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I. Introduction:

In 1967, A. Wilansky has introduced the concept of US spaces. In 1968, C.E. Aull studied some separation axioms
between the T, and T, spaces, namely, S; and S,. Next, in 1982, S.P. Arya et al have introduced and studied the concept of
semi-US spaces and also they made study of s-convergence, sequentially semi-closed sets, sequentially s-compact notions.
G.B. Navlagi studied P-Normal Almost-P-Normal, Mildly-P-Normal and Pre-US spaces. Recently S. Balasubramanian and
P.Aruna Swathi Vyjayanthi studied v-Normal Almost- v-Normal, Mildly-v-Normal and v-US spaces. Inspired with these we
introduce rg-Normal Almost- rg-Normal, Mildly- rg-Normal, rg-US, rg-S; and rg-S,. Also we examine rg-convergence,
sequentially rg-compact, sequentially rg-continuous maps, and sequentially sub rg-continuous maps in the context of these
new concepts. All notions and symbols which are not defined in this paper may be found in the appropriate references.
Throughout the paper X and Y denote Topological spaces on which no separation axioms are assumed explicitly stated.

I1. Preliminaries:
Definition 2.1: AcX is called g-closed[resp: rg-closed] if clAcUJresp: scl(A) < U] whenever Ac U and U is open[resp:
semi-open] in X.

Definition 2.2: A space X is said to be

(i) T1(T) if for x = y in X, there exist (disjoint) open sets U; V in X such that xeU and yeV.

(ii) weakly Hausdorff if each point of X is the intersection of regular closed sets of X.

(iii) Normal [resp: mildly normal] if for any pair of disjoint [resp: regular-closed] closed sets F; and F, , there exist disjoint
open sets U and V suchthat F c Uand F, < V.

(iv) almost normal if for each closed set A and each regular closed set B such that AnB = ¢, there exist disjoint open sets U
and V such that AcU and BcV.

(v) weakly regular if for each pair consisting of a regular closed set A and a point x such that A n {x} = ¢, there exist
disjoint open sets U and V such that x e U and AcV.

(vi) A subset A of a space X is S-closed relative to X if every cover of A by semi-open sets of X has a finite subfamily
whose closures cover A.

(vii) Ro if for any point x and a closed set F with x&F in X, there exists a open set G containing F but not x.

(viii) Ry iff for x, y € X with cl{x} = cl{y}, there exist disjoint open sets U and V such that cl{x}c U, cl{y}cV.

(ix) US-space if every convergent sequence has exactly one limit point to which it converges. (x) pre-US space if every pre-
convergent sequence has exactly one limit point to which it converges.

(xi) pre-S; if it is pre-US and every sequence pre-converges with subsequence of pre-side points.

(xii) pre-S, if it is pre-US and every sequence in X pre-converges which has no pre-side point.

(xiii) is weakly countable compact if every infinite subset of X has a limit point in X.

(xiv) Baire space if for any countable collection of closed sets with empty interior in X, their union also has empty interior in

Definition 2.3: Let AcX. Then a point X is said to be a

(i) limit point of A if each open set containing x contains some point y of A such that x = y.

(i) To—limit point of A if each open set containing x contains some point y of A such that cl{x} = cl{y}, or equivalently, such
that they are topologically distinct.

(iii) pre-To—limit point of A if each open set containing x contains some point y of A such that pcl{x} = pcl{y}, or
equivalently, such that they are topologically distinct.
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Note 1: Recall that two points are topologically distinguishable or distinct if there exists an open set containing one of the
points but not the other; equivalently if they have disjoint closures. In fact, the To—axiom is precisely to ensure that any two
distinct points are topologically distinct.

Example 1: Let X = {a, b, ¢, d} and T = {{a}, {b, ¢}, {a, b, ¢}, X, ¢}. Then b and c are the limit points but not the T¢—limit
points of the set {b, c}. Further d is a To—limit point of {b, c}.

Example 2: Let X = (0, 1) and t= {¢, X, and U, = (0, 1-1h), n =2, 3, 4,. .. }. Then every point of X is a limit point of X.
Every point of X~U, is a To—limit point of X, but no point of U, is a To—limit point of X.

Definition 2.4: A set A together with all its To—limit points will be denoted by To—CIA.

Note 2: i. Every To—limit point of a set A is a limit point of the set but converse is not true.
ii. In To—space both are same.

Note 3: Rp—axiom is weaker than T;—axiom. It is independent of the Ty—axiom. However T, = Ry+Ty

Note 4: Every countable compact space is weakly countable compact but converse is not true in general. However, a T,—
space is weakly countable compact iff it is countable compact.

Definition 3.01: In X, a point x is said to be a rg-Ty—limit point of A if each rg-open set containing x contains some point y
of A such that rgcl{x} = rgcl{y}, or equivalently; such that they are topologically distinct with respect to rg-open sets.

111. Example
Let X = {a, b, c} and © = {¢, {b}, {a, b}, {b, c}, X}. For A = {a, b}, a is rg-To—limit point.

Definition 3.02: A set A together with all its rg-To—limit points is denoted by To-rgcl (A)

Lemma 3.01: If x is a rg-To-limit point of a set A then x is rg-limit point of A.

Lemma 3.02: If X is rgTy [resp: rTo—]-space then every rg-Ty—limit point and every rg-limit point are equivalent.
Theorem 3.03: Forx £y X,

0) X is arg-To-limit point of {y} iff x grgcl{y} and y ergcl{x}.

(i) X is not a rg-To—limit point of {y} iff either x ergcl {y} or rgcl{x} = rgcl{y}.
(iii) X is not a rg-To—limit point of {y} iff either x ergcl{y} or y ergcl{x}.

Corollary 3.04:
0] If x is a rg-To-limit point of {y}, then y cannot be a rg-limit point of {x}.
(i) If rgcl{X} = rgcKy}, then neither x is a rg-To—limit point of {y} nor y is a rg-T—limit point of {x}.

(iii) If a singleton set A has no rg-Te—limit point in X, then rgclA = rgcKx} for all x € rgcl{A}.

Lemma 3.05: In X, if x is a rg-limit point of a set A, then in each of the following cases x becomes rg-To—limit point of A ({x}
#A).

0] rgcl{x} = rgcl{y} fory €A, x =y.

(ii) rgc{x} = {x}

(iii) X'is arg-Ty—space.

(iv) A~{x} is rg-open

IV. rg-To AND rg-R; AXIOMS, i =0,1:
In view of Lemma 3.5(iii), rg-To—axiom implies the equivalence of the concept of limit point with that of rg-To—
limit point of the set. But for the converse, if xe rgcl{y} then rgcl{x} # rgcl{y} in general, but if x is a rg-To—limit point of
{y}, then rgcl{x} = rgcl{y}

Lemma 4.01: In X, a limit point x of {y} is a rg-To—limit point of {y} iff rgcl{x} # rgcl{y}.
This lemma leads to characterize the equivalence of rg-Te—limit point and rg-limit point of a set as rg-To—axiom.

Theorem 4.02: The following conditions are equivalent:

() Xisarg-T, space

(i) Every rg-limit point of a set A is a rg-To—limit point of A

(iii) Every r-limit point of a singleton set {x} is a rg-To—limit point of {x}
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(iv) Foranyx, yin X, x #y if x € rgcl{y}, then x is a rg-To—limit point of {y}

Note 5: In a rg-To—space X, if every point of X is a r-limit point, then every point is rg-Tq—limit point. But if each point is a
rg-To—limit point of X it is not necessarily a rg-To—space

Theorem 4.03: The following conditions are equivalent:

(i) Xisarg-R, space

(i) For any x, y in X, if x e rgcl{y}, then x is not a rg-To—limit point of {y}
(iii) A point rg-closure set has no rg-Te—limit point in X

(iv) A singleton set has no rg-To—limit point in X.

Theorem 4.04: In a rg-Ro space X, a point x is rg-To—limit point of A iff every rg-open set containing x contains infinitely
many points of A with each of which x is topologically distinct

Theorem 4.05: X is rg-R, space iff a set A of the form A = v rgcl{X;; =1t n} @ finite union of point closure sets has no rg-Te—
limit point.

Corollary 4.06: The following conditions are equivalent:

0] X'is a rR, space

(i) For any x, y in X, if x e rgcl{y}, then x is not a rg-To—limit point of {y}
(iii) A point rg-closure set has no rg-Te—limit point in X

(iv) A singleton set has no rg-To—limit point in X.

Corollary 4.07: In an rRy—space X,

(i) If apointxisrg-Te—[resp:rTe—] limit point of a set then every rg-open set containing x contains infinitely many points of
A with each of which x is topologically distinct.

(i) If A= urgcl{x; i =11 n} @ finite union of point closure sets has no rg-Te—limit point.

(iii) If X = orgc{X; i =1 1on} then X has no rg-To—limit point.

Various characteristic properties of rg-To—limit points studied so far is enlisted in the following theorem.

Theorem 4.08: In a rg-Ry—space, we have the following:

0] A singleton set has no rg-To—limit point in X.

(i) A finite set has no rg-To-limit point in X.

(iii) A point rg-closure has no set rg-To-limit point in X

(iv) A finite union point rg-closure sets have no set rg-Ty—limit point in X.
(v) For x,ye X, xeTo— rgcl{y} iff x =y.

(vi) x #ye X, iff neither x is rg-To—limit point of {y}nor y is rg-To—limit point of {x}

(vii) For any x,ye X, x #y iff To— rgcl{x} NTo— rgcl{y} = ¢

(viii)  Any point xeX is a rg-To-limit point of a set A in X iff every rg-open set containing x contains infinitely many
points of A with each which x is topologically distinct.

Theorem 4.09: X is rg-R, iff for any rg-open set U in X and points X, y such that x eX~U, y €U, there exists a rg-open set V
in X such thaty eVcU, xgV.

Lemma 4.10: In rg-R;space X, if x is a rg-To—limit point of X, then for any non empty rg-open set U, there exists a non
empty rg-open set V such that VU, x & rgcl(V).

Lemma 4.11: In a rg- regular space X, if x is a rg-To—limit point of X, then for any non empty rg-open set U, there exists a
non empty rg-open set V such that rgcl(V)cU, x £ rgcl(V).

Corollary 4.12: In a regular space X, If x is a rg-To—[resp: To—]limit point of X, then for any U=geRGO(X), there exists a
non empty rg-open set V such that rgcl(V)cU, x £ rgcl(V).

Theorem 4.13: If X is a rg-compact rg-R;-space, then X is a Baire Space.
Proof: Routine

Corollary 4.14: If X is a compact rg-R;-space, then X is a Baire Space.

Corollary 4.15: Let X be a rg-compact rg-R;-space. If {An} is a countable collection of rg-closed sets in X, each A, having
non-empty rg-interior in X, then there is a point of X which is not in any of the A,.
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Corollary 4.16: Let X be a rg-compact R;-space. If {A,} is a countable collection of rg-closed sets in X, each A, having non-
empty rg- interior in X, then there is a point of X which is not in any of the A,.

Theorem 4.17: Let X be a non empty compact rg-R;-space. If every point of X is a rg-To-limit point of X then X is
uncountable.

Proof: Since X is non empty and every point is a rg-To-limit point of X, X must be infinite. If X is countable, we construct a
sequence of rg-open sets {V,} in X as follows:

Let X = V4, then for x; is a rg-To-limit point of X, we can choose a non empty rg-open set V,in X such that V, cV; and x; ¢
rgclV,. Next for x, and non empty rg-open set V,, we can choose a non empty rg-open set Vs in X such that V3 cV,and x¢
rgclVs. Continuing this process for each x, and a non empty rg-open set V,,, we can choose a hon empty rg-open set V. in
X such that V. <V, and X, rgelVys.

Now consider the nested sequence of rg-closed sets rgclV; o rgclV, o rgelVz o......... orgelVyo. .. Since X is
rg-compact and {rgclV,} the sequence of rg-closed sets satisfies finite intersection property. By Cantors intersection
theorem, there exists an x in X such that xe rgclV,. Further xeX and xeV,, which is not equal to any of the points of X.
Hence X is uncountable.

Corollary 4.18: Let X be a non empty rg-compact rg-R;-space. If every point of X is a rg-To-—limit point of X then X is
uncountable

V. rg—To-IDENTIFICATION SPACES AND rg-SEPARATION AXIOMS
Definition 5.01: Let R be the equivalence relation on X defined by xRy iff rgcl{x} = rgcl{y}

Problem 5.02: show that xRy iff rgcl{x} = rgcl{y} is an equivalence relation

Definition 5.03: (Xo, Q(Xy)) is called the rg-To—identification space of (X, ), where X, is the set of equivalence classes of
R and Q(Xy) is the decomposition topology on X,.
Let Px: (X,7)— (Xo, Q(Xo)) denote the natural map

Lemma 5.04: If xeX and A <X, then x e rgclA iff every rg-open set containing X intersects A.

Theorem 5.05: The natural map Px:(X,7)— (Xo, Q(Xo)) is closed, open and Px ~(Px(0)) = O for all O PO(X,7) and (Xo,
Q(X0)) is rg-To

Proof: Let OcPO(X,7) and Ce Px(O). Then there exists xeO such that Px(x) = C. If yeC, then rgcl{y} = rgcl{x}, which
implies yeO. Since 7= PO(X, 7), then Px (Px(U)) = U for all Ue 7, which implies Px is closed and open.

Let G, HeX, such that G = H; let xeG and yeH. Then rgcl{x} # rgcl{y}, which implies xgrgcl{y} or ygrgcl{x}, say
xergcl{y}. Since Py is continuous and open, then GeA = Py{X~rgcl{y}} PO (Xo, Q(Xo)) and HgA

Theorem 5.06: The following are equivalent:

(i) X is rgRg (ii) Xo = {rgcl{x}: x eX} and (iii) (Xo, Q(Xo)) is rgT;

Proof: (i) = (ii) Let xeCeX,. If yeC, then yergcl{y} = rgcl{x}, which implies Cergcl{x}. If yergcl{x}, then xergcl{y},
since, otherwise, xeX~rgcl{y}ePO(X,7) which implies rgcl{x}c=X~rgcl{y}, which is a contradiction. Thus, if yergcl{x},
then xergcl{y}, which implies rgcl{y} = rgcl{x} and yeC. Hence X, = {rgcl{x}: xeX}

(ii)=(iii) Let A = BeX,. Then there exists X, yeX such that A = rgcl{x}; B = rgcl{y}, and rgcl{x}rgcl{y} = ¢. Then AeC
= Py (X~rgcl{y}) ePO(Xo, Q(Xo)) and B&C. Thus (Xo, Q(Xo)) isrg-T;

(iif) = (i) Let xeUeRGO(X). Let yeU and Cy, C, eX,containing x and y respectively. Then x¢ rgcl{y}, implies C, = C,
and there exists rg-open set A such that C,eA and C,¢A. Since Px is continuous and open, then yeB = Py *(A)e xeRGO(X)
and xgB, which implies ygrgcl{x}. Thus rgcl{x}<U. This is true for all rgcl{x} implies nrgcl{x}<=U. Hence X is rg-R,

Theorem 5.07: (X, 7) is rg-Ry iff (Xo, Q(Xo)) is rg-T,
The proof is straight forward using theorems 5.05 and 5.06 and is omitted

Theorem 5.08: X is rg-T;; i = 0,1,2. iff there exists a rg-continuous, almost—open, 1-1 function from X into a rg-T; space ; i
=0,1,2. respectively.

Theorem 5.09: If /is rg-continuous, rg-open, and x, y X such that rgcl{x} = rgcl{y}, then rgcl{ Ax)} = rgcl{ Ay)}.

Theorem 5.10: The following are equivalent

(i) Xisrg-To

(i) Elements of X, are singleton sets and

(ii)There exists a rg-continuous, rg-open, 1-1 function /A X— Y, where Y isrg-T,
Proof: (i) is equivalent to (ii) and (i) = (iii) are straight forward and is omitted.
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(iii) = (i) Let x, yeX such that f(x) = f(y), which implies rgcl{f(x)} = rgcl{f(y)}. Then by theorem 5.09, rgcl{x} #
rgcl{y}. Hence (X, 7)isrg-To

Corollary 5.11: Xisrg-T; ; i = 1,2iff X isrg-Ti ., ; 1= 1,2, respectively, and there exists a rg-continuous , rg-open, 1-1
function /X into arg-T, space.

Definition 5.04: f is point—rg-closure 1-1 iff for X, ye X such that rgcl{x} = rgcl{y}, rgcl{f(x)} = rgcl{f(y)}.

Theorem 5.12: (i)If /AX— Y is point—rg-closure 1-1 and (X, 7) isrg-To, then fis 1-1
(iHlf AX—Y, where X and Y are rg-T, then /is point— rg-closure 1-1 iff fis 1-1

The following result can be obtained by combining results for rg-Ty— identification spaces, rg-induced functions and rg-T;
spaces; i=1,2.

Theorem 5.13: X is rg-R; ; i = 0,1 iff there exists a rg-continuous , almost-open point— rg-closure 1-1 function /£ (X, 7)
into arg-R; space; i = 0,1 respectively.

VI. rg-Normal; Almost rg-normal and Mildly rg-normal spaces
Definition 6.1: A space X is said to be rg-normal if for any pair of disjoint closed sets F; and F, , there exist disjoint rg-open
sets Uand Vsuchthat F; cUand F, < V.

Example 4: Let X = {a,b,c} and t = {o,{a}, {b,c}, XF}. Then X is rg-normal.

Example 5: Let X = {a, b,c,d} and © = {o,{b,d}, {a, b,d}, {b,c,d}, XF}. Then X is rg-normal and is not
normal.

Example 6: Let X = {a, b, ¢, d} with t = {¢, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X} is rg-normal,
normal and almost normal.
We have the following characterization of rg-normality.

Theorem 6.1: For a space X the following are equivalent:

(i) Xisrg-normal.

(ii) For every pair of open sets U and V whose union is X, there exist rg-closed sets A and B such that AcU, B <V and AcB
=X

(iii) For every closed set F and every open set G containing F, there exists a rg-open set U such that FcUcrgel(U)<G.
Proof: (i)=(ii): Let U and V be a pair of open sets in a rg-normal space X such that X = UV. Then X-U, X-V are disjoint
closed sets. Since X is rg-normal there exist disjoint rg-open sets U; and V; such that X-UcU; and X-VcV;. Let A= X-U;, B
= X-Vi. Then A and B are rg-closed sets such that AcU, BcV and ALB = X.

(ii) =(iii): Let F be a closed set and G be an open set containing F. Then X—F and G are open sets whose union is X. Then
by (b), there exist rg-closed sets W; and W, such that W; = X-Fand W, cGand W;UW, = X. Then F& X-W;, X-G < X~
W, and (X—-W1)H(X-W,) = ¢. Let U = X-W; and V= X-W,. Then U and V are disjoint rg-open sets such that FcUcX-VcG.
As X-V is rg-closed set, we have rgcl(U) cX-V and FcUcrgel(U)cG.

(iii) = (i): Let F; and F, be any two disjoint closed sets of X. Put G = X—F,, then F;G = ¢. F;cG where G is an open set.
Then by (c), there exists a rg-open set U of X such that F; «U < rgcl(U) <G. It follows that F, < X-rgcl(U) =V, say, then
Vis rg-open and UV = ¢. Hence F; and F, are separated by rg-open sets U and V. Therefore X is rg-normal.

Theorem 6.2: A regular open subspace of a rg-normal space is rg-normal.

Definition 6.2: A function f:X—Y is said to be almost-rg-irresolute if for each x in X and each rg-neighborhood V of f(x),
rgcl(f (V) is a rg-neighborhood of x.

Clearly every rg-irresolute map is almost rg-irresolute.

The Proof of the following lemma is straightforward and hence omitted.

Lemma 6.1: f is almost rg-irresolute iff (V) c rg-int(rgcl(f*(V)))) for every VeRGO(Y).
Lemma 6.2: f is almost rg-irresolute iff f(rgcl(U)) < rgcl(f(U)) for every UeRGO(X).
Proof: Let UcsRGO(X). If yergcl(f(U)). Then there exists Ve RGO(y) such that V~f(U) = ¢. Hence f*(V)nU= ¢. Since

UeRGO(X), we have rg-int(rgcl(f*(V)))~rgcl(U) = ¢. By lemma 6.1, f (V) rgel(U) = ¢ and hence  Vf(rgel(U)) = ¢.
This implies that y#f(rgcl(U)).
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Conversely, if VeRGO(Y), then W = X- rgcl(f*(V)))e RGO(X). By hypothesis, f(rgcl(W))c rgcl (f(W))) and hence X- rg-
int(rgcl(F1(V))) = rgel (W)t (rgel(F(W)))f(rgel [fX-FH(V)< | rgel(Y-V)] = £(Y-V) = X-£1(V). Therefore f*(V)c rg-
int(rgcl(F*(V))). By lemma 6.1, f is almost rg-irresolute.

Theorem 6.3: If f is M-rg-open continuous almost rg-irresolute, X is rg-normal, then Y is rg-normal.

Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, f*(A) is closed and f*(B) is
an open set of X such that f* (A) < f*(B). As X is rg-normal, there exists a rg-open set U in X such that f*(A) c U
rgcl(U)c f(B). Then f(f*(A))c f(U) < f(rgcl(U)) < f(F*(B)). Since f is M-rg-open almost rg-irresolute surjection, we obtain
Ac f(U) c rgcl(f(U)) < B. Then again by Theorem 6.1 the space Y is rg-normal.

Lemma 6.3: A mapping f is M-rg-closed iff for each subset B in Y and for each rg-open set U in X containing f*(B), there
exists a rg-open set V containing B such that f*(V)cU.

Theorem 6.4: If f is M-rg-closed continuous, X is rg-normal space, then Y is rg-normal.
Proof of the theorem is routine and hence omitted.

Theorem 6.5: If f is an M-rg-closed map from a weakly Hausdorff rg-normal space X onto a space Y such that f*(y) is S-
closed relative to X for each yeY, then Y isrg-T,.

Proof: Let y; # y,eY. Since X is weakly Hausdorff, f *(y;) and f "*(y,) are disjoint closed subsets of X by lemma 2.2 [12.].
As X is rg-normal, there exist disjoint V; eRGO(X, f *(y) for i = 1, 2. Since f is M-rg-closed, there exist disjoint
UieRGO(Y, yi) and f }(Uj)  V; fori = 1, 2. Hence Y is rg-To.

Theorem 6.6: For a space X we have the following:

(@) If X is normal then for any disjoint closed sets A and B, there exist disjoint rg-open sets U, V such that AcU and BcV;
(b) If X is normal then for any closed set A and any open set V containing A, there exists an rg-open set U of X such that
AcUcrgcl(U) cV.

Definition 6.2: X is said to be almost rg-normal if for each closed set A and each regular closed set B with AnB = ¢, there
exist disjoint U; VeRGO(X) such that AcU and BcV.
Clearly, every rg-normal space is almost rg-normal, but not conversely in general.

Example 7: Let X = {a, b,c} and 1 = {o, {a}, {a, b}, {a, ¢}, X} Then X is almost rg-normal and rg-
normal.

Theorem 6.7: For a space X the following statements are equivalent:

(i) Xisalmost rg-normal

(ii) For every pair of sets U and V, one of which is open and the other is regular open whose union is X, there exist rg-closed
sets G and H such that GcU, HcV and GUH = X.

(iii) For every closed set A and every regular open set B containing A, there is a rg-open set V such that AcVcrgel(V)<B.
Proof: (i)=(ii) Let Uet and VeRO(X) such that UuV = X. Then (X-U) is closed set and (X-V) is regular closed set with
(X-U)N(X-V) = ¢. By almost rg-normality of X, there exist disjoint rg-open sets U; and V; such that X-U < U; and X-V <
V1. Let G = X- U; and H = X-V;. Then G and H are rg-closed sets such that GcU, HcV and GUH = X,

(ii) = (iii) and (iii) = (i) are obvious.

One can prove that almost rg-normality is also regular open hereditary.

Almost rg-normality does not imply almost rg-regularity in general. However, we observe that every almost rg-normal rg-Rg
space is almost rg-regular.

Theorem 6.8: Every almost regular, rg-compact space X is almost rg-normal.

Recall that a function f: X— Y is called rc-continuous if inverse image of regular closed set is regular closed.

Theorem 6.9: If f is continuous M-rg-open rc-continuous and almost rg-irresolute surjection from an almost rg-normal space
X onto a space Y, then Y is almost rg-normal.

Definition 6.3: X is said to be mildly rg-normal if for every pair of disjoint regular closed sets F; and F, of X, there exist
disjoint rg-open sets U and V such that F; c U and F, < V.

Example 8: Let X = {a, b, ¢, d} with t = {¢, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X} is Mildly rg-normal.
Theorem 6.10: For a space X the following are equivalent.
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(i) Xismildly rg-normal.
(ii) For every pair of regular open sets U and V whose union is X, there exist rg-closed sets G and H such that G c U, H ¢
V and GUH = X.
(iii) For any regular closed set A and every regular open set B containing A, there exists a rg-open set U such that
AcUcrgcl(U)cB.
(iv) For every pair of disjoint regular closed sets, there exist rg-open sets U and V such that AcU, B<V and rgcl(U)n
rgcl(V) = ¢.
Proof: This theorem may be proved by using the arguments similar to those of Theorem 6.7.

Also, we observe that mild rg-normality is regular open hereditary.

Definition 6.4: A space X is weakly rg-regular if for each point x and a regular open set U containing {x}, there is a rg-open
set V such that xeV c clV < U.

Example 9: Let X ={a, b, c} and = = {¢, {b},{a, b},{b, c}, X}. Then X is weakly rg-regular.
Example 10: Let X ={a, b, c} and t ={¢, {a},{b},{a, b}, X}. Then X is not weakly rg-regular.

Theorem 6.11: If f : X — Y is an M-rg-open rc-continuous and almost rg-irresolute function from a mildly rg-normal space
X onto a space Y, then Y is mildly rg-normal.

Proof: Let A be a regular closed set and B be a regular open set containing A. Then by rc-continuity of f, f *(A) is a
regular closed set contained in the regular open set f*(B). Since X is mildly rg-normal, there exists a rg-open set V such that
f1(A) <V rgel(V) < f (B) by Theorem 6.10. As f is M-rg-open and almost rg-irresolute surjection, f(V)eRGO(Y) and
Ac f(V) < rgcl(f(V))c B. Hence Y is mildly rg-normal.

Theorem 6.12: If f:X—Y is rc-continuous, M-rg-closed map and X is mildly rg-normal space, then Y is mildly rg-normal.

VII.  rg-US spaces:
Definition 7.1: A point y is said to be a
(i) rg-cluster point of sequence <x,> iff <x,> is frequently in every rg-open set containing X. The set of all rg-cluster points
of <x,> will be denoted by rg-cl(x,).
(ii) rg-side point of a sequence <x,> if y is a rg-cluster point of <x,> but no subsequence of <x,> rg-converges to y.

Definition 7.2:A sequence <x,> is said to be rg-converges to a point x of X, written as <x,> —" x if <x,> is eventually in
every rg-open set containing Xx.
Clearly, if a sequence <x,> r-converges to a point x of X, then <x,> rg-converges to x.

Definition 7.3: A subset F is said to be
(i) sequentially rg-closed if every sequence in F rg-converges to a point in F.
(ii) sequentially rg-compact if every sequence in F has a subsequence which rg-converges to a point in F.

Definition 7.4: X is said to be

(i) rg-US if every sequence <x,> in X rg-converges to a unique point.

(i) rg-S; if it is rg-US and every sequence <x,> rg-converges with subsequence of <x,> rg-side points.
(iii) rg-S, if it is rg-US and every sequence <x,> in X rg-converges which has no rg-side point.

Definition 7.5: A function f is said to be sequentially rg-continuous at xeX if f(x,) =" f(x) whenever <x,>—" x. If f is
sequentially rg-continuous at all xe X, then f is said to be sequentially rg-continuous.

Theorem 7.1: We have the following:

(i) Everyrg-T, space is rg-US.

(ii) Every rg-US space is rg-T;.

(iii) Xis rg-US iff the diagonal set is a sequentially rg-closed subset of X x X.
(iv) Xisrg-T, iffitis both rg-R; and rg-US.

(v) Every regular open subset of a rg-US space is rg-US.

(vi) Product of arbitrary family of rg-US spaces is rg-US.

(vii) Every rg-S; space is rg-S; and every rg-S; space is rg-US.

Theorem 7.2: In a rg-US space every sequentially rg-compact set is sequentially rg-closed.

Proof: Let X be rg-US space. Let Y be a sequentially rg-compact subset of X. Let <x,> be a sequence in Y. Suppose that
<X,> rg-converges to a point in X-Y. Let <x,,> be subsequence of <x,> that rg-converges to a pointy € Y since Y is
sequentially rg-compact. Also, let a subsequence <xn,> of <x,> rg-converge to X € X-Y. Since <x,,> is a sequence in the
rg-US space X, x =y. Thus, Y is sequentially rg-closed set.
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Theorem 7.3: If f and g are sequentially rg-continuous and Y is rg-US, then the set A = {x | f(x) = g(x)} is sequentially rg-
closed.

Proof: Let Y be rg-US. If there is a sequence <x,> in A rg-converging to x € X. Since f and g are sequentially rg-
continuous, f(x,) =" f(x) and g(x,) =" g(x). Hence f(x) = g(x) and xeA. Therefore, A is sequentially rg-closed.

VIII.  Sequentially sub-rg-continuity:
Definition 8.1: A function f is said to be
(i) sequentially nearly rg-continuous if for each point xeX and each sequence <x,> —" x in X, there exists a subsequence
<Xn> of <x,> such that <f(x,)>— " f(x).
(ii) sequentially sub-rg-continuous if for each point xeX and each sequence <x,> —" x in X, there exists a subsequence
<Xq> of <x,> and a point yeY such that <f(x,)> —>"y.
(iii) sequentially rg-compact preserving if f(K) is sequentially rg-compact in Y for every sequentially rg-compact set K of X.

Lemma 8.1: Every function f is sequentially sub-rg-continuous if Y is a sequentially rg-compact.
Proof: Let <x,> —" x in X. Since Y is sequentially rg-compact, there exists a subsequence {f(x.)} of {f(x.)} rg-converging
to a point yeY. Hence f is sequentially sub-rg-continuous.

Theorem 8.1: Every sequentially nearly rg-continuous function is sequentially rg-compact preserving.

Proof: Assume f is sequentially nearly rg-continuous and K any sequentially rg-compact subset of X. Let <y,> be any
sequence in f (K). Then for each positive integer n, there exists a point x, € K such that f(x,) = y,. Since <x,> is a sequence
in the sequentially rg-compact set K, there exists a subsequence <x.,> of <x,> rg-converging to a point x € K. By
hypothesis, f is sequentially nearly rg-continuous and hence there exists a subsequence <x;> of <xy> such that f(x;)— " f(x).
Thus, there exists a subsequence <y;> of <y,> rg-converging to f(x)ef(K). This shows that f(K) is sequentially rg-compact
setin.

Theorem 8.2: Every sequentially s-continuous function is sequentially rg-continuous.
Proof: Let f be a sequentially s-continuous and <x,> —° xeX. Then <x,> —° x. Since f is sequentially s-continuous, f(x,)—°
f(x). But we know that <x,>—°x implies <x,> —" x and hence f(x,)— " f(x) implies f is sequentially rg-continuous.

Theorem 8.3: Every sequentially rg-compact preserving function is sequentially sub-rg-continuous.

Proof: Suppose f is a sequentially rg-compact preserving function. Let x be any point of X and <x,> any sequence in X rg-
converging to x. We shall denote the set {x,|n=1,2,3, ...} by A and K= A U {x}. Then K is sequentially rg-compact since
(xn) =™ x. By hypothesis, f is sequentially rg-compact preserving and hence f(K) is a sequentially rg-compact set of Y. Since
{f(x,)} is a sequence in f(K), there exists a subsequence {f(x.)} of {f(x,)} rg-converging to a point yef(K). This implies that
f is sequentially sub-rg-continuous.

Theorem 8.4: A function f: X— Y is sequentially rg-compact preserving iff fi: K — f(K) is sequentially sub-rg-continuous
for each sequentially rg-compact subset K of X.

Proof: Suppose f is a sequentially rg-compact preserving function. Then f(K) is sequentially rg-compact set in Y for each
sequentially rg-compact set K of X. Therefore, by Lemma 8.1 above, f: K— f(K) is sequentially rg-continuous function.
Conversely, let K be any sequentially rg-compact set of X. Let <y,> be any sequence in f(K). Then for each positive integer
n, there exists a point x,K such that f(x,) = y,. Since <x,> is a sequence in the sequentially rg-compact set K, there exists a
subsequence <x,> of <x,> rg-converging to a point X € K. By hypothesis, f x: K— f(K) is sequentially sub-rg-continuous
and hence there exists a subsequence <y, > of <y,> rg-converging to a point ye f(K).This implies that f(K) is sequentially
rg-compact set in Y. Thus, f is sequentially rg-compact preserving function.

The following corollary gives a sufficient condition for a sequentially sub-rg-continuous function to be sequentially rg-
compact preserving.

Corollary 8.1: If f is sequentially sub-rg-continuous and f(K) is sequentially rg-closed set in Y for each sequentially rg-
compact set K of X, then f is sequentially rg-compact preserving function.
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