , , xxxx . 

 These points are nothing but the intersection of the graphs of )(4 xFy 
 
 and .xy 

 
To determine these 

periodic points analytically, we need to solve an eight degree equation, namely xxF )(4
 which is manually cumbersome 

and time consuming. Therefore, for finding periodic points, bifurcation values of 
4F  as well as for higher iterated map 

functions, we have to write a computer program. We write here a C-program for our purpose.  

 Using the relation (1.2), an approximate value 3b  of b is obtained. Since the Secand method needs two initial 

values, we use 3b  and a slightly larse value, say 
4

3 10b as the two initial values to apply this method and ultimately 

obtain 3b . In the like manner, the same procedure is employed to obtain the successive bifurcation values 54 ,bb , etc. to oue 

requirement. Through our numerical mechanism, we obtain some periodic points and bifurcation values. In the Table 1.1 

Period doubling cascades are shown: 

 

VII. Period doubling cascade 
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Table 1.1 

Period One of the  Periodic points Bifurcation Points.  

1 x1 =2.000000000000… b1 = -3.000000000000… 

2 x2 =1.517638090205… b2 =-3.449489742783… 

4 x3 =2.905392825125… b3 =-3.544090359552… 

8 x4 =3.138826940664… b4 =-3.564407266095… 

16 x5 =1.241736888630… b5 =-3.568759419544… 

32 x6 =3.178136193507… b6 =-3.569691609801… 

64 x7 =3.178152098553… b7 =-3.569891259378… 

128 x8 =3.178158223315… b8 =-3.569934018374… 

256 x9 =3.178160120824… b9 =-3.569943176048… 

512 x10 =1.696110052289… b10 =-3.569945137342… 

1024 x11=1.696240778303… b11 =-3.569945557391… 

… …          …          … …          …          … 

 

Based on these values, the ratios of successive separations of bifurcation points are given by, 

kk

kk

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb




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








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















1

1

67

56

56

45

45

34

34

23

23

12 ...  

And have a particular scaling associated with them. We see that 

...,634967514462181.4
23

12
1 






bb

bb


       
...,80756562510177.4

34

23
2 






bb

bb


 

...,01876682422348.4
45

34
3 






bb

bb


        
...,780356687739472.4

56

45
4 






bb

bb


 

...,61846691320114.4
67

6
5 






bb

bb


        
...,57416691829948.4

78

67
6 






bb

bb


 

...,84626691983138.4
89

78
7 






bb

bb


        
...,16416692000279.4

910

89
8 






bb

bb


 

       
...,39526692028786.4

1011

910
9 






bb

bb
 And so on. 

The ratios tend to a constant as k tends to infinity: more formally 

...669201.4lim
1

1 



















kk

kk

k bb

bb
 

The nature of  is universal i.e. it is the same for a wide range of different iterators 

 

VIII. Bifurcation diagram 

 The different behaviors of a system for different values of the parameter can be qualitatively analyzed by using a 

bifurcation diagram, which is created by plotting the asymptotic orbits of the maps (y axis) generated for different values of 

the parameter (x axis). A bifurcation diagram is essentially a diagram of attractors, because almost all initial points are 

attracted to the points shown in the figure of our model, provided a sufficient  

 

 
Figure 1.4 Bifurcation diagram for b in the range 9.26.3  b
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 Numbers of transients have been thrown away [9, 10]. Fixed points and periodic points are trivial attractor, while 

the darkened vertical segments are chaotic attractors. Just beyond b = -3.96995 (approx) the system becomes chaotic. 

However, the system is not chaotic for all parameter values b smaller than -3.56995 (approx). If we zoom into the details of 

the bifurcation diagram by changing to smaller and smaller scales both in x and in b, we see that within the chaotic region, 

there are many periodic windows, that is, lucid intervals where only periodic orbits exist instead of chaotic output.  

 

 
Figure 1.5 Bifurcation diagram for b in the range 9.20.4  b  

 

IX. Conclution 
 The study of chaos in population models is quite interesting. Although there are so many methods for finding 

bifurcation values, we have developed own numerical mechanism for establishing Feigenbaum tree of bifurcation values 

leading to chaotic region the study of which is intrinsically marvelous. Our method seems to be applicable to all the chaotic 

models. 
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