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ABSTRAC: The present paper deals with the review on 

the development of the theory of two-temperature 

thermoelasticity. The basic equations of two-temperature 

thermoelasticityin context of Lord and Shulman [6] theory 

and Green and Naghdi[15] theories of generalized 

thermoelasticity are reviewed. Relevant literature on two-

temperature thermoelasticity is also reviewed. 
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1. INTRODUCTION 

 Thermoelasticity deals with the dynamical system 

whose interactions with the surrounding include not only 

mechanical work and external work but the exchange of 
heat also. Changes in temperatures causes thermal effects 

on materials. Some of these thermal effects include thermal 

stress, strain, and deformation. Thermal deformation simply 

means that as the "thermal" energy (and temperature) of a 

material increases, so does the vibration of its 

atoms/molecules and this increased vibration results in what 

can be considered a stretching of the molecular bonds - 

which causes the material to expand. Of course, if the 

thermal energy (and temperature) of a material decreases, 

the material will shrink or contract. Thus, thermoelasticity 

is based on temperature changes induced by expansion and 
compression of the test part. Thus, the theory of 

thermoelasticity is concerned with predicting the 

thermomechanical behaviour of elastic solids. It represents 

a generalization of both the theory of elasticity and theory 

of heat conduction in solids.The theory of thermoelasticity 

was founded in 1838 by Duhamel [1], who derived the 

equations for the strain in an elastic body with temperature 

gradients. Neumann [2], obtained the same results in 1841. 

 However, the theory was based on independence 

of the thermal and mechanical effects. The total strain was 

determined by superimposing the elastic strain and the 

thermal expansion caused by the temperature distribution 
only. The theory thus did not describe the motion associated 

with the thermal state, nor did it include the interaction 

between the strain and the temperature distributions. Hence, 

thermodynamic arguments were needed, and it was 

Thomson [3], in 1857 who first used the laws of 

thermodynamics to determine the stresses and strains in an 

elastic body in response to varying temperatures. 

 There are three types of thermoelasticity i.e. 

uncoupled, coupled and generalized thermoelasticity. The 

theory of classical uncoupled theory of thermoelasticity 

predicts two phenomena not compatible with physical 
observations. First, the equation of heat conduction of this 

theory does not contain any elastic term contrary to the fact 

that the elastic changes produce heat effects. Second, the 

heat equation is of parabolic type predicting infinite speeds 

of propagation for heat waves. The classical uncoupled and 

coupled thermoelastic theories of  Biot[4] and Nowacki[5] 

have an inherent paradox arising from the assumption that 

the thermal waves propagate at infinite velocity and it is a 

physically unreasonable result.  

 Generalized thermoelasticity theories have been 

developed with the objective of removing the paradox of 

infinite speed of heat propagation inherent in the 

conventional coupled dynamical theory of thermoelasticity 

in which the parabolic type heat conduction equation is 

based on Fourier's law of heat conduction. This newly 

emerged theory which admits finite speed of heat 

propagation is now referred to as the hyperbolic 
thermoelasticity theory, since the heat equation for rigid 

conductor is hyperbolic-type differential equation. The first 

generalized theory of thermoelasticity is due to Lord and 

Shulman [6] who coupled elasticity with a way in which 

temperature can travel with a  finite wave speed. The 

approach of Lord and Shulman [6] begins with the full 

nonlinear equations but they are mainly interested in 

developing a linear theory since they begin with "small 

strains and small temperature changes".  The second 

generalization to the coupled theory is known as the 

generalized theory with two relaxation times. Muller[7] 
introduced the theory of generalized thermoelasticity with 

two relaxation times. A more explicit version wasthen 

introduced by Green and Laws [8], Green and Lindsay [9] 

and independently by Suhubi[10]. In this theory the 

temperature rates are considered among the constitutive 

variables. This theory also predicts finite speeds of 

propagation for heat and elastic waves similar to the Lord-

Shulman theory. It differs from the latter in that Fourier's 

law of heat conduction is not violated if the body under 

consideration has a centre of symmetry.  Dhaliwal and 

Sherief[11] extended the Lord and Shulman (L-S) theory 
for an anisotropic media. Chandrasekharaiah[12]referred to 

this wave-like thermal disturbance as "second sound". 

These writers investigate the propagation of a thermal pulse 

in a thermoelastic shell employing each of the linearized 

equations for the three thermoelastic theories, Classical, 

Lord-Shulman and Green-Lindsay. Their numerical results 

typically demonstrates that Classical theory leads to a 

smooth pulse while that of Lord-Shulman is less smooth 

showing discontinuities in derivatives. The theory of Green 

and Lindsay [9] leads to strong pulse behaviour displaying 

distinct jumps such as to the behaviour of stainless steel run 

tanks which holds cryogenic liquids for rocket fuel at 
NASA's John C. Stennis Space Centre, the strong pulse 

solution is definitely of interest. 

 Green and Naghdi[13-15] proposed three new 

thermoelastic theories based on entropyequality than the 

usual entropy inequality. The constitutive assumption for 

the heat flux vector are different in each theory. Thus they 

obtained three theories which are called thermoelasticity of 

type I, thermoelasticity of type II and thermoelasticity of 

type III. Green and Naghdi[15] postulated a new concept 

ingeneralizedthermoelasticity which is called the 
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thermoelasticity without energy dissipation. The principal 

feature of this theory is that in contrast to the classical 

thermoelasticity, the heat flow does not involve energy 

dissipation. Also, the samepotential function which is 
defined to derive the stress tensor is used to determine the 

constitutive equation for the entropy flux vector. In 

addition, the theory permits the transmission of heat as 

thermal waves at finite speeds. Dhaliwal and Wang [16] 

formulated the heat-flux dependent thermoelasticity theory 

for an elastic material with voids. This theory includes the 

heat-flux among the constitutive variables and assumes an 

evolution equation for the heat-flux.  Hetnarski and 

Ignaczack[17] examined five generalizations to the coupled 

theory and obtained a number of important analytical 

results. Literature on generalized thermoelasticity is 

available in the books like "Thermoelastic Solids" by 
Suhubi[10], "Thermoelastic Deformations" by lesan and 

Scalia[18], "Thermoelastic Models of Continua" by Iesan 

[19], "Thermoelasticity with Finite Wave Speeds" by 

Ignaczak and Ostoja-Starzewski [20]  etc. 

 

II.LITERATURE SURVEY 

 Chen and Gurtin[21] and Chen et al. [22-23] have 

formulated a theory of heat conduction in deformable 

bodies, which depends on two distinct temperatures, the 

conductive temperature  and the thermodynamic 

temperature T. The two-temperature theory involves a 

material parameter a* > 0. The limit a*→ 0 implies that → 

T and hence classical theory can be recovered from two-

temperature theory. The two-temperature model has been 

widely used to predict the electron and phonon temperature 

distributions in ultrashort laser processing of metals. For 

time-independent situations, the difference between these 

two temperatures is proportional to the heat supply, and in 

the absence of any heat supply, the two temperatures are 
identical. For time-dependent problems, however, and for 

wave propagation problems in particular, the two 

temperatures are in general different, regardless of the 

presence of a heat supply. The two temperatures T and 

and the strain are found to have representations in the 

form of a travelling wave plus a response, which occurs 

instantaneously throughout the body. Warren and Chen [24] 

investigated the wave propagation in the two-temperature 

theory of thermoelasticity. Following Boley and Tolins, 

[25], they studied the wave propagation in the two-
temperature theory of coupled thermoelasticity. 

 Youssef [26] developed a new theory of 

generalized thermoelasticity by taking into account the 

theory of heat conduction in deformable bodies, which 

depends on two distinct temperatures, the conductive 

temperature and the thermodynamic temperature where the 

difference between these two temperatures is proportional 

to the heat supply. Youssef and Al-Harby[27] studied the  

state-space approach of two-temperature generalized 

thermoelasticity of infinite body with a spherical cavity 

subjected to different types of thermal loading . Youssef  

and Al-Lehaibi[28]applied the state space techniques of 
two-temperature generalized thermoelasticityto one-

dimensional problemof  half-space subjected to thermal 

shock and traction free. Youssef [29] studied two-

dimensional problem of a two-temperature generalized 

thermoelastic half-space subjected to ramp type heating. 

Youssef andBassiouny[30]used  the theory of two-

temperature generalized thermoelasticity, based on the 

theory of Youssef to solve boundary value problems of one-

dimensional finite piezoelectric rod with loading on its 

boundary with different types of heating.Abbas and Youssef 
[31]analysed a finite element model of two-temperature 

generalized magneto-thermoelasticity.Ezzat et.al.[32] 

studied the two-temperature theory in generalized magneto-

thermo-viscoelasticity. Mukhopadhyay and Kumar[33] 

studiedthermoelastic interactions on two-temperature 

generalized thermoelasticity in an infinite medium with a 

cylindrical cavity.Youssef[34] constructed a model of two-

temperature generalized thermoelasticity for an elastic half-

space with constant elastic parameters. Ezzat and Awad[35] 

derived the equations of motion and the constitutive 

relations for the theory of micropolar generalized two-

temperature thermoelasticity. Kaushal et al. [36]solved the 
boundary-value problem in frequency domain in the context 

of two generalized theories of thermoelasticity (Lord and 

Shulman, Green and Lindsay) by employing the Hankel 

transform. Kumar et.al.[37]established a variational 

principle of convolutional type and a reciprocal principle in 

the context of linear theory of two-temperature 

generalized thermoelasticity, for a homogeneous and 

isotropic body.  Kumar and Mukhopadhyay[38] 

investigated the propagation of harmonic plane waves in 

elastic media in the context of the linear theory of two-

temperature-generalized thermoelasticity. Youssef [39] 
solved a problem of thermoelastic interactions in an elastic 

infinite medium with cylindrical cavity thermally shocked 

at its bounding surface and subjected to moving heat source 

with constant velocity. Youssef and El-Bary[40]studied 

two-temperature generalized thermoelasticity with variable 

thermal conductivity.Awad[41] write a note on the spatial 

decay estimates in non-classical linear thermoelastic semi-

cylindrical bounded domains. El-Karamany[42] presented 

two-temperature theory in linear 

micropolarthermoviscoelastic anisotropic solid.El-

Karamany and Ezzat [43] introduced the two general 

models of fractional heat conduction law for non-
homogeneous anisotropic elastic solid, obtained the 

constitutive equations for the two-temperature fractional 

thermoelasticity theory, proved uniqueness and reciprocal 

theorems and established the convolutional variational 

principle.El-Karamany and Ezzat[44] gave the constitutive 

laws for two-temperature Green–Naghdi theories and 

proved that the two-temperature thermoelasticity theory 

admits dissipation of energy and the theory of elasticity 

without energy dissipation is valid only when the two-

temperatures coincide.Ezzat and El-Karamany[45] studied 

the two-temperature theory in generalized magneto-
thermoelasticity with two relaxation times. Ezzat and El-

Karamany[46] constructed fractional order heat conduction 

law in magneto-thermoelasticity involving two 

temperatures.Miglani and Kaushal [47] studied theaxi-

symmetric deformation in generalized thermoelasticity with 

two temperatures.Mukhopadhyayet. al.[48] presented  the 

theory of two-temperature thermoelasticity with two phase-

lags. Singh and Bijarnia[49] studied the propagation of 

plane waves in anisotropic two-temperature generalized 

thermoelasticity.Youssef [50] presented a theory of two-

temperature thermoelasticity without energy dissipation. 
Banik and Kanoria [51] studied the effects of three-phase-

lag on two-temperature generalized thermoelasticity for 
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infinite medium with spherical cavity.Bijarnia and Singh 

[52] studied the propagation of plane waves in an 

anisotropic generalized thermoelastic solid with diffusion. 

Ezzat et al. [53] introduced both modified Ohm's and 
Fourier's laws to the equations of the linear theory of 

magneto-thermo-viscoelasticity involving two-temperature 

theory, allowing the second sound effects obtained the exact 

formulas of temperature, displacements, stresses, electric 

field, magnetic field and current density.Singh and Bala[54] 

studied the reflection of P and SV waves from the free 

surface of a two-temperature thermoelastic solid half-space. 

 

III. THE BASIC EQUATIONS OF TWO-

TEMPERATURE GENERALIZED 

THERMOELASTICITY 

 Following Youssef [26], the  basic equations of 

two-temperature anisotropic thermoelasticity in context of 

Lord and Shulman [6] theory are  

The stress-strain temperature relations : 

σij  = cijkl ekl  −γ
ij
 (T − 0)        (1)   

 The displacement-strain relation : 

 eij = 1/2(ui,j +  uj,i)                      (2)  

 The equation of motion: 

 ρ ui = σji,j+ ρFi(3) 

The energy equation : 

 − qi,i =  ρT0S    (4)  

 The modified Fourier's law : 

 − Kij,j= qi+ τ0  qi     (5)  

  
The equations (1) to (5) gives the basic equations of 

isotropic two-temperature thermoelasticity in context of 

Lord and Shulman theory as : 

K,ii= ρcE(θ +τ0θ  ) + γT0(ekk
 + τ0ekk )   (6) 

ρui = (λ + μ)uj,ij + μui,jj− γθ,i + ρFi(7) 

σij = 2μ eij+ (λ ekk−γθ)δij  (8)  

Following Youssef [50], the basic equations for isotropic 

two-temperature thermoelasticity in context of Green and 

Naghdi[15] theory are : 

 

The heat equations : 

T0𝛾 δij ei + ρ𝑐𝐸T  = K*,ii   (9)  

The constitutive equation : 

σij = 2μ eij+ (λ ekk− 𝛾θ)δij   (10)  

The equations of motion : 

 ρui = (λ + μ)uj,ij + μui,jj− γT,i + ρFi(11) 

  

 Here, T is the mechanical temperature, 0 = T0 , is 

the reference temperature, where θ = |T − T0 | and 
θ

T0
<< 

1 , σij is the stress tensor, ekl is the strain tensor, cijkl is tensor 

of elastic constants, γ
ij
is stress-temperature tensor, Fi is the 

external forces per unit mass, ρ is the mass density, qi is the 
heat conduction vector, Kij is the thermal conductivity 

tensor, cE is the specific heat at constant strain, uiare the 

components of the displacement vector, S is the entropy per 

unit mass, τ0  is the thermal relaxation time (which will 

ensure that the heat conduction equation will predict finite 

speeds of heat propagation), γ= (3λ + 2μ)αt , and αt  is the 

thermal expansion coefficient, λ and μ are called Lame's 

elastic constants, δij  is the Kronecker delta symbol,is the 

conductive temperature and satisfying the relation − T = 

a* ,ii  , where a* > 0, is the two-temperature parameter and 

K, K* are material characterstic constants.  
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