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ABSTRACT: This paper presents kinematic and dynamic 
modeling techniques for flexible robots. . The main 

emphasis is to discretize whole flexible link in very small 

parts each considering as a rigid link. This approach is 

based on a “discretization method”. In kinematics position 

or deflection is solved by deflection of cantilever beam 

theory while orientation is solved by forward kinematics. 

Dynamics is solved by applying Lagrange-Euler 

formulation. 
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I. INTRODUCTION 
1.1 Kinematics of rigid link 

  Kinematics is the branch of physics which involves the 

description of motion, without considering the forces which 
produce the motion (dynamics or kinetics, on the other hand, 

involves an examination of both a description of motion and 

the forces which produce it). A subset of kinematics is that 

of rigid body kinematics concerns the motions of one or 

more rigid bodies. A rigid body experiences zero 

deformation. In other words, all points lying on a rigid body 

experience no motion relative to each other [1]. 

 

There are seven methods to solve kinematics as: 

1. Forward Kinematics 

2. Inverse Kinematics 
3. Algebraic method 

4. Geometric method 

5. Symbolic elimination method 

6. Continuation method 

7. Iterative method 

 

1.2 Kinematics of flexible link 

  In rigid robot manipulator kinematics can be described 

by employing Denavit-Hartenberg representation. The main 

idea is to use 4×4 transformation matrices which can be 

determine uniquely as a function of only 4 parameters. 
However this procedure cannot be used directly to describe 

the kinematics of a FLM due to link deformation. In order to 

overcome this drawback, the procedure has been modified 

by including some transformation matrices which take link 

elasticity in account. A description of Denavit- Hartenberg 

representation of rigid body is assumed to be known.  

  In general, the homogeneous transformation of frame i 

with respect to the base frame can be characterized through 

the following composition of consecutive transformation: 

0Ti=Ti=A1E1A2E2….Ai-1Ei-1=Ti-1Ai      (1) 

or          T1=A1              (2) 

 

  Where Ai is the standard homogeneous transformation 
matrix for joint i due to rigid motion and Ei is the 

homogeneous transformation matrix due to link i length and 

deflection. Notice that, even though the superscript is not 

explicitly indicated, each transformation matrix is referred 

to the frame determine by the preceding transformation. 

  The transformation matrix Ai can be computed just like 

in the case of the rigid body. On the other hand, the 

transformation matrix Ei deserves special attention. 

Assuming small link deformation, Ei can be expressed by: 
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Where θxi, θyi, θzi are the angles of rotation, and 𝛿𝑋𝑖 , 𝛿𝑌𝑖 , 𝛿𝑍𝑖   

represent link i deformation along x, y, z, respectively, being 

li the length of link without deformation. By taking into 

account the fact cos(π/2+ α) =-sin(α) and assuming small 

angles, so that sin(α)= α is valid, the matrix Ei can be 

approximated as 
 

𝐸𝑖 =
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𝜃𝑧𝑖  1 −𝜃𝑥𝑖 𝛿𝑦𝑖

−𝜃𝑦𝑖

0

−𝜃𝑥𝑖

0
    1 𝛿𝑧𝑖

0        1

        (4) 

   

 

1.3 Dynamics of rigid-link 

  Manipulator dynamics is concerned with the equations 

of motion, the way in which the manipulator moves in 

response to torques applied by the actuators, or external 

forces. The history and mathematics of the dynamics of 
serial-link manipulators is well covered by Paul and 

Hollerbach[2]. 

There are methods by which we can solve the dynamics of 

the rigid manipulator as: 

1. Newton-Euler formulation 

2. Langrange-Euler formulation 

3. Generalized d’Alembert equation of motion 

There are two problems related to manipulator dynamics 

that are important to solve: 

 Inverse dynamics in which the manipulator’s equations 

of motion are solved for given motion to determine the 
generalized forces and 

 Direct dynamics in which the equations of motion are 

integrated to determine the generalized coordinate 

response to applied generalized forces.  

To derive the dynamic equations of motion of manipulators 
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types of methods can be followed for rigid link. 

 

1.3.1  Lagrange-Euler Formulation 

  The general motion equation of a manipulator can 
conveniently be expressed through the direct application of 

the Lagrange-Euler formulation to non-conservative system. 

Many investigators utilize the Denavit-Hartenberg matrix 

representation to describe the spatial displacement between 

the neighboring link coordinate frame to obtain link 

kinematics information and they employ the L-E equation to 

derive dynamic equation of manipulator. 

The derivation of the dynamic equation of an n degree of 

freedom manipulator is based on the understanding of: 

 The 4X4 homogeneous coordinate transformation 

matrix, i-1Ai, which describes the spatial relationship 

between the ith and (i-1)th link coordinate frame. It 
relates the point fixed in link i expressed in 

homogeneous coordinates with respect to ith coordinate 

system to the (i-1)th coordinates system. 

 

 The Lagrange-Euler equation  
𝑑

𝑑𝑡  
 
𝜕𝐿

𝜕𝑞𝑖 
 −  

𝜕𝐿

𝜕𝑞𝑖
= τii=1,2,….,n                       (5) 

 

Where 
L= Lagrangian function= kinetic    energy K – potential 

energy P 

K= total kinetic energy of the robot arm 

P= total potential energy of robot   arm 

qi=generalized coordinates of the robot arm 

𝑞 i=first time derivative of the generalized coordinates, qi 

τi= generalized force or (torque) applied to the system at 

joint i to drive link i 

  From the above lagrangian equation one is required to 

properly choose a set of generalized coordinates to describe 

the system. Generalized coordinates are used as a 
convenient set of a coordinates which completely describe 

the location of a system with respect to reference coordinate 

frame. 

 

1.4 Dynamics of flexible link 

There are methods by which we can solve the dynamics of 

the flexible manipulator as: 

1. Newton-Euler formulation 

2. Langrange-Euler formulation 

3. Generalized d’Alembert equation of motion 

4. Recursive Gibbs-Appell formulation 
5. Finite dimensional approximation 

6. Hamilton’s principle and FE approach 

7. Assume mode method and Langrange approach 

 

1.4.1 Dynamics using Lagrange-Euler approach 

  In order to obtain a set of differential equations of 

motion to adequately describe the dynamics of a flexible 

link manipulator, the Lagrange-Euler approach can be used. 

A system with n generalized coordinates qi must satisfy n 

differential equations of the form 

 
𝑑

𝑑𝑡  
[
𝜕𝐿

𝜕𝑞𝑖 
]  −  

𝜕𝐿

𝜕𝑞𝑖
 +  

𝜕𝐷

𝜕𝑞𝑖 
= τi          i=1, 2, ….., n    (6)          

 

Where L is the so called Lagrangian which is given by L=K-

P; K represents the kinetic energy of the system and P the 

potential energy. Also, D is the Rayleigh’s dissipation 

function which allows dissipative effects to be included, and 

τi is the generalized force acting on qi. 

 

II.  MATHEMATICAL ANALYSIS 

2.1 Problem statement 

  A flexible robotic arm having length of 0.500 m, width 

of 0.08 m, thickness of 0.001 is having point load at B as 

shown in figure of 0.200 kg. Modulus of elasticity of link 

material is 20 GPa consider as an example. 

Kinematics and Dynamics of the flexible link using rigid 

link theories (deflection of cantilever beam, Forward 
kinematics and Lagrange-Euler approach) with 

discretization approach are to be solved. 

 
Fig.1 Deflection of flexible link 

 

SOLUTION 

L=500 mm   E=2×10
5
N/mm

2
 

w=80 mm     

t=1 mm     W=20 KN/m 
Let,  

 Moment of inertia of link is I, given as 

              (7) 

      (8) 

I=6.66mm4 

Flexure rigidity F=EI=13.32× 106N-mm2 

 

Deflection of link is given as  

        (9) 

 

 
𝑦𝑏=62.56 mm 

 

Now to use cantilever beam deflection theory for flexible 

link, discretize whole link in 50 parts each having length of 

10 mm and find deflection of point B. 

So deflection for single link, 
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𝑦1=0.0005mm 

Deflection of all the links (1 to 50) calculated as above and 
angle of each from horizontal axis. 

TABLEDeflection and angle of each link 

 
Link no. 
(n) 

Deflection 
from fixed 
point A  (yn) 

Deflection 
(Yn)= yn-yn-1 

 

θ from each 
point 
θn=tan-1Yn 

1  0.0005 0.0005 0.0028 

2 0.0040 0.0035 0.0200 

3 1.0130 0.0090 0.0515 

4 0.0320 0.0190 0.1088 

5 0.0625 0.0305 0.1747 

6 0.1081 0.0456 0.2612 

7 0.1716 0.0635 0.3638 

8 0.262 0.0846 0.4847 

9 0.3648 0.1086 0.6222 

10 0.5005 0.1357 0.7774 

11 0.6661 0.1656 0.9487 

12 0.8648 0.1987 1.1383 

13 1.0995 0.2347 1.3444 

14 1.3733 0.2738 1.5683 

15 1.6891 0.3158 1.8087 

16 2.0500 0.3609 2.0669 

17 2.4589 0.40879 2.3415 

18 2.9181 0.4600 2.6337 

19 3.4329 0.5140 2.9424 

20 4.0040 0.5711 3.2686 

21 4.6351 0.6311 3.6111 

22 5.3293 0.6942 3.9711 

23 6.0895 0.7602 3.9711 

24 6.9189 0.8294 4.7412 

25 7.8203 0.9014 5.1507 

26 8.7967 0.9764 5.5596 

27 9.8513 1.0546 6.0201 

28 10.9869 1.1356 6.4787 

29 12.2067 1.2198 6.9545 

30 13.5135 1.3068 7.4452 

31 14.9104 1.3969 7.9521 

32 16.4004 1.4900 8.4747 

33 17.9864 1.5860 9.0120 

34 19.6716 1.6852 9.5656 

35 21.4589 1.7873 10.1334 

36 23.3513 1.8924 10.7159 

37 25.3518 2.0005 11.3126 

38 27.4634 2.1116 11.9234 

39 29.6891 2.2257 12.5477 

40 32.0320 2.3429 13.1859 

41 34.4949 2.4629 13.8360 

42 37.0810 2.5861 14.4995 

43 39.7932 2.7122 15.1747 

44 42.6346 2.8414 15.8619 

45 45.6081 2.9735 16.5598 

46 48.7167 3.1086 17.2683 

47 51.9634 3.2467 17.9870 

48 55.3513 3.3879 18.7158 

49 58.8833 3.5320 19.4532 

50 62.5625 3.6795 20.2010 

 

For whole link, 

             (10) 

 
 

 
Fig.2 Deflection at each point 

 

The deflection of link is 62.5628 mm which has been 

manually founded. The same result has been founded using 

ANSYS is 62.563 mm with two digit precision. 

 
Fig.3Nodal solution Y-component displacement 

 

 
Fig.4Predefine vector plot on ANSYS 

 

 

Same as to find rotation of link discretize whole link in 50 
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equal parts and find each link rotation matrix and use 

forward transformation for n rigid link will give rotation 

matrix of flexible link.  

 
Rotation of θ angle with respect to Z- axis[1]. 

Rz.θ =             (11) 

 

For link-1-50, rotation matrices are 

   

So   
0
R50=

0
R1

1
R2

2
R3 ….

49
R50 

 

0R10=  

 

III. CONCLUSION 

 From above given approach of discretizing the 

flexible link in number of rigid links one can solve the 

kinematics and dynamics of the flexible link. Usually this 

approach is very much applicable in hyper-redundant or 

serpentine type of robot. 

 Future scope:Solve the dynamics by 
discretizing approach. By applying Lagrange-Euler theory 

of motion equation of rigid link for number of links and 

considering that the flexible link is made of from number of 

small rigid links one can solve dynamics for flexible link. 
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