On Semi*-Connected and Semi*-Compact Spaces

A. Robert¹, S. Pious Missier²

¹(Department of Mathematics, Aditanar College, Tiruchendur, India-628216) ²(P.G. Department of Mathematics, V.O.Chidambaram College, Thoothukudi, India-628008)

Abstract: The purpose of this paper is to introduce the concepts of semi*-connected spaces, semi*-compact spaces and semi*-Lindelof spaces. We investigate their basic properties. We also discuss their relationship with already existing concepts.

Mathematics Subject Classification: 54D05, 54D30.

Keywords - semi*-compact, semi*-connected, semi*-Lindelof.

I. Introduction

In 1974, Das defined the concept of semi-connectedness in topology and investigated its properties. Compactness is one of the most important, useful and fundamental concepts in topology. In 1981, Dorsett introduced and studied the concept of semi-compact spaces. Since then, Hanna and Dorsett, Ganster and Mohammad S. Sarsak investigated the properties of semi-compact spaces. In 1990, Ganster defined and investigated semi-Lindelöf spaces.

In this paper, we introduce the concepts of semi*-connected spaces, semi*-compact spaces and semi*-Lindelöf spaces. We investigate their basic properties. We also discuss their relationship with already existing concepts.

II. Preliminaries

Throughout this paper (X, τ) will always denote a topological space on which no separation axioms are assumed, unless explicitly stated. If A is a subset of the space (X, τ) . Cl(A)

and Int(A) denote the closure and the interior of A respectively.

Definition 2.1: A subset A of a topological space (X, τ) is called

(i) generalized closed (briefly g-closed)[11] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(ii) *generalized open* (briefly g-open)[11] if $X \setminus A$ is g-closed in X.

Definition 2.2: Let A be a subset of X. The generalized closure [6] of A is defined as the intersection of all g-closed sets containing A and is denoted by $Cl^*(A)$.

Definition 2.3: A subset A of a topological space (X, τ) is called

(i) semi-open [10] (resp. semi*-open [14]) if $A \subseteq Cl(Int(A))$ (resp. $A \subseteq Cl^*(Int(A)))$.

(ii) semi-closed [1] (resp. semi*-closed[15]) if X\A is semi-open (resp. semi*-open) or

equivalently if $Int(Cl(A)) \subseteq A$ (resp. $Int^*(Cl(A)) \subseteq A$).

(iii) semi-regular [2] (resp. semi*-regular [15]) if it is both semi-open and semi-closed (resp. both semi*-open and semi*closed).

The class of all semi-open (resp. semi-closed, semi*-open, semi*-closed) sets is denoted by SO(X, τ)(resp. SC(X, τ), S*O(X, τ), S*C(X, τ)).

Definition 2.4: Let A be a subset of X. Then the semi*-closure [15] of A is defined as the intersection of all semi*-closed sets containing A and is denoted by s*Cl(A).

Theorem 2.5[14]: (i) Every open set is semi*-open. (ii)

Every semi*-open set is semi-open.

Definition 2.6: If A is a subset of X, the semi*-frontier [13] of A is defined by

 $s*Fr(A)=s*Cl(A)\setminus s*Int(A)$.

Theorem 2.7[13]: Let A be a subset of a space X. Then A is semi*-regular if and only if $s*Fr(A)=\phi$.

Theorem 2.8[15]: If A is a subset of X, then

(i) $s*Cl(X\setminus A)=X\setminus s*Int(A)$.

(ii) s*Int(X A)=X s*Cl(A).

Definition 2.9: A topological space X is said to be connected [18] (resp. semi-connected [3]) if X cannot be expressed as the union of two disjoint nonempty open (resp. semi-open) sets in X.

Theorem 2.10 [18]: A topological space X is connected if and only if the only clopen subsets of X are ϕ and X.

Definition 2.11: A collection B of open (resp. semi-open) sets in X is called an open (resp. semi-open) cover of A⊆X if $A \subseteq \cup \{ U_{\alpha} : U_{\alpha} \in B \}$ holds.

Definition 2.12: A space X is said to be compact [18] (resp. semi-compact [4]) if every open (resp. semi-open) cover of X has a finite subcover.

Definition 2.13: A space X is said to be Lindelöf [18] (resp. semi-Lindelöf [8]) if every cover of X by open (resp. semiopen) sets contains a countable sub cover.

Definition 2.14: A function $f: X \rightarrow Y$ is said to be

(i) semi*-continuous [16] if $f^{-1}(V)$ is semi*-open in X for every open set V in Y.

(i) semi*-irresolute [17] if $f^{-1}(V)$ is semi*-open in X for every semi*-open set V in Y.

(iii) semi*-open [16] if f(V) is semi*-open in Y for every open set V in X.

(iv) semi*-closed [16] if f(V) is semi*-closed in Y for every closed set V in X.

(v) pre-semi*-open [16] if f(V) is semi*-open in Y for every semi*-open set V in X.

(vi) pre-semi*-closed [16] if f(V) is semi*-closed in Y for every semi*-closed set V in X.

(vi) pro some closed [10] if $f^{-1}(V)$ is some closed in 1 for every open set V in Y. (vii) totally semi*-continuous [17] if $f^{-1}(V)$ is semi*-regular in X for every open set V in Y. (vii) strongly semi*-continuous [17] if $f^{-1}(V)$ is semi*-regular in X for every subset V in Y. (viii) contra-semi*-continuous [16] if $f^{-1}(V)$ is semi*-closed in X for every open set V in Y.

(ix) contra-semi*-irresolute [17] if $f^{-1}(V)$ is semi*-closed in X for every semi*-open set V in Y.

Theorem 2.15: Let $f: X \rightarrow Y$ be a function. Then

www.iimer.com

(i) f is semi*-continuous if and only if $f^{-1}(F)$ is semi*-closed in X for every closed set F in Y.[16] (ii) f is semi*-irresolute if and only if $f^{-1}(F)$ is semi*-closed in X for every semi*-closed set F

in Y.[17]

(iii) f is contra-semi*-continuous if and only if $f^{-1}(F)$ is semi*-open in X for every closed set F in Y.[16]

(iv) f is contra-semi*-irresolute if and only if $f^{-1}(F)$ is semi*-open in X for every semi*-closed set F in Y.[17]

Remark 2.16:[14] If (X, τ) is a locally indiscrete space, then $\tau = S^*O(X, \tau) = SO(X, \tau)$.

Theorem 2.17:[14] A subset A of X is semi*-open if and only if A contains a semi*-open set about each of its points.

III. Semi*-connected spaces

In this section we introduce semi*-connected spaces and investigate their basic properties.

Definition 3.1: A topological space X is said to be semi*-connected if X cannot be expressed as the union of two disjoint nonempty semi*-open sets in X.

Theorem 3.2: (i) If a space X is semi*-connected, then it is connected.

(ii) If a space X is semi-connected, then it is semi*-connected.

Proof: (i) Let X be semi*-connected. Suppose X is not connected. Then there exist disjoint non-empty open sets A and B such that $X=A\cup B$. By Theorem 2.5(i), A and B are semi*-open sets. This is a contradiction to X is semi*-connected. This proves (i).

(ii) Let X be semi-connected. Suppose X is not semi*-connected. Then there exist disjoint non-empty semi*-open sets A and B such that X=AUB. By Theorem 2.5(ii), A and B are semi-open sets. This is a contradiction to X is semi-connected. This proves (ii).

Remark 3.3: The converse of the above theorem is not true as shown in the following example.

Example 3.4: Consider the space (X, τ) where $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a$

 $\{b, c\}, \{a, b, c\}, X\}$. Clearly, (X, τ) is connected but not semi*-connected.

Example 3.5: It can be verified that the space (X, τ) where $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ is semi*connected but not semi-connected.

Theorem 3.6: A topological space X is semi*-connected if and only if the only semi*- regular subsets of X are ϕ and X itself.

Proof: Necessity: Suppose X is a semi*-connected space. Let A be non-empty proper subset of X that is semi*-regular. Then A and X\A are non-empty semi*-open sets and $X=A\cup(X\setminus A)$. This is a contradiction to the assumption that X is semi*connected.

Sufficiency: Suppose $X=A\cup B$ where A and B are disjoint non-empty semi*-open sets. Then $A=X\setminus B$ is semi*-closed. Thus A is a non-empty proper subset that is semi*-regular. This is a contradiction to our assumption.

Theorem 3.7: A topological space X is semi*-connected if and only if every semi*-continuous function of X into a discrete space Y with at least two points is a constant function.

Proof: Necessity: Let f be a semi*-continuous function of the semi*-connected space into the discrete space Y. Then for each $y \in Y$, $f^{-1}(\{y\})$ is a semi*-regular set of X. Since X is semi*-connected, $f^{-1}(\{y\}) = \phi$ or X. If $f^{-1}(\{y\}) = \phi$ for all $y \in Y$, then f ceases to be a function. Therefore $f^{-1}(\{y_0\})=X$ for a unique $y_0 \in Y$. This implies $f(X)=\{y_0\}$ and hence f is a constant function. Sufficiency: Let U be a semi*- regular set in X. Suppose $U\neq\phi$. We claim that U=X. Otherwise, choose two fixed

points y_1 and y_2 in Y. Define $f: X \rightarrow Y$ by $f(x) = \begin{cases} y_1 \text{ if } x \in U \\ y_2 \text{ otherwise} \end{cases}$

Then for any open set V in Y, $f^{-1}(V) = \begin{cases} U & \text{if } V \text{ contains } y_1 \text{ only} \\ X \setminus U & \text{if } V \text{ contains } y_2 \text{ only} \\ X & \text{if } V \text{ contains both } y_1 \text{ and } y_2 \end{cases}$

otherwise

In all the cases $f^{-1}(V)$ is semi*-open in X. Hence f is a non-constant semi*-continuous function of X into Y. This is a contradiction to our assumption. This proves that the only semi^{*}- regular subsets of X are ϕ and X and hence X is semi^{*}connected.

Theorem 3.8: A topological space X is semi*-connected if and only if every nonempty proper subset of X has non-empty semi*-frontier.

<u>www.ijmer.com</u> Vol.2, Issue.4, July-Aug 2012 pp-2852-2856 ISSN: 2249-6645

Proof: Suppose that a space X is semi*-connected. Let A be a non-empty proper subset of X. We claim that $s*Fr(A)\neq\phi$. If possible, let $s*Fr(A)=\phi$. Then by Theorem 2.7, A is semi*-regular. By Theorem 3.6, X is not semi*-connected which is a contradiction. Conversely, suppose that every non-empty proper subset of X has a non-empty semi*-frontier. We claim that X is semi*-connected. On the contrary, suppose that X is not semi*-connected. By Theorem 3.6, X has a non-empty proper subset, say A, which is semi*-regular. By Theorem 2.7, $s*Fr(A)=\phi$ which is a contradiction to the assumption. Hence X is semi*-connected.

Theorem 3.9: Let $f: X \rightarrow Y$ be semi*-continuous surjection and X be semi*-connected. Then Y is connected.

Proof: Let $f : X \to Y$ be semi*-continuous surjection and X be semi*-connected. Let V be a clopen subset of Y. By Definition 2.14(i) and by Theorem 2.15(i), $f^{-1}(V)$ is semi*-regular in X. Since X is semi*-connected, $f^{-1}(V) = \phi$ or X. Hence $V = \phi$ or Y. This proves that Y is connected.

Theorem 3.10: Let $f: X \rightarrow Y$ be a semi*-irresolute surjection. If X is semi*-connected, so is Y.

Proof: Let $f: X \to Y$ be a semi*-irresolute surjection and let X be semi*-connected. Let V be a subset of Y that is semi*-regular in Y. By Definition 2.14(ii) and by Theorem 2.15(ii), $f^{-1}(V)$ is semi*-regular in X. Since X is semi*-connected, $f^{-1}(V)=\phi$ or X. Hence V= ϕ or Y. This proves that Y is semi*-connected.

Theorem 3.11: Let $f: X \rightarrow Y$ be a pre-semi*-open and pre-semi*-closed injection. If Y is semi*-connected, so is X.

Proof: Let A be subset of X that is semi*- regular in X. Since *f* is both pre-semi*-open and pre-semi*-closed, f(A) is semi*-regular in Y. Since Y is semi*-connected, $f(A)=\phi$ or Y. Hence $A=\phi$ or X. Therefore X is semi*-connected.

Theorem 3.12: If $f: X \rightarrow Y$ is a semi*-open and semi*-closed injection and Y is semi*-connected, then X is connected.

Proof: Let A be a clopen subset of X. Then f(A) is semi*- regular in Y. Since Y is semi*-connected, $f(A)=\phi$ or Y. Hence $A=\phi$ or X. By Theorem 2.10, X is connected.

Theorem 3.13: If there is a semi*-totally-continuous function from a connected space X onto Y, then Y has the indiscrete topology.

Proof: Let *f* be a semi*-totally-continuous function from a connected space X onto Y. Let V be an open set in Y. Then by Theorem 2.5(i), V is semi*-open in Y. Since *f* is semi*-totally-continuous, $f^{-1}(V)$ is clopen in X. Since X is connected, by Theorem 2.10, $f^{-1}(V)=\phi$ or X. This implies V= ϕ or Y. Hence Y has the indiscrete topology.

Theorem 3.14: If there is a totally semi*-continuous function from a semi*-connected space X onto Y, then Y has the indiscrete topology.

Proof: Let f be a totally semi*-continuous function from a semi*-connected space X onto Y. Let V be an open set in Y. Since f is totally semi*-continuous, $f^{-1}(V)$ is semi*- regular in X. Since X is semi*-connected, $f^{-1}(V)=\phi$ or X. This implies $V=\phi$ or Y. Thus Y has the indiscrete topology.

Theorem 3.15: If $f: X \rightarrow Y$ is a strongly semi*-continuous bijection and Y is a space with at least two points, then X is not semi*-connected.

Proof: Let $y \in Y$. Then $f^{-1}(\{y\})$ is a non-empty proper subset that is semi*-regular in X. Hence by Theorem 3.6, X is not semi*-connected.

Theorem 3.16: Let $f: X \rightarrow Y$ be contra-semi*-continuous surjection and X be semi*-connected. Then Y is connected.

Proof: Let $f: X \rightarrow Y$ be contra-semi*-continuous surjection and X be semi*-connected. Let V be a clopen subset of Y. By Definition 2.14(viii) and Theorem 2.15(iii), $f^{-1}(V)$ is semi*-regular in X. Since X is semi*-connected, $f^{-1}(V) = \phi$ or X. Hence $V = \phi$ or Y. This proves that Y is connected.

Theorem 3.17: Let $f: X \rightarrow Y$ be a contra-semi*-irresolute surjection. If X is semi*-connected, so is Y.

Proof: Let $f: X \to Y$ be a semi*-irresolute surjection and let X be semi*-connected. Let V be a subset of Y that is semi*-regular in Y. By Definition 2.14(ix) and Theorem 2.15(iv), $f^{-1}(V)$ is semi*-regular in X. Since X is semi*-connected, $f^{-1}(V)=\phi$ or X. Hence $V=\phi$ or Y. This proves that Y is semi*-connected.

Theorem 3.18: Let X be a locally indiscrete space. Then the following are equivalent:

(i) X is connected.

(ii) X is semi*-connected.

(iii) X is semi-connected.

Proof: Follows from Remark 2.16.

IV. Semi*-Compact and Semi*-Lindelöf Spaces

In this section we introduce semi*-compact spaces and semi*-Lindelöf spaces and study their properties.

Definition 4.1: A collection \mathcal{A} of semi*-open sets in X is called a *semi*-open cover* of $B \subseteq X$ if $B \subseteq \cup \{U_{\alpha} : U_{\alpha} \in \mathcal{A}\}$ holds.

Definition 4.2: A space X is said to be *semi*-compact* if every semi*-open cover of X has a finite subcover.

Definition 4.3: A subset B of X is said to be *semi*-compact relative to X* if for every semi*-open cover \mathcal{A} of B, there is a finite subcollection of \mathcal{A} that covers B.

Definition 4.4: A space X is said to be *semi*-Lindelöf* if every cover of X by semi*-open sets contains a countable subcover.

Remark 4.5: Every finite space is semi*-compact and every countable space is semi*- Lindelöf.

Theorem 4.6: (i) Every semi-compact space is semi*-compact.

(ii) Every semi*-compact space is compact.

(iii) Every semi-Lindelöf space is semi*-Lindelöf.

(iv) Every semi*-Lindelöf space is Lindelöf.

(v) Every semi*-compact space is semi*-Lindelöf.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2852-2856 ISSN: 2249-6645

Proof: (i), (ii), (iii) and (iv) follow from Theorem 2.5. (v) follows from Definition 2.12, Definition 2.13, Definition 4.2 and Definition 4.4.

Theorem 4.7: Every semi*-closed subset of a semi*-compact space X is semi*-compact relative to X.

Proof: Let A be a semi*-closed subset of a semi*-compact space X. Let B be semi*-open cover of A. Then $B\cup\{X\setminus A\}$ is a semi*-open cover of X. Since X is semi*-compact, this cover contains a finite subcover of X, namely $\{B_1, B_2, ..., B_n, X\setminus A\}$. Then $\{B_1, B_2, ..., B_n\}$ is a finite subcollection of B that covers A. This proves that A is semi*-compact relative to X.

Theorem 4.8: A space X is semi*-compact if and only if every family of semi*-closed sets in X with empty intersection has a finite subfamily with empty intersection.

Proof: Suppose X is compact and $\{F_{\alpha} : \alpha \in \Delta\}$ is a family of semi*-closed sets in X such that $\cap \{F_{\alpha} : \alpha \in \Delta\} = \phi$. Then $\bigcup \{X \setminus F_{\alpha} : \alpha \in \Delta\}$ is a semi*-open cover for X. Since X is semi*-compact, this cover has a finite subcover, say {

$$X \setminus F_{\alpha_1}, X \setminus F_{\alpha_2}, ..., X \setminus F_{\alpha_n}$$
 for X. That is X= $\cup \{X \setminus F_{\alpha_i} : i = 1, 2, ..., n\}$. This implies that $\bigcap_{i=1}^{n} F_{\alpha_i} = \phi$. Conversely,

suppose that every family of semi*-closed sets in X which has empty intersection has a finite subfamily with empty intersection. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be a semi*-open cover for X. Then $\bigcup \{U_{\alpha} : \alpha \in \Delta\} = X$. Taking the complements, we get $\cap \{X \setminus U_{\alpha} : \alpha \in \Delta\} = \emptyset$. Since $X \setminus U_{\alpha}$ is semi*-closed for each $\alpha \in \Delta$, by the assumption, there is a finite sub family, $\{X \setminus U_{\alpha}, X \setminus U_{\alpha}, ..., X \setminus U_{\alpha}\}$

$$X \setminus U_{\alpha_n}$$
 with empty intersection. That is $\bigcap_{i=1}^n (X \setminus U_{\alpha_i}) = \phi$. Taking the complements on both sides, we get $\bigcup_{i=1}^n U_{\alpha_i} = X$.

Hence X is semi*-compact.

Theorem 4.9: Let X be a semi*- T_2 space in which S*O(X) is closed under finite intersection. If A is a semi*-compact subset of X, then A is semi*-closed.

Proof: Suppose X is a semi*- T_2 space in which S*O(X) is closed under finite intersection. Let A be a semi*-compact subset of X. Let $x \in X \setminus A$. Since X is semi*- T_2 , for each $a \in A$, there are disjoint semi*-open sets U_a and V_a containing x and a respectively. { $V_a : a \in A$ } is a semi*-open cover for A. Since A is semi*-compact, this cover has a finite subcover say, { V_a ,

$$V_{a_2},...,V_{a_n}$$
 }. Let $U_x = \bigcap_{i=1}^n U_{a_i}$. Then by assumption, U_x is a semi*-open set containing x. Also $U_x \cap A = \phi$ and hence $U_x \subseteq X \setminus A$.

Then by Theorem 2.17, X\A is semi*-open and hence A is semi*-closed.

Theorem 4.10: Let $f: X \rightarrow Y$ be a semi*-irresolute surjection and X be semi*-compact. Then Y is semi*-compact.

Proof: Let $f: X \to Y$ be a semi*-irresolute surjection and X be semi*-compact. Let $\{V_{\alpha}\}$ be a semi*-open cover for Y. Then $\{f^{-1}(V_{\alpha})\}$ is a cover of X by semi*-open sets. Since X is semi*-compact, $\{f^{-1}(V_{\alpha})\}$ contains a finite subcover, namely $\{f^{-1}(V_{\alpha_1}), f^{-1}(V_{\alpha_2}), ..., f^{-1}(V_{\alpha_n})\}$. Then $\{V_{\alpha_1}, V_{\alpha_2}, ..., V_{\alpha_n}\}$ is a finite subcover for Y. Thus Y is semi*-compact.

Theorem 4.11: If $f: X \rightarrow Y$ is a pre-semi*-open function and Y is semi*-compact, then X is semi*-compact.

Proof: Let $\{V_{\alpha}\}$ be a semi*-open cover for X. Then $\{f(V_{\alpha})\}$ is a cover of Y by semi*-open sets. Since Y is semi*-compact, $\{f(V_{\alpha})\}$ contains a finite subcover, namely $\{f(V_{\alpha_1}), f(V_{\alpha_2}), ..., f(V_{\alpha_n})\}$ Then $\{V_{\alpha_1}, V_{\alpha_2}, ..., V_{\alpha_n}\}$ is a finite subcover for X.

Thus X is semi*-compact.

Theorem 4.12: If $f: X \rightarrow Y$ is a semi*-open function and Y is semi*-compact, then X is compact. **Proof:** Let $\{V_{\alpha}\}$ be an open cover for X. Then $\{f(V_{\alpha})\}$ is a cover of Y by semi*-open sets.

Since Y is semi*-compact, $\{f(V_{\alpha})\}$ contains a finite subcover, namely $\{f(V_{\alpha_1}), f(V_{\alpha_2}), ..., f(V_{\alpha_n})\}$.

Then { V_{α_1} , V_{α_2} ,..., V_{α_n} } is a finite subcover for X. Thus X is compact.

Theorem 4.13: Let $f: X \rightarrow Y$ be a semi*-continuous surjection and X be semi*-compact. Then Y is compact.

Proof: Let $f: X \to Y$ be a semi*-continuous surjection and X be semi*-compact. Let $\{V_{\alpha}\}$ be an open cover for Y. Then $\{f^{-1}(V_{\alpha})\}$ is a cover of X by semi*-open sets. Since X is semi*-compact, $\{f^{-1}(V_{\alpha})\}$ contains a finite subcover, namely $\{f^{-1}(V_{\alpha})\}$

 $f^{-1}(V_{\alpha_2}),...,f^{-1}(V_{\alpha_n})$ }. Then { $V_{\alpha_1}, V_{\alpha_2},...,V_{\alpha_n}$ } is a cover for Y. Thus Y is compact.

Theorem 4.14: A space X is semi*-Lindelöf if and only if every family of semi*-closed sets in X with empty intersection has a countable subfamily with empty intersection.

Proof: Suppose X is compact and $\{F_{\alpha} : \alpha \in \Delta\}$ is a family of semi*-closed sets in X such that $\cap \{F_{\alpha} : \alpha \in \Delta\} = \phi$. Then $\cup \{X \setminus F_{\alpha} : \alpha \in \Delta\}$ is a semi*-open cover for X. Since X is semi*-Lindelöf, this cover has a countable sub cover, say $\{X \setminus F_{\alpha_i} : i=1, 2, ...\}$ for X. That is $X = \cup \{X \setminus F_{\alpha_i} : i=1, 2, ...\}$. This implies that $\bigcap (X \setminus F_{\alpha_i}) = \phi$. Conversely, suppose

that every family of semi*-closed sets in X which has empty intersection has a countable subfamily with empty intersection. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be a semi*-open cover for X. Then $\bigcup \{U_{\alpha} : \alpha \in \Delta\}=X$. Taking the complements, we get $\cap \{X \setminus U_{\alpha} : \alpha \in \Delta\}=\phi$.

<u>www.ijmer.com</u> Vol.2, Issue.4, July-Aug 2012 pp-2852-2856 ISSN: 2249-6645

Since X\U_a is semi*-closed for each $\alpha \in \Delta$, by the assumption, there is a countable sub family, { X \U_a: i=1, 2,} with

empty intersection. That is $\bigcap_{i} (X \setminus U_{\alpha_i}) = \phi$. Taking the complements we get $\bigcup_{i} U_{\alpha_i} = X$. Hence X is semi*-Lindelöf.

Theorem 4.15: Let $f: X \rightarrow Y$ be a semi*-continuous surjection and X be semi*-Lindelöf. Then Y is Lindelöf.

Proof: Let $f: X \to Y$ be a semi*- continuous surjection and X be semi*-Lindelöf. Let $\{V_{\alpha}\}$ be an open cover for Y. Then $\{f^{-1}(V_{\alpha})\}$ is a cover of X by semi*-open sets. Since X is semi*-Lindelöf, $\{f^{-1}(V_{\alpha})\}$ contains a countable subcover, namely $\{f^{-1}(V_{\alpha})\}$. Then $\{V_{\alpha_{\alpha}}\}$ is a countable subcover for Y. Thus Y is Lindelöf.

Theorem 4.16: Let $f: X \rightarrow Y$ be a semi*-irresolute surjection and X be semi*-Lindelöf.

Then Y is semi*-Lindelöf.

Proof: Let $f: X \to Y$ be a semi*-irresolute surjection and X be semi*-Lindelöf. Let $\{V_{\alpha}\}$ be a semi*-open cover for Y. Then $\{f^{-1}(V_{\alpha})\}$ is a cover of X by semi*-open sets. Since X is semi*- Lindelöf, $\{f^{-1}(V_{\alpha})\}$ contains a countable sub cover, namely $\{f^{-1}(V_{\alpha})\}$. Then $\{V_{\alpha}\}$ is a countable subcover for Y. Thus Y is semi*-Lindelöf.

Theorem 4.17: If $f: X \rightarrow Y$ is a pre-semi*-open function and Y is semi*-Lindelöf, then X is semi*-Lindelöf.

Proof: Let $\{V_{\alpha}\}$ be a semi*-open cover for X. Then $\{f(V_{\alpha})\}\$ is a cover of Y by semi*-open sets.

Since Y is semi*- Lindelöf, $\{f(V_{\alpha})\}$ contains a countable subcover, namely $\{f(V_{\alpha_n})\}$. Then $\{V_{\alpha_n}\}$ is a countable subcover for X. Thus X is semi*- Lindelöf.

Theorem 4.18: If $f: X \rightarrow Y$ is a semi*-open function and Y is semi*-Lindelöf, then X is Lindelöf.

Proof: Let $\{V_{\alpha}\}$ be an open cover for X. Then $\{f(V_{\alpha})\}$ is a cover of Y by semi*-open sets. Since Y is semi*- Lindelöf, $\{f(V_{\alpha})\}$ contains a countable subcover, namely $\{f(V_{\alpha})\}$. Then $\{V_{\alpha}\}$ is a countable subcover for X. Thus X is Lindelöf.

References

- [1] Biswas, N., On Characterization of semi-continuous functions, Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. 48(8),1970, 399-402.
- [2] Crossley, S.G and Hildebrand, S.K., Semi-topological properties, Fund. Math. 74, 1972, 233-254.
- [3] Das, P., I.J.M. M. 12, 1974, 31-34.
- [4] Dorsett, C., Semi compactness, semi separation axioms, and product spaces, *Bulletin of the Malaysian Mathematical Sciences* Society, 4 (1), 1981, 21–28.
- [5] Dorsett, C., Semi convergence and semi compactness, Indian J. Mech. Math. 19 (1), 1982, 11-17.
- [6] Dunham, W., A new closure operator for Non-T₁ topologies, *Kyungpook Math. J.* 22, 1982, 55-60.
- [7] Ganster, M., Some Remarks on Strongly compact and Semi compact spaces, *Bulletin of the Malaysian Mathematical Sciences* Soceity, 10 (2), 1987, 67–81.
- [8] Ganster, M., On covering properties and generalized open sets in topological spaces, *Mathematical Chronicle*, 19, 1990, 27–33.
- [9] Hanna, F., Dorsett, C., Semi compactness, *Q&A in General Topology 2*, 1984, 38-47.
- [10] Levine, N., Semi-open sets and semi-continuity in topological space, Amer. Math. Monthly. 70, 1963, 36-41.
- [11] Levine, N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo. 19(2), 1970, 89-96.
- [12] Mohammad S. Sarsak, On Semicompact Sets and Associated Properties, *International Journal of Mathematics and Mathematical Sciences* Volume 2009 (2009), Article ID 465387, 8 pages.
- [13] Pious Missier, S., and Robert, A., On Semi*-open Sets, *International Journal of Mathematics and Soft Computing*, 2(1), 2012, 95-102.
- [14] Robert, A. and Pious Missier, S., A New Class of Nearly Open Sets, International Journal of Mathematical Archive. (To appear).
- [15] Robert, A. and Pious Missier, S., On Semi*-closed sets, *Asian J. of Engineering Maths.* (To appear).
- [16] Robert, A. and Pious Missier, S., On Functions Associated with Semi*-open Sets, (communicated).
- [17] Robert, A. and Pious Missier, S., More Functions Associated with Semi*-open Sets, (communicated).
- [18] Willard, S., General Topology, (Addison Wesley, 1970).