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I. Introduction 
In 1974, Das defined the concept of semi-connectedness in topology and investigated its properties. Compactness is 

one of the most important, useful and fundamental concepts in topology. In 1981, Dorsett introduced and studied the concept 

of semi-compact spaces. Since then, Hanna and Dorsett, Ganster and Mohammad S. Sarsak investigated the properties of 

semi-compact spaces. In 1990, Ganster defined and investigated semi-Lindelöf spaces.  

  In this paper, we introduce the concepts of semi*-connected spaces, semi*-compact spaces and semi*-

Lindelöf spaces. We investigate their basic properties. We also discuss their relationship with already existing concepts. 

 

II. Preliminaries 
 Throughout this paper (X, τ) will always denote a topological space on which no separation axioms are assumed, 

unless explicitly stated. If A is a subset of the space (X, τ), Cl(A)  

and Int(A) denote the closure and the interior of A respectively. 

Definition 2.1: A subset A of a topological space (X, τ) is called   

(i) generalized closed (briefly g-closed)[11] if Cl(A)⊆U whenever A⊆U and U is open in X. 

(ii) generalized open (briefly g-open)[11] if X\A is g-closed in X. 

Definition 2.2: Let A be a subset of X. The generalized closure [6] of A is defined as the intersection of all g-closed sets 

containing A and is denoted by Cl*(A). 

Definition 2.3: A subset A of a topological space (X, τ) is called   

(i) semi-open [10] (resp. semi*-open[14]) if A⊆Cl(Int(A)) (resp. A⊆Cl*(Int(A))).  

(ii) semi-closed [1] (resp. semi*-closed[15]) if X\A is semi-open (resp. semi*-open) or   

     equivalently if Int(Cl(A))⊆A (resp. Int*(Cl(A))⊆A). 

(iii) semi-regular [2] ( resp. semi*-regular  [15] ) if it is both semi-open and semi-closed (resp. both semi*-open and semi*-

closed). 

The class of all semi-open (resp. semi-closed, semi*-open, semi*-closed) sets is denoted by SO(X, τ)(resp. SC(X, τ), S*O(X, 

τ), S*C(X,τ)). 

Definition 2.4:  Let A be a subset of X. Then the semi*-closure [15] of A is defined as the intersection of all semi*-closed 

sets containing A and is denoted by s*Cl(A). 

Theorem 2.5[14]:    (i) Every open set is semi*-open. 

    (ii) Every semi*-open set is semi-open. 

Definition 2.6: If A is a subset of X, the semi*-frontier [13] of A is defined by  

s*Fr(A)=s*Cl(A)\s*Int(A).  

Theorem 2.7[13]: Let A be a subset of a space X. Then A is semi*-regular if and only if s*Fr(A)=. 

Theorem 2.8[15]: If A is a subset of X, then  

(i) s*Cl(X\A)=X\s*Int(A). 

(ii) s*Int(X\A)=X\s*Cl(A). 

Definition 2.9: A topological space X is said to be connected [18] (resp. semi-connected [3]) if X cannot be expressed as the 

union of two disjoint nonempty open (resp. semi-open) sets in X. 

Theorem 2.10 [18]: A topological space X is connected if and only if the only clopen subsets of X are ϕ and X. 

Definition 2.11: A collection B of open (resp. semi-open) sets in X is called an open (resp. semi-open) cover of A⊆X if 

A⊆∪{Uα : Uα∈B } holds. 

Definition 2.12: A space X is said to be compact [18] (resp. semi-compact [4]) if every open (resp. semi-open) cover of X 

has a finite subcover. 

Definition 2.13: A space X is said to be Lindelöf [18] (resp. semi-Lindelöf [8]) if every cover of X by open (resp. semi-

open) sets contains a countable sub cover. 

Definition 2.14: A function f :X⟶Y is said to be  

(i) semi*-continuous [16] if  f 
-1

(V) is semi*-open in X for every open set V in Y.  

(ii) semi*-irresolute [17] if  f 
-1

(V) is semi*-open in X for every semi*-open set V in Y. 

(iii) semi*-open [16] if  f(V) is semi*-open in Y for every open set V in X. 
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(iv) semi*-closed [16] if  f(V) is semi*-closed in Y for every closed set V in X. 

(v) pre-semi*-open [16] if  f(V) is semi*-open in Y for every semi*-open set V in X. 

(vi) pre-semi*-closed [16] if  f(V) is semi*-closed in Y for every semi*-closed set V in X. 

(vii) totally semi*-continuous [17] if f 
-1

(V) is semi*-regular in X for every open set V in Y. 

(vii) strongly semi*-continuous [17] if f 
-1

(V) is semi*-regular in X for every subset V in Y. 

(viii) contra-semi*-continuous [16] if f 
-1

(V) is semi*-closed in X for every open set V in Y. 

(ix) contra-semi*-irresolute [17] if f 
-1

(V) is semi*-closed in X for every semi*-open set V in Y. 

Theorem 2.15: Let f :X⟶Y be a function. Then 

(i) f is semi*-continuous if and only if f 
-1

(F) is semi*-closed in X for every closed set F in Y.[16] 

(ii) f is semi*-irresolute if and only if f 
-1

(F) is semi*-closed in X for every semi*-closed set F            

     in Y.[17] 

(iii) f is contra-semi*-continuous if and only if f 
-1

(F) is semi*-open in X for every closed set F in  

     Y.[16] 

(iv) f is contra-semi*-irresolute if and only if f 
-1

(F) is semi*-open in X for every semi*-closed  

     set F in Y.[17] 

Remark 2.16:[14] If (X, τ) is a locally indiscrete space, then τ = S*O(X, τ) = SO(X, τ).  

Theorem 2.17:[14] A subset A of X is semi*-open if and only if A contains a semi*-open set about each of its points. 

 

III. Semi*-connected spaces 
In this section we introduce semi*-connected spaces and investigate their basic properties. 

Definition 3.1: A topological space X is said to be semi*-connected if X cannot be expressed as the union of two disjoint 

nonempty semi*-open sets in X. 

Theorem 3.2:     (i) If a space X is semi*-connected, then it is connected. 

            (ii) If a space X is semi-connected, then it is semi*-connected. 

Proof:  (i) Let X be semi*-connected. Suppose X is not connected. Then there exist disjoint non-empty open sets A and B 

such that X=A∪B. By Theorem 2.5(i), A and B are semi*-open sets. This is a contradiction to X is semi*-connected. This 

proves (i). 

(ii) Let X be semi-connected. Suppose X is not semi*-connected. Then there exist disjoint non-empty semi*-open sets A and 

B such that X=A∪B. By Theorem 2.5(ii), A and B are semi-open sets. This is a contradiction to X is semi-connected. This 

proves (ii). 

Remark 3.3: The converse of the above theorem is not true as shown in the following example. 

Example 3.4: Consider the space (X, τ) where X={a, b, c, d} and τ={ϕ, {a}, {b}, {a, b},  

{b, c}, {a, b, c}, X}. Clearly, (X, τ) is connected but not semi*-connected. 

Example 3.5: It can be verified that the space (X, τ) where X={a, b, c, d} and τ={ϕ, {a}, {b}, {a, b}, {a, b, c}, X} is semi*-

connected but not semi-connected. 

Theorem 3.6: A topological space X is semi*-connected if and only if the only semi*- regular subsets of X are ϕ and X 

itself. 

Proof: Necessity: Suppose X is a semi*-connected space. Let A be non-empty proper subset of X that is semi*-regular. 

Then A and X\A
 
 are non-empty semi*-open sets and X=A∪(X\A). This is a contradiction to the assumption that X is semi*-

connected.     

Sufficiency: Suppose X=A∪B where A and B are disjoint non-empty semi*-open sets. Then A=X\B is semi*-closed. Thus 

A is a non-empty proper subset that is semi*-regular. This is a contradiction to our assumption. 

Theorem 3.7: A topological space X is semi*-connected if and only if every semi*-continuous function of X into a discrete 

space Y with at least two points is a constant function. 

Proof: Necessity: Let f be a semi*-continuous function of the semi*-connected space into the discrete space Y. Then for 

each y∈Y, f 
-1

({y}) is a semi*-regular set of X. Since X is semi*-connected,  f 
-1

({y})=ϕ or X. If f 
-1

({y})=ϕ for all y∈Y, then  

f ceases to be a function. Therefore   f 
-1

({y0})=X for a unique y0∈Y. This implies f(X)={y0} and hence f is a constant  

function. Sufficiency: Let U be a semi*- regular set in X. Suppose U≠ϕ. We claim that U=X. Otherwise, choose two fixed 

points y1 and y2 in Y. Define f :X⟶Y by f(x)=



 

otherwise y

U  xif y

2

1
  

Then for any open set V in Y, f 
-1

(V)= 













 otherwise         

y and yboth  contains V if           X 

only y  contains V if     U\X 

only y contains V  if            U

21

2

 1

 

In all the cases f 
-1

(V) is semi*-open in X. Hence f is a non-constant semi*-continuous function of X into Y. This is a 

contradiction to our assumption. This proves that the only semi*- regular subsets of X are ϕ and X and hence X is semi*-

connected. 

Theorem 3.8: A topological space X is semi*-connected if and only if every nonempty proper subset of X has non-empty 

semi*-frontier. 
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 Proof: Suppose that a space X is semi*-connected. Let A be a non-empty proper subset of X. We claim that s*Fr(A)≠ϕ. If 

possible, let s*Fr(A)=ϕ. Then by Theorem 2.7, A is semi*-regular. By Theorem 3.6, X is not semi*-connected which is a 

contradiction. Conversely, suppose that every non-empty proper subset of X has a non-empty semi*-frontier. We claim that 

X is semi*-connected. On the contrary, suppose that X is not semi*-connected. By Theorem 3.6, X has a non-empty proper 

subset, say A, which is semi*-regular. By Theorem 2.7, s*Fr(A)=ϕ which is a contradiction to the assumption. Hence X is 

semi*-connected. 

Theorem 3.9: Let f :X⟶Y be semi*-continuous surjection and X be semi*-connected. Then Y is connected. 

Proof: Let f :X⟶Y be semi*-continuous surjection and X  be semi*-connected. Let V be a clopen subset of Y. By 

Definition 2.14(i) and by Theorem 2.15(i), f 
-1

(V) is semi*-regular in X. Since X is semi*-connected, f 
-1

(V)=ϕ or X. Hence 

V=ϕ or Y. This proves that Y is connected.       

Theorem 3.10: Let f :X⟶Y be a semi*-irresolute surjection. If X is semi*-connected, so is Y.  

Proof: Let f :X⟶Y be a semi*-irresolute surjection and let X be semi*-connected. Let V be a subset of Y that is semi*-

regular in Y. By Definition 2.14(ii) and by Theorem 2.15(ii), f 
-1

(V) is semi*-regular in X. Since X is semi*-connected, f 
-

1
(V)=ϕ or  X. Hence V=ϕ or Y. This proves that Y is semi*-connected.                          

Theorem 3.11: Let f :X⟶Y be a pre-semi*-open and pre-semi*-closed injection. If Y is semi*-connected, so is X. 

Proof: Let A be subset of X that is semi*- regular in X. Since f is both pre-semi*-open and pre-semi*-closed, f(A) is semi*- 

regular in Y. Since Y is semi*-connected, f(A)=ϕ or Y. Hence A=ϕ or X. Therefore X is semi*-connected.                  

Theorem 3.12: If f :X⟶Y is a semi*-open and semi*-closed injection and  Y is semi*-connected, then X is connected. 

Proof: Let A be a clopen subset of X. Then f(A) is semi*- regular in Y. Since Y is semi*-connected, f(A)=ϕ or Y. Hence 

A=ϕ or X. By Theorem 2.10, X is connected.         

Theorem 3.13: If there is a semi*-totally-continuous function from a connected space X onto Y, then Y has the indiscrete 

topology. 

Proof: Let f  be a semi*-totally-continuous function from a connected space X onto Y. Let V be an open set in Y. Then by 

Theorem 2.5(i), V is semi*-open in Y. Since f is semi*-totally-continuous, f 
-1

(V) is clopen in X. Since X is connected, by 

Theorem 2.10, f 
-1

(V)=ϕ or X. This implies V=ϕ or Y. Hence Y has the indiscrete topology.     

Theorem 3.14: If there is a totally semi*-continuous function from a semi*-connected space X onto Y, then Y has the 

indiscrete topology. 

Proof: Let f  be a totally semi*-continuous function from a semi*-connected space X onto Y. Let V be an open set in Y. 

Since f is totally semi*-continuous, f 
-1

(V) is semi*- regular in X. Since X is semi*-connected, f 
-1

(V)=ϕ or X. This implies 

V= ϕ or Y. Thus Y has the indiscrete topology. 

Theorem 3.15: If f :X⟶Y is a strongly semi*-continuous bijection and Y is a space with at least two points, then X is not 

semi*-connected. 

Proof: Let y∈Y. Then f 
-1

({y}) is a non-empty proper subset that is semi*-regular in X. Hence by Theorem 3.6, X is not 

semi*-connected. 

Theorem 3.16: Let f :X⟶Y be contra-semi*-continuous surjection and X be semi*-connected. Then Y is connected. 

Proof: Let f :X⟶Y be contra-semi*-continuous surjection and X  be semi*-connected. Let V be a clopen subset of Y. By 

Definition 2.14(viii) and Theorem 2.15(iii), f 
-1

(V) is semi*-regular in X. Since X is semi*-connected,             f 
-1

(V)=ϕ or X. 

Hence V=ϕ or Y. This proves that Y is connected.       

Theorem 3.17: Let f :X⟶Y be a contra-semi*-irresolute surjection. If X is semi*-connected, so is Y.  

Proof: Let f :X⟶Y be a semi*-irresolute surjection and let X be semi*-connected. Let V be a subset of Y that is semi*-

regular in Y. By Definition 2.14(ix) and Theorem 2.15(iv), f 
-1

(V) is semi*-regular in X. Since X is semi*-connected, f 
-

1
(V)=ϕ or  X. Hence V=ϕ or Y. This proves that Y is semi*-connected. 

Theorem 3.18: Let X be a locally indiscrete space. Then the following are equivalent: 

 (i) X is connected. 

 (ii) X is semi*-connected. 

 (iii) X is semi-connected. 

Proof: Follows from Remark 2.16. 

 

IV. Semi*-Compact and Semi*-Lindelöf Spaces 

 In this section we introduce semi*-compact spaces and semi*-Lindelöf spaces and study their properties. 

Definition 4.1: A collection 𝓐 of semi*-open sets in X is called a semi*-open cover of B⊆X if B⊆∪{Uα : Uα∈𝓐} holds. 

Definition 4.2: A space X is said to be semi*-compact if every semi*-open cover of X has a finite subcover. 

Definition 4.3: A subset B of X is said to be semi*-compact relative to X if for every semi*-open cover 𝓐 of B, there is a 

finite subcollection of 𝓐 that covers B.  

Definition 4.4: A space X is said to be semi*-Lindelöf if every cover of X by semi*-open sets contains a countable 

subcover. 

Remark 4.5: Every finite space is semi*-compact and every countable space is semi*- Lindelöf. 

Theorem 4.6:  (i) Every semi-compact space is semi*-compact. 

   (ii) Every semi*-compact space is compact. 

  (iii) Every semi-Lindelöf space is semi*-Lindelöf. 

(iv) Every semi*-Lindelöf space is Lindelöf.   

(v) Every semi*-compact space is semi*-Lindelöf. 
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Proof:  (i), (ii), (iii) and (iv) follow from Theorem 2.5. (v) follows from Definition 2.12, Definition 2.13, Definition 4.2 and 

Definition 4.4.        

Theorem 4.7: Every semi*-closed subset of a semi*-compact space X is semi*-compact relative to X. 

Proof: Let A be a semi*-closed subset of a semi*-compact space X. Let B be semi*-open cover of A. Then B∪{X\A} is a 

semi*-open cover of X. Since X is semi*-compact, this cover contains a finite subcover of X, namely {B1, B2,..., Bn , X\A}. 

Then {B1, B2... Bn} is a finite subcollection of B that covers A. This proves that A is semi*-compact relative to X. 

Theorem 4.8: A space X is semi*-compact if and only if  every family of semi*-closed sets in X with empty intersection 

has a finite subfamily with empty intersection.  

Proof: Suppose X is compact and {Fα : α∈Δ} is a family of semi*-closed sets in X such that ∩{Fα : α∈Δ}=ϕ.  Then 

∪{X\Fα : α∈Δ} is a semi*-open cover for X. Since X is semi*-compact, this cover has a finite subcover, say             {

1
\ FX , 

2
\ FX ,...,

n
FX \ } for X. That is X=∪{ }...,,2,1:\ niFX

i
 .This implies that 

n

i
i

F
1

 =ϕ. Conversely, 

suppose that
 
every family of semi*-closed sets in X which has empty intersection has a finite subfamily with empty 

intersection. Let {Uα : α∈Δ} be a semi*-open cover for X. Then ∪{Uα : α∈Δ}=X. Taking the complements, we get ∩{X\Uα : 

α∈Δ}=ϕ. Since X\Uα is semi*-closed for each α∈Δ, by the assumption, there is a finite sub family, {
1

\ UX , 
2

\ UX ,...,

n
UX \ } with empty intersection. That is 

n

i
i

UX
1

)\(


 =ϕ. Taking the complements on both sides, we get 
n

i
i

U
1

 =X. 

Hence X is semi*-compact.  

Theorem 4.9: Let X be a semi*-T2 space in which S*O(X) is closed under finite intersection. If A is a semi*-compact subset 

of X, then A is semi*-closed. 

Proof: Suppose X is a semi*-T2 space in which S*O(X) is closed under finite intersection. Let A be a semi*-compact subset 

of X. Let xX\A. Since X is semi*-T2, for each aA, there are disjoint semi*-open sets Ua and Va containing x and a 

respectively. {Va : aA} is a semi*-open cover for A. Since A is semi*-compact, this cover has a finite subcover say, {
1aV , 

2aV ,...,
naV }. Let Ux =

n

i

ai
U

1

. Then by assumption, Ux is a semi*-open set containing x. Also Ux∩A=ϕ and hence Ux⊆X\A. 

Then by Theorem 2.17, X\A is semi*-open and hence A is semi*-closed. 

Theorem 4.10: Let f :X⟶Y be a semi*-irresolute surjection and X be semi*-compact. Then Y is semi*-compact.
 

Proof: Let f :X⟶Y be a semi*-irresolute surjection and X be semi*-compact. Let {Vα} be a semi*-open cover for Y. Then 

{f
 -1

(Vα)} is a cover of X by semi*-open sets. Since X is semi*-compact, {f
 -1

(Vα)} contains a finite subcover, namely {f
 -1

(

1
V ), f

 -1
(

2
V ),...,f

 -1
(

n
V )}. Then {

1
V , 

2
V ,...,

n
V }is a finite subcover for Y. Thus Y is semi*-compact.                                                                                   

Theorem 4.11: If f :X⟶Y is a pre-semi*-open function and Y is semi*-compact, then X is semi*-compact. 

Proof: Let { 𝑉𝛼} be a semi*-open cover for X. Then {f(Vα)} is a cover of Y  by semi*-open sets.Since Y is semi*-compact, 

{f(𝑉𝛼 )}contains a finite subcover, namely {f(
1

V ), f(
2

V ),...,f(
n

V )}Then {
1

V ,
2

V ,...,
n

V }is a finite subcover for X. 

Thus X is semi*-compact.    

Theorem 4.12: If f :X⟶Y is a semi*-open function and Y is semi*-compact, then  X is  compact. 

Proof:  Let {Vα} be an open cover for X. Then {f(Vα)}is a cover of Y  by semi*-open sets. 

Since Y is semi*-compact, {f(Vα)}contains a finite subcover, namely {f(
1

V ), f(
2

V ),...,f(
n

V )} . 

Then {
1

V , 
2

V ,...,
n

V } is a  finite subcover for X. Thus X is compact.                                                            

Theorem 4.13: Let f :X⟶Y be a semi*-continuous surjection and X be semi*-compact. 

Then Y is compact. 

Proof: Let f :X⟶Y be a semi*-continuous surjection and X be semi*-compact. Let {Vα} be an open cover for Y. Then {f
 -

1
(Vα)} is a cover of X by semi*-open sets. Since X is semi*-compact, {f

 -1
(Vα)} contains a finite subcover, namely {f

 -1
(

1
V ), 

f
 -1

(
2

V ),...,f
 -1

(
n

V )}. Then {
1

V , 
2

V ,...,
n

V } is a cover for Y. Thus Y is compact.     

Theorem 4.14: A space X is semi*-Lindelöf  if and only if  every family of semi*-closed sets in X with empty intersection 

has a countable subfamily with empty intersection.  

Proof: Suppose X is compact and {Fα : α∈Δ} is a family of semi*-closed sets in X such that ∩{Fα : α∈Δ}=ϕ.  Then 

∪{X\Fα : α∈Δ} is a semi*-open cover for X. Since X is semi*-Lindelöf, this cover has a countable sub cover, say    {

i
FX \ : i=1, 2, ...} for X. That is X=∪{ ...},2,1:\ iFX

i
.This implies that )\(

i
i

FX  =ϕ. Conversely, suppose 

that
 
every family of semi*-closed sets in X which has empty intersection has a countable subfamily with empty intersection. 

Let {Uα : α∈Δ} be a semi*-open cover for X. Then ∪{Uα : α∈Δ}=X. Taking the complements, we get ∩{X\Uα : α∈Δ}=ϕ. 
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Since X\Uα is semi*-closed for each α∈Δ, by the assumption, there is a countable sub family, {
i

UX \ : i=1, 2, ....} with 

empty intersection. That is )\(
i

i
UX  =ϕ. Taking the complements  we get 

i
i

U =X. Hence X is semi*-Lindelöf. 

Theorem 4.15: Let f:X⟶Y be a semi*-continuous surjection and X be semi*-Lindelöf. 

Then Y is Lindelöf. 

Proof: Let f :X⟶Y be a semi*- continuous  surjection and X be semi*-Lindelöf. Let {Vα} be an open cover for Y. Then {f
 

-1
(Vα)}is a cover of X by semi*-open sets. Since X is semi*-Lindelöf, {f

 -1
(Vα)} contains a countable subcover, namely {f

 -1
(

n
V )}. Then {

n
V } is a countable subcover for Y. Thus Y is Lindelöf.    

Theorem 4.16: Let f :X⟶Y be a semi*-irresolute surjection and X be semi*-Lindelöf. 

Then Y is semi*-Lindelöf. 

Proof: Let f :X⟶Y be a semi*-irresolute  surjection and X be semi*-Lindelöf. Let { 𝑉𝛼} be a semi*-open cover for Y. 

Then {f
 -1

(Vα)} is a cover of X by semi*-open sets. Since X is semi*- Lindelöf, {f
 -1

(Vα)} contains a countable sub cover, 

namely {f
 -1

(
n

V )}. Then {
n

V } is a countable subcover for Y. Thus Y is semi*-Lindelöf.                                                                 

Theorem 4.17: If f :X⟶Y is a pre-semi*-open function and Y is semi*-Lindelöf, then X is semi*-Lindelöf. 

Proof: Let {Vα} be a semi*-open cover for X. Then {f(Vα)} is a cover of Y  by semi*-open sets. 

Since Y is semi*- Lindelöf, {f(Vα)} contains a countable subcover, namely {f
 
(

n
V )}. Then {

n
V } is a countable subcover 

for X. Thus X is semi*- Lindelöf.                                          

Theorem 4.18: If f :X⟶Y is  a semi*-open function and Y is semi*-Lindelöf, then X is Lindelöf. 

Proof: Let {Vα} be an open cover for X. Then {f(Vα)}is a cover of Y  by semi*-open sets. Since Y is semi*- Lindelöf, 

{f(Vα)} contains a countable subcover, namely {f
 
(

n
V )}. Then {

n
V } is a countable subcover for X. Thus X is Lindelöf.    
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