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Abstract: We consider the Nicholson Bailey model  

                            f(x,y)= (𝐿 𝑥 𝑒−𝑎 𝑦 , 𝑥 1 − 𝑒−𝑎𝑦  ) 

 Where L and a are adjustable parameters, and analyse dynamical behaviours of the model. It is observed that the 

steady state occurs when there is no predator and prey for a certain range of the control parameters and that there exists a 
certain region of the control parameters in which  the natural equilibrium state never occurs. In that case a modified version 

of the model is considered by taking care of the unboundedness of the prey system. It is further found that the model follows 

the stability of period-doubling fashion obeying Feigenbaum universal constant 𝛿 and at last attains infinite period doubling 

route leading to chaos in the system. The bifurcation points are calculated numerically and after that the accumulation point 

i.e. onset of chaos is calculated based on the experimental values of bifurcation points.   
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I. Introduction: 
          The Nicholson Bailey model [14] was developed in 1930’s to describe population dynamics of host-parasite (predator-

prey) system. It has been assumed that parasites search hosts at random and that both parasites and hosts are assumed to be 

distributed in a non-contiguous ("clumped") fashion in the environment. However the modified version of the Nicholson-

Bailey model has been discussed many times by many authors [1, 2, 6, 9, 10, and 11].   

          In this present discussion in section 1.2 we verify the stability and dynamic behaviour of the model analytically and 

then in section 1.3 the modified form of the model has been taken which restricts the unboundedness of the model to some 

extent. The detailed dynamical behaviour of a particular form of its class has been studied and it has been observed that the 
map follows period doubling bifurcation route to chaos proving that the natural equilibrium changes its nature from periodic 

order to chaos .In section 1.4 numerical evaluations has been carried out to prove the geometrical behaviour. Lastly, in 

section 1.5 the calculation of the accumulation point from where chaos starts has been evaluated numerically, [3, 5, 6,8,12, 

and 13]. 

 

1.1 Nicholson-Bailey model: 

The model as discussed by Nicholson and Bailey is as follows: 

𝑥𝑛+1 = 𝐿𝑥𝑛𝑒
−𝑎𝑦𝑛    

𝑦𝑛+1 = 𝑥𝑛   1 − 𝑒−𝑎𝑦𝑛   ,                  where 𝑥𝑛+1  represents the 

number of hosts (or prey) at stage n and 𝑦𝑛+1 represents number of parasites(or predator) at n th stage. The difference 
equation can also be written in the function form as follows: 

f(x,y)= (𝐿 𝑥 𝑒−𝑎 𝑦 , 𝑥 1 − 𝑒−𝑎𝑦  ) 

 

1.2.1 Steady state of the above system: 

The fixed point is given as follows: 

𝐿 𝑥 𝑒−𝑎 𝑦 = 𝑥               (1.2.1.1) 

𝑥 1 − 𝑒−𝑎𝑦  = 𝑦              (1.2.1.2) 

Clearly (0,0) is one of the fixed points . Let 𝑥 ≠ 0 then  

𝑒−𝑎𝑦 =
1

𝐿
     𝑖. 𝑒.−𝑎𝑦 = log  

1

𝐿
             𝑖. 𝑒. 𝑦 = −

1

𝑎
log⁡(

1

𝐿
) from (1.2.1.1) 

From (1.2.1.2) we have  

𝑥  1 −
1

𝐿
 = −

1

𝑎
log⁡(

1

𝐿
)  

i.e 𝑥 = −
1

𝑎
log  

1

𝐿
 

1−
1
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Thus the fixed points are (−
1

𝑎
log  

1

𝐿
 

1−
1

𝐿

, −
1

𝑎
log⁡(

1

𝐿
)) and (0,0). However at L=1,(1.2.1.1) gives y=0 and it automatically satisfy 

(1.2.1.2) for any value of x. Hence any (x,0) is a fixed point for L=1. 

 

1.3.2 Stability of the equilibrium points: 

Now the Jacobian matrix is given by 

 
𝐿𝑒−𝑎𝑦 −𝑎𝐿𝑥𝑒−𝑎𝑦

1 − 𝑒−𝑎𝑦 𝑎𝑥𝑒−𝑎𝑦
         The eigenvalues of which are: 
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1

2
𝑒−𝑎𝑦  𝐿 + 𝑎𝑥—4𝑎𝑒𝑎𝑦𝐿𝑥 +  𝐿 + 𝑎𝑥 2    𝑎𝑛𝑑  

1

2
𝑒−𝑎𝑦  𝐿 + 𝑎𝑥 − −4𝑎𝑒𝑎𝑦𝐿𝑥 +  𝐿 + 𝑎𝑥 2   

For fixed point (0,0) , the eigenvalues are 0, L.  This shows that (0,0) is a stable solution till L=1. However for other  fixed 

points say (x,y) ,  we have  

𝑒−𝑎𝑦 =
1

𝐿
 , hence the eigenvalues become  

1

2𝐿
 𝐿 + 𝑎𝑥 − −4𝑎𝐿2𝑥 +  𝐿 + 𝑎𝑥 2   𝑎𝑛𝑑 

1

2𝐿
 𝐿 + 𝑎𝑥 +  −4𝑎𝐿2𝑥 +  𝐿 + 𝑎𝑥 2  

In particular for L=1, the eigenvalues are ax, 1. Thus if ax<1 one of the eigenvalues become less than 1.That is why at L=1 
the trajectory converges to (x,0)  such that ax<1. 

Now for the period- doubling  bifurcation point, 

 
1

2𝐿
 𝐿 + 𝑎𝑥 + −4𝑎𝐿2𝑥 +  𝐿 + 𝑎𝑥 2 = −1  

i.e. 𝐿 + 𝑎𝑥 + −4𝑎𝐿2𝑥 +  𝐿 + 𝑎𝑥 2=-2L 

i.e. 3𝐿 + 𝑎𝑥 =  −4𝑎𝐿2𝑥 +  𝐿 + 𝑎𝑥 2 

i.e.  3𝐿 + 𝑎𝑥 2 = −4𝑎𝐿2𝑥 +  𝐿 + 𝑎𝑥 2 

i.e.8𝐿2 + 4𝑎𝐿𝑥 + 4𝑎𝐿2𝑥 = 0 

i.e.2𝐿 + 𝑎𝑥 + 𝑎𝐿𝑥 = 0 

i.e. L=−
𝑎𝑥

2+𝑎𝑥
                                   (1.2.2.1) 

Putting x= −
1

𝑎
log  

1

𝐿
 

1−
1

𝐿

 in (1.2.2.1) we have 𝑎𝑥 =
log  𝑡 

𝑡−1
 

From eq (1.2.2.1) we have, 

L=−
log  𝑡 

 𝑡−1 (2+
log  𝑡 

𝑡−1
)
 

i.e. 
1

𝑡
=

− log  𝑡 

2 𝑡−1 +log⁡(𝑡)
 i.e. −𝑡𝑙𝑜𝑔 𝑡 − log 𝑡 = 2(𝑡 − 1) 

i.e.−𝑙𝑜𝑔𝑡 𝑡 + 1 = 2(𝑡 − 1) 

if t>1 then l.h.s. is negative and r.h.s. is positive. 

If t<1 then l.h.s. is positive but r.h.s. is negative. Hence there is no solution i.e. period doubling bifurcation does not occur. 
1

2𝐿
 𝐿 + 𝑎𝑥 + −4𝑎𝐿2𝑥 +  𝐿 + 𝑎𝑥 2 = 1  

i.e. 𝐿 + 𝑎𝑥 + −4𝑎𝐿2𝑥 +  𝐿 + 𝑎𝑥 2=2L 

i.e. −𝐿 + 𝑎𝑥 =  −4𝑎𝐿2𝑥 +  𝐿 + 𝑎𝑥 2 

i.e.  −𝐿 + 𝑎𝑥 2 = −4𝑎𝐿2𝑥 +  𝐿 + 𝑎𝑥 2 

i.e.−4𝑎𝐿𝑥 + 4𝑎𝐿2𝑥 = 0 

i.e.−𝑎𝑥 + 𝑎𝐿𝑥 = 0 

i.e. L=1                       (1.2.2.2) 

Again we consider the stability of the other fixed point (−
1

𝑎
log  

1

𝐿
 

1−
1

𝐿

, −
1

𝑎
log⁡(

1

𝐿
))  

Now we consider the expression −4𝑎𝐿2𝑥 +  𝐿 + 𝑎𝑥 2 for the fixed point (−
1

𝑎
log  

1

𝐿
 

1−
1

𝐿

, −
1

𝑎
log⁡(

1

𝐿
)).The simplified expression 

is 
−2(−1+𝐿)2(−1+2𝐿)+2Log [𝐿](−1+𝐿2−𝐿Log [𝐿])

(−1+𝐿)3𝐿
 =g(L) 

 
Fig 1.2.2.a : Abcissa represents the control parameter L and ordinate represents g(L) 

Clearly,g(L) is negative for L>1 

Hence magnitude of the  eigenvalues become 
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1

2𝐿
 𝐿 + 𝑎𝑥 −  −4𝑎𝐿2𝑥 +  𝐿 + 𝑎𝑥 2  =

1

2𝐿
  𝐿 + 𝑎𝑥 2 −  𝐿 + 𝑎𝑥 2 + 4𝑎𝐿2𝑥 

= 𝑎𝑥 =  
𝐿𝑙𝑜𝑔𝐿

𝐿−1
=h(L)(say). 

For L>1 and for large value of L, the above expression shows the graph as  

 

 
Fig 1.2.2.b: Abcissa represents the control parameter L and ordinate represents h(L) 

 
Hence the fixed pint is unstable, and this  shows that  the model has been made to fulfill the fact that equilibrium  stage never  

occurs  for predator system in nature.   

We now take a modified version of the Nicolson Bailey model, i.e. we take  

𝑥𝑛+1 = 𝐿𝑥𝑛𝑒
−𝑎𝑦𝑛−𝑥𝑛

2    

𝑦𝑛+1 = 𝑥𝑛  1− 𝑒
−𝑎𝑦𝑛    

 The additional term 𝑒(−𝑥𝑛
2 ) with 𝑥𝑛+1 helps  to restrict the unlimited growing of host(or prey).  

 

1.3 Dynamical behaviour of the map keeping “a” constant: 

 We now fix  the parameters  say “a”  and keep varying  L to analyse the detailed dynamical behaviours of the map. 

Let us take  a=0.1. On inspection it can be seen that (0,0) is a fixed point of the model satisfying the equation  

f(x,y)=(x,y) =(𝐿xe−ay−x2
, x 1 − e−ay  )  

i.e.                x= 𝐿xe−ay−x^2  

                     y= x 1 − e−ay                   (1.3.1) 

Using “Mathematica” software  we generate the bifurcation diagram  for the observation of the whole dynamical behaviour  

of the map as L is varied. 

 
Fig 1.3.a: The figure is generated using 20000 points of which the last 300 points are taken at every parameter value of L, 

and  plotted  the x coordinate of the point (x,y) vs. L. 

 

The eigen values of the linearised form are as follows: 
1

2
ⅇ−𝑥

2−2𝑎𝑦 (ⅇ𝑎𝑦𝐿 + 𝑎ⅇ𝑥
2+𝑎𝑦𝑥 − 2ⅇ𝑎𝑦𝐿𝑥2 ±  (−ⅇ𝑎𝑦𝐿 − 𝑎ⅇ𝑥

2+𝑎𝑦𝑥 + 2ⅇ𝑎𝑦𝐿𝑥2)2 − 4ⅇ𝑥
2+2𝑎𝑦 (𝑎ⅇ𝑎𝑦𝐿𝑥 − 2𝑎𝐿𝑥3)   , which 

can be re- written as 

 
1

2𝐿
(ⅇ𝑎𝑦𝐿 + 𝑎𝐿𝑥 − 2ⅇ𝑎𝑦 𝐿𝑥2 ± (−ⅇ𝑎𝑦𝐿 − 𝑎𝐿𝑥 + 2ⅇ𝑎𝑦𝐿𝑥2)2 − 4ⅇ𝑎𝑦L(𝑎ⅇ𝑎𝑦𝐿𝑥 − 2𝑎𝐿𝑥3)      

 The diagram shows that the model follows period doubling route to chaos on increasing the control parameter L. 

For (0,0) the eigenvalues are 0, L, which says that (0,0) loses stability at L=1. Let (x0 ,y0) be a fixed point of the map f where 

neither of x0, y0 are equal to zero. The fixed point is stable till both the eigen values at x0, y0 are less than 1 in modulus. 

However the first bifurcation point can be obtained from the equations (1.2.1) and min{𝜆1,𝜆2}=-1.If we now begin to 

increase the value of L exceeding the bifurcation point , the fixed point (x0,y0) loses its stability and there arises around it 

two points, say, (x21(L), y21(L)) and (x22(L), y22(L))  forming a stable periodic trajectory of period 2.  On increasing the value 

of L one of the eigen values starts decreasing from positive values to negative and when we reach a certain                                                                  
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value of L, we find that one of the eigenvalues of the Jacobian of f2 becomes   -1, indicating the loss of stability of the 

periodic trajectory of period two. Thus, the second bifurcation takes place at this value L2 of L. We can repeat the same 

process, and find that the periodic trajectory of period 2n becomes unstable and a periodic trajectory of period 2n+1 appears in 

its neighbourhood for all n=1,2,3,….  , [ 5,6,8,10 ]. 
 

1.4   Numerical Method for Obtaining Bifurcation Points: 
 We have used  Newton-Raphson method to obtain the periodic points which has been proved to be worthy for 

sufficient accuracy and time saving. 

 The Newton Recurrence formula is 

  𝑥𝑛+1      = 𝑥𝑛   − 𝐷𝑓 𝑥𝑛    
−1𝑓(𝑥𝑛   )  , where n = 0,1,2,… and 𝐷𝑓(𝑥 ) is the Jacobian of the map f at the vector 

𝑥 = (𝑥1 , 𝑥2)(say) . We see that this map f is equal to fk-I in our case, where k is the appropriate period. The Newton 

formula actually gives the zero(s) of a map, and to apply this numerical tool in our map one needs a number of 

recurrence formulae which are given below. 

 Let the initial point be ( x0 , y0 ) and let M(x,y)= 𝐿xe−ay−x2
,N(x,y)= x 1 − e−ay  , 

Let A0=
𝜕𝑀

𝜕𝑥
  (𝑥0 ,𝑦0), B0=

𝜕𝑀

𝜕𝑦
  (𝑥0 ,𝑦0), C0=

𝜕𝑁

𝜕𝑥
  (𝑥0 ,𝑦0 ), D0=

𝜕𝑁

𝜕𝑦
  (𝑥0 ,𝑦0) 

and Ak= 

∂M

∂x
  (xk ,yk )

∂M

∂y
  (xk ,yk )

∂N

∂x
  (xk ,yk )

∂N

∂y
  (xk ,yk )

  
Ak−1 Bk−1

Ck−1 Dk−1
    ∀k ≥ 1 

Since the fixed point of the  map f is a zero of the map  

  F(x,y) = f(x,y)-(x,y),  the Jacobian of F(k) is given by 




















1DC

B1A
IJ

kk

kk

k  .  Its inverse is  























1AC

B1D1
IJ

kk

kk1

k  

where =(Ak-1)(Dk-1)-BkCk, the Jacobian determinant. Therefore, Newton’s method gives the following recurrence formula 
in order to yield a periodic point of Fk 

  





)yy(B)xx)(1D(
xx nnknnk

n1n  

  





)yy)(1A()xx)(C(
yy nnknnk

n1n  

    ),()(F     k

nnn yxxwhere 
 

 

1.4.1  Numerical Methods for Finding Bifurcation Values:        
 As  described above  for some particular value of L=L1 say ,  the  fixed point of fk is calculated and hence  the 

eigenvalues of Jk can be calculated at the fixed point. Let (x1,y1) ,(x2,y2),…. (xk,yk) be the periodic points of f at L1. Let 𝜆1 , 𝜆2 

be the two eigen values of Jk at L1 , let I(k,L1)= min{𝜆1 , 𝜆2}, where n=2k is the period number .Then we search two  values of 

“L”  say L11 and L22 such that (I(k,L11)+1)(I(k,L22)+1) < 0 .Then the existence of  nth bifurcation point is confirmed in 

between L11 and L22. Then we may apply some of the numerical techniques viz. Bisection method or Regula Falsi method on 

L11 and L22  for sufficient number of iterations to get L such that I(k,L)=-1.                            

  Our numerical results are as follows: 

 

Table 1.4.1.a: Bifurcation points calculated with the above numerical procedure are given as follows: 

Period                                               Bifurcation point 

n=1 2.71828182845904523536028747135266249775724709369995957496696 

n=2 3.53684067130120359837043484826459115405423168841443588327400 

n=4 3.77415543777691650197392802578931393394103470516281183784919 

n=8 3.82788212068493762703545087588566660131789524411227589313294 

n=16 3.83954703996904224281164775272528029534621679916918934834796 

n=32 3.84205211923591357428498949577187590314662912792561150844422 

n=64 3.84258895757543669502842561849603953670354363149648649855300 

n=128 3.84270394654591339735557484998431661721920300008353132976556 

n=256 3.84272857434341121053856237571767662232417602736345292594595 

n=512 3.84273384889445086737896598441474166356789762228260539689561 

n=1024 3.842734978543189743621418854360407234045741604974429302522640 

n=2048 3.84273522047942178512266708047918352493564928024817333443963 

The Feigenbaum universal constant is calculated using the experimentally calculated bifurcation point using the following 

formula  δn =
An−An−1

An +1−An
 ,where 𝐴𝑛  represents nth bifurcation point. The values of  𝛿𝑛  are as follows. 
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𝛿1=3.44925372743685 

𝛿2=4.41707460112493 

𝛿3=4.60583409104533 

𝛿5=4.65650705682990 

𝛿6=4.66635685725543 

𝛿7=4.66860723509033 

𝛿8=4.66907243682318 

𝛿9=4.66917417475885 

𝛿10=4.66919570494443 

𝛿11=4.66920034814159                

 

 It may be observed that the map obeys Feigenbaum universal behaviour as the sequence {𝛿𝑛} converges to 𝛿 as n 

becomes very large. 

      

1.5 Accumulation Point: 

       The accumulation point can be calculated by the formula A∞=(A2-A1)/(δ-1), where δ is Feigenbaum constant. But it has 

been observed that {𝛿𝑛} converges to 𝛿 as n→ ∞.Therefore  a sequence of accumulation point { A∞,n}is made using the 

formula                        A∞,n=(An+1-An)/(δ-1)[8].  From the above experimental values of bifurcation points and using δ= 
4.669201609102990671853204 the sequence of values is constructed as follows: 

𝐴∞,1 = 3.75992975989513108127 

𝐴∞,2 = 3.83883293216342125972 

𝐴∞,3 = 3.84252472924989889705 

𝐴∞,4 = 3.84272618369752118495 

𝐴∞,5 = 3.84273485066736624607 

𝐴∞,6 = 3.84273526688103365882 

𝐴∞,7 = 3.84273528550809836535 

𝐴∞,8  = 3.84273528637510680165 

𝐴∞,9  = 3.84273528641454422260 

𝐴∞,10 = 3.84273528641636195462 

𝐴∞,11 = 3.84273528641644509866 

It may be observed that the sequence converges to the point 3.842735286416 …. After which chaotic region starts. 
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