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Abstract: Rapid demand on system-on-chip(SoCs) and 

communication increases with the help of very-large-scale 

integration (VLSI) circuits, even though prime factor is to 

reduce the  Power consumption and the thermal wall have 

become the major factors limiting the speed of while 

interconnect is becoming a primary power consumer. High 
bandwidth is desired to enhance parallelism for better 

performance, and the power efficiency on this bandwidth is 

critical to the overall SoC power consumption. Current bus 

architectures such as AMBA, Core connect, and Avalon are 

convenient for designers but not efficient on power. This 

paper proposes a physical synthesis scheme for on-chip 

buses and bus matrices to minimize the power consumption, 

without changing the interface or arbitration protocols. By 

using a bus gating technique, data transactions can take 

shortest paths on chip, reducing the power consumption of 

bus wires to minimal. Routing resource and bandwidth 

capacity are also optimized by the construction of a 
shortest-path Steiner graph, wire sharing among multiple 

data transactions, and wire reduction heuristics on the 

Steiner graph. Experiments indicate that the gated bus from 

our synthesis flow can save more than 90% dynamic power 

on average data transactions in current AMBA bus systems, 

which is about 5–10% of total SoC power consumption, 

based on comparable amount of chip area and routing 

resources.  

 

Index Terms: Algorithm, communication graph, data 

throughput, physical synthesis, power efficiency, Steiner 
graph.  

 

I. Introduction 
AS the feature  size of process technology scales down, 

system-on-chips (SoCs) are capable of integrating more 

components and gaining higher complexity. Since clock 

frequency on single components is reaching a limit due to 

power and thermal limitations, better performance will be 

mostly exploited through parallelism [1], [3]. As a result, 
two factors determine that on-chip communication 

architectures are becoming a critical aspect in future 

systems. First, the communication latency and bandwidth 

among system components may become a bottleneck of 

performance. Second, the percentage of power consumed on 

inter-component communications in the whole system 

power has scaled up to a significant level [9], [13], [15]. 

Industrial on-chip bus standards include AMBA [29], [31], 

CoreConnect [30], Avalon [32], and so on. These existing 

standards can provide an interface for IP developers and a 

communication solution for system designers. Compared to 
the network-on-chip [10] type of communications, buses are 

small on silicon footprint, fast in terms of latency, and easy 

to implement. Moreover, the implementations can be 

reconfigured according to specific applications, enabling 

designers to apply various optimizations for best 

performance on available resources. The advantages of 

simplicity make buses popular in industrial SoC designs. 

However, current bus architectures are not power efficient 

on transferring data through bus lines. And since this part of 

power is scaling up as technology advances [13], it becomes 

a necessity to introduce physical level optimization on bus 

synthesis to minimize the power consumed by inter-
component communication on bus lines. When high 

bandwidth is required on these buses, wire efficiency may 

also become low, which ultimately limits the system 

bandwidth capacity and performance. We propose a 

physical synthesis scheme for on-chip buses to eliminate the 

disadvantages in existing bus architectures, but not to 

change the existing protocols and component interfaces. 

Based on shortest-path Steiner graphs, efficiency on bus 

lines is maximized without the need to redesign system 

components and IP modules. Routing resource is also 

reduced without compromising low power. The cost on our 
new scheme is the additional silicon resource consumed by 

distributed controls and switches, which is scaling down by 

Moore’s law. Under technology trends, this physical 

synthesis scheme is capable of bringing a large 

improvement on power and performance based on current 

state-of-the-art on-chip buses and bus matrices.  

 

A. Related Work 

An elaborate power analysis on AMBA on-chip bus is 

performed in [15]-[18] where the detailed decomposition of 

power consumed by system components is obtained by 
simulation on NEC’s gate-level power estimator. Power 

saving techniques have been explored and applied 

extensively to break through the “power wall” of VLSI 

circuit performance. Clock gating [5] is nowadays widely 

used to reduce dynamic power, and power gating [20] is 

used to avoid unnecessary static power. In bus 

communications, a large part of the power is consumed on 

the wires of bus lines [15], which is relatively scaling up 

with technology and applications [9], [13]. Techniques of 

clock gating can be used on bus lines to achieve a similar 

goal, which is to mask off signals wherever they are not 

needed. Bus segmentation in [6] has such effect to help 
reduce dynamic power, but the effect is largely limited by 

tree structures topologies. Also in [18], a power 

performance tradeoff is analyzed on bus matrices, where a 

bus matrix is composed of a set of tree structured buses. We 

extend the structures from trees to graphs, using Steiner 

graph connections for a thorough optimization of “bus 

gating” to minimize the communication power. Topologies 

have been mostly discussed in bus optimizations, while the 

physical/geometrical information is not being emphasized.  

Power Efficient and Reuse of Memory with Steiner Graphs 
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B. Paper Overview 

In this paper,  to obtain the bus getting architecture and 

optimize bus communications, and get minimal tradeoff 

power maximal bandwidth, and minimal total wire length. 

the protocols are of  AMBA AHB [29] and AXI [31], since 
they are most popular in industrial designs. And apply 

optimizations which is biased toward minimal power, but 

also favors bandwidth and routing resource.To construct a 

minimal shortest-path Steiner graph, and to reduce its scale 

with a minimal increment on path lengths. The overall 

optimization flow can be viewed as three major steps:  

Step 1: generating the shortest-path Steiner graph H (for 

minimal power); 

Step 2: deciding edge weights on H 

 
Fig 1 AMBA AHB bus 

 
Fig 2 AMBA AXI full bus matrix (drawn) 

Step 3: applying incremental modifications on H (for 

minimal wire length).  

The rest of this paper is organized as follows. Section II 

introduces some background information on bus 

architecture and bus gating.  Section III shows the heuristics 
for minimizing power and Section IV for minimizing wire 

length. Experiments are illustrated in Section V. Finally, 

Section VI gives our conclusions on bus matrix, with 

comparisons to network-on-chips and analogies to city 

traffic planning.  

 

II. Bus Architectures and Bus Gating 

Background 
Standard on-chip buses like AMBA were designed to 

enable fast and convenient integration of system 

components into the SoC, where simplicity is one of the 

major objectives. When the bus power consumption comes 

to a significant level that we cannot afford to ignore [15], 

power optimization will be desirable. We introduce a “bus 

gating” technique [23] to minimize the power on bus lines 

with a small compromise on design simplicity. 

 

 

A. AMBA On-Chip Bus and Bus Matrix Architectures 

The AMBA AHB on-chip bus [29] and bus matrix [31] are 

drawn in Figs. 1 and 2. The components connected by these 

buses can be classified into masters and slaves. Masters are 

typically microprocessors, each can start a transaction with 
one slave device at a time, where the slave is selected by 

giving an address to the decoder. Slave devices respond to 

masters passively. When conflicting requests come from 

multiple masters, arbiters will decide the order of services. 

The main difference between the bus and bus matrix is on 

multiple access from masters. The basic bus allows one 

master access at a time, while the bus matrix may allow 

multiple accesses. In a full bus matrix like Fig. 2, the 

masters and slaves are connected like a bi-clique, and each 

slave has an arbiter. Full bus matrices have largest 

bandwidth capacity, typically applied for maximum 

performance. 
 

B. Power and Wire Efficiency of Gated Bus Using Steiner 

Graphs 

The power efficiency of a bus architecture like Fig. 1 is low 

because the bus lines from masters to slaves are connecting 

all the slave devices by a single large wire net. The same is 

on slave-to-master connections. While the communication 

is one-to-one, the signals are sent to all the receivers 

regardless of whether they are needed, which results in 

wasted dynamic power on bus wires and component 

interfaces. Moreover, this low power efficiency is still being 
worsened by the technical scaling of global wires [13] and 

the increasing number of components integrated into SoCs. 

Gated bus is a solution to save the wasted dynamic power. 

The simplest way is to add a de-multiplexer after each 

multiplexer in Fig. 1, and add a de-multiplexer after each 

master device in Fig. 2, so that the signals only propagate to 

where they are needed. This method works in a similar way 

as clock gating [5], [11], and can be even more effective 

because the signal receivers here have much less complex 

behaviors than in a clock tree. For tree structured buses, 

distributing the multiplexer and de-multiplexer into the wire 

net [Fig. 3(a)] helps to save both power and wires. For wire 
length, while the single multiplexer needs independent lines 

from every sender, the lines can be shared with distributed 

multiplexers and form a Steiner arborescence [7], [21], [22]. 

An arborescence is a directed tree such that every root-to-

leaf path is shortest. On the receivers’ side with distributed 

de-multiplexers, the bus lines change from a rectilinear 

Steiner minimum tree [12], [14] to a minimum rectilinear 

Steiner arborescence (MRSA). By the research in [2], this 

change increases the wire length by only 2–4% on average. 

So the total bus wire length can be reduced by the 

distributing the multiplexer/de-multiplexers, while the 
dynamic power can also be reduced at the same time. There 

is a small control overhead for sending the signals over the 

arborescence, but compared to the bus width and data 

throughput, this dynamic power overhead is negligible. 

Based on the same tree topology, effective bus gating can 

be applied by distributing the control over the entire tree 

(arborescence). On bus matrices, however, simply adding 

de-multiplexers may increase the total wire length, because 

when the number of master-to-slave paths becomes large, 

each path will need its own bus wires [as in Fig. 3(b)]. To 

reduce wire length in the bus matrix, also to further reduce 
power on the basic bus, we adopt the structures of Steiner 
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graphs. A Steiner graph is a generalization of Steiner trees, 

without the limitation of tree structure that there is only one 

root placed at a certain point, which cannot be on the 

shortest path of every connection. By removing the 

constraint of tree topologies, we gain higher freedom to 
choose shortest paths for reduced power on data 

 

 
Fig 3 Bus gating using distributed mux and de-mux. (a) On 

single bus. (b) On bus matrix. 

 
Fig 4 Shortest-path Steiner graph Gn and its bus 

implementation. 

 
transactions, and to let the paths share wires for reduced. 

Shortest-path Steiner graphs have advantage on power 

efficiency as shown above. Naturally, graph structures also 

have advantage on communication bandwidth over trees. 

Our objective of bus gating and bus matrix synthesis is to 

perform a balanced optimization on power and bandwidth 

even when available routing resource is limited.  

 

III. Bus Matrix Graph Construction 
The flow we use is to first construct a shortest-path Steiner 
graph based on the given placement of  Vs U Vt and 

communication graph Gc and then decide the weight ω(e) 

on each edge. The single-source case is the MRSA problem, 

which is well studied in previous work such as [7] and [21]. 

Although it is proved to be NP-complete in [22], heuristic 

algorithms can provide close-to-optimal solutions of Steiner 

arborescences.  

RSA algo  

Given a source s and n terminals t1, · · · , tn, 

v1, · · · , vN are the Hanan grid nodes of {s, t1, · · · , 

tn}sorted by decreasing distance to s 
Q←Ø 

For I = 1 to N do 

Else if 

If there is Tj at Vi then Q←QUVi 

X← Q∩{Vj:\\P(s-p(vj)  ) =|| P(s ) – P(Vi)||+||P(Vi)-P(Vj)||} 

If (|x|> 2) then  merge the nodes in X rooted at Vi 

Q←(Q∩X’)U{Vj} return the arborescence at s’ 
  

Our shortest-path Steiner graph is constructed by multiple 

iterations of a revised MRSA construction.   

 

A. k-IDeA/G Heuristic for MRSA 

The RSA/G heuristic for the MRSA problem was first 

introduced in [21], and is proved to be 2-approximate. 

Given a single source and n terminals, the basic flow is to 

start with n subtrees and iteratively merge a pair of subtree 

roots v and v’ such that the merging point is as far from the 

source as possible, so that the wires can be shared as much 

as possible. It terminates when only one subtree remains. 
For efficient implementation, the RSA/G first sorts all the 

nodes on the Hanan grid [26]  

In each iteration, it removes up to k nodes from v1, · · ·.. , 

vn some nodes are skipped it will reduse the memory and 

utilize the same location as adress when running the RSA/G 

algorithm. By removing the nodes, some SMO merges are 

skipped, which in some cases can result in a better overall 

solution. All the combinations of the k or fewer skipped 

nodes are tried in an iteration, and the best set of skipped 

nodes are marked as permanently deleted. The iterations are 

repeated until no further improvement occurs. 
 

B. Shortest-Path Steiner Graph by Multiple MRSAs 

 For a shortest-path Steiner graph with multiple sources s1, 

· · · , sm, the idea behind single source MRSA is still valid. 

In fact, our algorithm constructs the Steiner graph H just by 

iteratively constructing the MRSA rooted at every source. 

While a single arborescence can be optimized by the k-

IDeA heuristic, the m arborescences are individually 

optimized with the same idea, plus that these arborescences 

also need to share as much wire as possible to optimize the 

final Steiner graph. For this purpose, we add additional 

heuristics based on the RSA/G to construct multiple 
MRSAs one by one. First, starting from the second MRSA 

construction, we can reduce terminals by using existing 

wires. For each MRSA with source si, the terminals that 

need connection from the source can be moved along 

existing edges of H toward si.  As the example shown in 

Fig. 5, with the wires of previous aborescences, we only 

need to connect eight nodes instead of the original 16 

terminals to form the MRSA rooted at s2, because all the 

other terminals can be reached from one of these eight 

nodes by a shortest path from s2. This set of nodes (denoted 

as T’) can be obtained by checking each terminal tj , move 
from tj toward si as much as possible along existing paths 

until reaching a vertex (can be a terminal or a Steiner node) 

in H where no vertex closer to si can be reached, and add 

this vertex to T’. When there are multiple paths in the 

graph, we pick the final vertex closest to si, so the rest part 

of the path is short and likely to need less wires. Details are 

in the routine “Necessitate(v)” Second, we construct the 

MRSA based on the set of nodes T’ using as much existing 

wires as possible. Compared to the RSA/G heuristic, the 

TMO condition is changed to vi’,  ∆T’ he SMO condition is 

changed, also for the purpose of wire reusing, from |X| ≥ 2 
to |X| ≥ 2 or (|X| = 1 and vi∆ H). Because when vi is already 
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in the graph, it was added into previous MRSAs and can 

share wires with the node in X like the case in RSA/G when 

|X|  ≥ 2. As the example in  

 

 
Fig 5 Nodes requiring connections (in dotted circles). 

 

 
Fig. 6 Connecting a node into the Steiner graph. 

 

shows, when X contains only one node {t2}, it should be 

connected into H when vi comes to t3, and half of the 

connection length can be saved using the existing horizontal 

wire. where the routine “connect(u, v)” uses existing wires 

if applicable on shortest connections. The k-IDeA iterations 

remain unchanged here. And after the shortest-path Steiner 

graph is constructed by applying k- IDeA on the m sources, 

there are possibly some redundant edges that can be 

removed. So the final step is to check each edge (vi, vj) ∆ H, 
if H still contains all the source-to-terminal shortest paths 

without (vi, vj ), then remove it from H. 

 

 

Fig7 Bipartite graphs of four edges in the bus matrix 

 i.e., all the |Vs| × |Vt | = 15 arcs are present. The resulting 

bus matrix graph contains five Steiner nodes and 13 edges. 
Every arc from a master si to a slave tj has a connection of 

minimal length, and the 15 shortest paths shown in Fig. 7 

are fixed. To assign a weight on each edge, we take e = (s2, 

v1) as example. Six of the 15 paths go through e, so G’(e) 

consists of the six corresponding arcs (s1, t3), (s2, t1), (s2, 

t2), (s2, t4), (s2, t5), and (s3, t3). The maximum matching 

has two edges, because t3 can only connect to one of s1 and 

s3. Therefore, ω(e) = 2 is adequate to support all 

communication patterns. Fig.7 shows the bipartite graphs of 

four edges on the central horizontal line. Despite the 
number of connections, most of the edges are weighted 1. 

Yet this bus matrix graph is adequate for maximum 

bandwidth capacity, i.e., wires will not be the bottleneck of 

multiple simultaneous connections. The total weighted wire 

length in this bus matrix is 108. Compared to the total path 

length 266 if implemented as a full bus matrix in Fig. 2, the 

Steiner graph approach saves more than half of the routing 

resources.  

IV. Tradeoffs on Power, Wire, and Bandwidth 
 

A. Steiner Graph Reduction 

Since high bandwidth bus matrices will need significantly 

more wires to support parallel communications across the 

chip, routing resource may become another limitation as 

more components are integrated into SoCs and interactions 

increase. Especially when the components are placed in 

irregular placement instead of cell arrays, the shortest-path 
Steiner graph generated by the algorithm in  which bring 

additional wire length. We look for changes in the graph 

structure which can significantly reduce the wires, while 

preserving the short paths at the same time.  

 

 
Fig. 8 Searching for mergeable parallel segments (in 

vertical direction). 

 

when the double edges are geometrically very close to each 

other, combining them into one edge only slightly increases 

the length of some connections, while possibly saving much 

more wire length. Fig. 8shows the effect of merging parallel 

segments in narrow rectangles. The total edge length is 

greatly reduced, while the increment on average path length 
is relatively small. Although fewer edges will generally 

result in larger edge weight, the total weighted edge length 

(wire length) can still be reduced by this merging operation 

due to improved wire sharing among paths. Thus, if we 

relax the requirement on the path length in definition 4, 

from the exact Manhattan distance ||P(u)−P(v)|| to within (1 

+ ε)||P(u) − P(v)||, we can merge the double parallel edges 

to save wires. Assume we have a vertical narrow rectangle 

with dimensions h×w, and we merge the two vertical edges 

to a single edge placed in middle. The total edge length may 

be reduced by h, while the lengths of some connection paths 

increase by w2+ w2 = w. So if the h/w ratio is high, this 
operation can be very helpful on relieving routing 

congestion, while preserving the low power consumption of 

a bus matrix. In the wire length reduction algorithm, we 
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repeatedly search for pairs of parallel double lines in the bus 

matrix graph, and for each pair, calculate its potential 

reduction ∆l on edge length and possible increment ∆p on 

path lengths. The pair with highest ∆l/∆p ration is merged, 

and the modified graph will have a new set of connection 
paths and edge weights. If the added total wire length is 

really reduced, we keep the merging operation and continue 

to the next iteration, otherwise discard the operation. 

Eventually, there will be no positive wire length reduction 

in the graph, and we have a series of bus matrix graphs with 

decreasing wire length and increasing path lengths, where a  

comprise can be chosen. The process of searching for 

vertical mergeable parallel segments is illustrated in Fig. 8. 

(Horizontal lines are processed in the same way with x-y 

coordinates switched.) First, the vertical line segments in 

the Steiner graphs are sorted by their x coordinates, denoted 

as u1, u2, · · · , uk. Then for each pair of segments ui, uj (i 
< j) with a common y interval [y1, y2], if between i and j 

there is no other vertical segment on [y1, y2], ui and uj are a 

pair of mergeable segments. On the parallel segments ui and 

uj , let cl denote the count of horizontal lines connected to 

the left, cr denote the count of lines connected to the right, 

and cm the count of lines connecting ui and uj in the 

middle. Assume cl < cr, so the combined vertical segment 

may not be at the middle but have an offset δ to the right of 

the midpoint. The reduction on total edge length ∆l is by 

combining the vertical segments of length h and changing 

the lengths of related horizontal connections. The two 
vertical segments are reduced to one, which reduces edge 

length by h. The central cm edges of length w are totally 

removed. However, the lengths of cl connections on the left 

are increased by ω/2 +δ  and the lengths of cr connections 

on the right are increased by ω/2 –δ To sum up  ∆l =h+Cmω 

- Cl(ω/2 +δ) – Cr(ω/2 –δ) On the possible increment on path 

lengths, since the left vertical segment is pushed rightward 

by w2 +δ, a path may need to detour and add ∆p = w + 2δ of 

distance. So the ratio is  

 

∆l/∆p = h+Cmω-Cl(ω/2+δ)-Cr(ω/2-δ)/ω+2δ 

= Cr-Cl/2+h-(Cr-Cm)ω/ω+2δ 
 

 

 
Fig 9 Merging stages of iterations 

 

In Fig. 9, the stages of the merging iterations applied on a 

Steiner graph. First, the long and narrow rectangles are 

removed, followed by wider rectangles. still can achieve a 

significant reduction on total wire length in average cases 

Notice that the segment merging operation also helps to 
merge Steiner nodes which are generated very close to each 

other. In practice, locally congested Steiner nodes can be 

hard to implement, because each node needs the area for a 

switch box and its control unit. Our operation does not 

guarantee to resolve all closely placed nodes, since it 

prioritizes longer segments, and may leave small square-

shaped sub graphs unchanged. Nevertheless, this situation 

can be easily resolved by a post-processing algorithm, 

which scans each Steiner node (denoted as vi), look at vi’s 

close neighbors within a small d×d box and compute the 

density of Steiner nodes in the area. For a box with too 

many nodes, we can shrink all the nodes in that box into 
one, and implement it by a single switch. The changes on 

the bus matrix graph by this operation are limited in the 

small box areas.  

 

V. Bus Matrix Control Units and Wires 
Apart from path lengths and data wire lengths, the control 

overhead needs to be considered for a complete 

optimization. Although the data lines consume the major 

amount of routing resource because they are usually at least 
64 bit (32 bit × 2-way) wide, control overhead is increased 

compared to traditional bus architectures by adopting 

Steiner graphs. We need a lot of switches at Steiner nodes 

to guide the on-chip traffic, and each switch needs a certain 

number of control signals depending on its node degree and 

edge weights. Each slave device has an arbiter which 

handles the requests from masters and decides the 

connection. The result is sent to the central switch control 

unit, where all the connection paths are stored. Depending 

on the set of active paths, the central switch control sends 
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control signals to all the switches on each path, which 

together instantly create the master-to-slave connection 

requested by the master device.  

 

VI. Experimental Results 

In our experiments, we implement all the related 

algorithms, including the shortest-path Steiner graph 

generation, Steiner graph reduction by parallel line 

merging, and the edge weight maximum matching. The 

programs are tested on Windows Vista platform with a 2.2 

GHz Intel Core2 processor. The running time is short on all 

the test cases, because the algorithms are time/space 

efficient, and also because most SoC bus matrices will not 

need to connect too many components (under 32 in our 
cases). The test cases we use are mostly artificial, hand 

made (T0 and T1), or randomly generated (T2∆12). They 

are the same cases used in [23] and [24]. In each test case, 

the master and slave devices are distributed over a 10mm × 

10 mm square. The power consumption is estimated by the 

driven capacitance 

 
Fig 10 the effect of merging parallel segments with address 

location 

 

of data transactions, and can be calculated as a linear 
combination of path length and switches along the path. 

Path lengths are minimized by the bus matrix graph 

construction, since wires are the major power consumer. 

For the purpose of data completeness, we add the power 

overhead from the switches on Steiner nodes. According to 

[27] and [28], we estimate that under 90 nm technology, 

each mux or demux in crossbar switches has about the same 

capacitance as 25 μm of wires. The total wire length on data 

wires and control overhead are added straightforwardly. 

Data wire length is the sum of weighted edge length in the 

bus matrix graph.  

The objective can be minimum power (i.e., average path 
length), minimum wire length, or a combination of the two. 

At the top of each column: 

1) ∑Lvs,vt is the sum of Manhattan distances on all the 

master-slave pairs; 

2) Ltree is the average induced path length (major dynamic 

power) of master-slave connections in tree structured 

AMBA AHB buses or bus matrices; 

3) Lpath is the average path length (major dynamic power) 

of master-slave connections in the bus matrix graph; 
4) Pswitch is the added percentage of power overhead in 

data transactions by the switches on Steiner nodes; 

5) ∑Lwire is the total data wire length; 

6) ∑Wctrl is the added percentage of control wire overhead.  

In the minimal power section, the average path length is 

exactly ∑Lvs,vt /(mn), while the total wire length is about 

one ourth to one third of the total connection length. 

Compared to traditional bus implementation in [23], the 

dynamic power  saving is mostly over 90% even with the 

switching overhead added. Overhead on dynamic power 

increases with the number of components increasing, which 

requires more bandwidth and larger switches. The 
percentage is generally under 20% on random cases with 

under 30 components. So the overall dynamic power here is 

close to optimal. On the overhead of control wires, the 

percentage is mostly under 10%, because the number of 

control signals required is usually very low compared to the 

64 bit wide data lines. 

In the minimal wire section, the bus matrix graphs are 

reduced by the parallel line merging heuristic. As a result 

the wire length on most cases  is greatly reduced Compared 

to the reduced wire length, the increase on average path 

length is much lower, mostly around 10% and all under 
20%. The power overhead percentage is also increased, 

because although the Steiner nodes are reduced, the 

switches along each path are not reduced as much in 

number, but increased in size. Still, these solutions are 

relatively power efficient, and we have series of 

intermediate solutions between minimal power and minimal 

wire are available for choice. 

To see how the path lengths reflect  communication power 

in SoCs, we calculate the bus power consumption with a 

fixed set of parameters. Assuming 1V of power voltage, 0.2 

fF/μm 

of wire capacitance, 4 Gb/s of transaction bit rate, and 20% 
of bus matrix activity rate, Table V lists the estimated 

power on bus matrix in each of our test cases. Again we can 

see a large reduction on total bus power (Ppath + Pswitch) 

compared to Ptree by traditional Steiner tree structures 

between certain master-slave pairs may only happen at 

some specific conditions. So instead of a set of arcs A in the 

communication graph, we can have a series of arc sets 

A1,A2, · · ·,Ac, each one smaller than the original set A, 

denoting a set of simultaneous connections.  

 

VII. Conclusion 
We optimized on-chip communications referring to the 

AMBA AHB bus (matrix) architecture. The weaknesses of 

original bus matrices, such as low power efficiency and low 

wire efficiency, are resolved by using a Steiner graph 

structure. Compared to network-on-chip which has better 

bandwidth flexibility, bus matrix has much less latency 

Therefore, we believe bus matrix architectures will be 

widely applied for efficient communications in various 

future systems. The principle of our work on reducing 
power is to minimize the data movement on the chip; and 

that on reducing wires is to maximize wire sharing among 

different connections. Devised algorithms which can 
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extensively exploit the on-chip physical design space for a 

thorough optimization on power and wire efficiency. The 

results show promising potentials of bus matrices for low 

power and high performance on-chip communications. 

More improvements can be explored in future works on 
formulations, algorithms, and the overall 

Optimization flow.  

 

References 
[1] S. V. Adve, V. S. Adve, G. Agha, M. I. Frank, M. J. 

Garzar´an, J. C. Hart, W.-M. W. Hwu, R. E. Johnson, L. 

V. Kale, R. Kumar, D. Marinov, K. Nahrstedt, D. Padua, 
M. Parthasarathy, S. J. Patel, G. Rosu, D. Roth, M. Snir, 

J. Torrellas, and C. Zilles, Parallel Computing Research 
at Illinois: The Upcrc Agenda. Urbana, IL: Univ. Illinois 

Urbana-Champaign, Nov. 2008. 

[2] C. J. Alpertt, A. B. Kahng, C. N. Szet, and Q. Wang, 
“Timing-driven Steiner trees are (practically) free,” in 

Proc. ACM/IEEE Des. Autom. Conf., Sep. 2006, pp. 
389–392. 

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. 
Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. 

Shalf, S. W. Williams, and K. A. Yelick, “The landscape 
of parallel computing research: A view from Berkeley,” 

Dept. Electric. Eng. Comput. Sci., Univ. California, 
Berkeley, Tech. Rep. UCB/EECS-2006-183, 2006. 

[4] B. Bollob´as, D. Coppersmith, and M. Elkin, “Sparse 
distance preservers and additive spanners,” SIAM J. 

Discrete Math., vol. 19, no. 4, pp. 1029– 1055, 2005. 
[5] L. A. Ca, Q. Wu, M. Pedram, and X. Wu, “Clock-gating 

and its application to low power design of sequential 
circuits,” in Proc. IEEE  Custom Integr. Circuits Conf., 

vol. 47. Mar. 2000, pp. 415–420. 
[6] J. Y. Chen, W. B. Jone, J. S. Wang, H. I. Lu, and T. F. 

Chen, “Segmented bus design for low power systems,” 
IEEE Trans. Very Large Scale Integr. Syst., vol. 7, no. 1, 

pp. 25–29, Mar. 1999. 
[7] J. Cong, A. B. Kahng, and K.-S. Leung, “Efficient 

algorithms for the minimum shortest path Steiner 
arborescence problem with applications to VLSI physical 

design,” IEEE Trans. Comput.-Aided Design, vol. 17,  
no. 1, pp. 24–39, Jan. 1998. 

[8] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. 
K. Wong, “Provably good performance-driven global 

routing,” IEEE Trans.  Comput.-Aided Design, vol. 11, 

no. 6, pp. 739–752, Jun. 1992. 
[9] W. Dally, “Keynote: The end of denial architectre and 

the rise of throughput computing,” in Proc. ACM/IEEE 
Des. Autom. Conf., Jul. 2009, p. xv. 

[10] W. Dally and B. Towles, “Route packets, not wires: On-
chip interconnection network,” in Proc. ACM/IEEE Des. 

Autom. Conf., Jun. 2001, pp. 684–689. 
[11] M. Donno, A. Ivaldi, L. Benini, and E. Macii, “Clock-

tree power optimization based on RTL clock-gating,” in 
Proc. ACM/IEEE Des. Autom. Conf., Jun. 2003, pp. 622–

627. 
[12] J. Griffith, G. Robins, J. Salowe, and T. Zhang, “Closing 

the gap: Nearoptimal Steiner trees in polynomial time,” 
IEEE Trans. Comput.-Aided Design, vol. 13, no. 11, pp. 

1351–1365, Nov. 1994. 
[13] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of 

wires,” Proc. IEEE, vol. 89, no. 4, pp. 490–504, Apr. 
2001.  

[14] C.-T. Hsieh and M. Pedram, “An edge-based heuristic 
for Steiner routing,” IEEE Trans. Comput.-Aided Design, 

vol. 13, no. 12, pp. 1563– 1568, Dec. 1994. 
[15] K. Lahiri and A. Raghunathan, “Power analysis of 

system-level onchip communication architectures,” in 
Proc. Int. Conf. Hardw.-Softw. Codesign Syst. Synthesis, 

2004, pp. 236–241.  

[16] K. Lahiri, A. Raghunathan, and S. Dey, “Efficient 
exploration of the SoC communication architecture 

design space,” in Proc. Int. Conf. Comput.- Aided 
Design, 2000, pp. 424–430. 

[17] S. Pasricha, N. Dutt, E. Bozorgzadeh, and M. Ben-
Romdhane, “Floorplan-aware automated synthesis of 

bus-based communication architectures,” in Proc. 
ACM/IEEE Des. Autom. Conf., Jun. 2005, pp. 565–570. 

[18] S. Pasricha, Y.-H. Park, F. J. Kurdahi, and N. Dutt, 
“System-level power performance tradeoffs in bus matrix 

communication architecture synthesis,” in Proc. Int. 
Conf. Hardw.-Softw. Codesign Syst. Synthesis, 2006, pp. 

300–305. 
[19] A. Pinto, L. Carloni, and A. Sangiovanni-Vincentelli, 

“Constraint-drive communication synthesis,” in Proc. 
ACM/IEEE Des. Autom. Conf., Jun. 2002, pp. 783–788. 

[20] M. Powell, S. H. Yang, B. Falsafi, K. Roy, and T. N. 
Vijaykumar, “Gatedvdd: A circuit technique to reduce 

leakage in deep-submicron cache memories,” in Proc. 
Int. Symp. Low Power Electron. Design, 2000, pp. 90–

95. 
[21] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W. Shor, 

“The rectilinear Steiner arborescence problem,” 
Algorithmica, vol. 7, nos. 1–6, pp. 277– 288, 1992. 

[22] W. Shi and S. Chen, “The rectilinear Steiner 
arborescence problem is np-complete,” in Proc. ACM-

SIAM Symp. Discrete Algorithms, 2000, pp. 780–787. 
[23] R. Wang, N.-C. Chou, B. Salefski, and C.-K. Cheng, 

“Low power gated bus synthesis using shortest-path 

Steiner graph for system-on-chip communications,” in 
Proc. ACM/IEEE Des. Autom. Conf., Jul. 2009,pp. 166–

171. 
[24] R. Wang, E. Young, R. Graham, and C.-K. Cheng, 

“Physical synthesis of bus matrix for high bandwidth low 
power on-chip communications,” in Proc. ACM Int. 

Symp. Phys. Des., 2010, pp. 91–96. 
[25] D. West, Introduction to Graph Theory. Englewood 

Cliffs, NJ: Prentice- Hall, 1999. 
[26] M. Zachariasen, “A catalog of Hanan grid problems,” 

Networks, vol. 38, no. 2, pp. 200–201, 2000. 
[27] L. Zhang, H. Chen, B. Yao, K. Hamilton, and C.-K. 

Cheng, “Repeated on-chip interconnect analysis and 
evaluation of delay, power, and bandwidth metrics under 

different design goals,” in Proc. Int. Symp. Quality 
Electron. Design, 2007, pp. 251–256. 

[28] Y. Zhang, X. Hu, A. Deutsch, A. E. Engin, and C.-K. C. 
J. Buckwalter, “Prediction of high-performance on-chip 

global interconnection,” in Proc. Int. Workshop Syst.-
Level Interconnect Prediction, 2009, pp. 61– 68. 

[29] Amba 2.0 Specification. (1999) [Online]. Available: 
http://www. arm.com/products/solutions/AMBA 

Spec.html 
[30] “Coreconnect bus architecture,” in IBM White Paper. 

1999. [31] Amba 3 Specification. (2003) [Online]. 
Available: http://www.arm.com/ products/solutions/axi 

spec.html  

http://www/
http://www.arm.com/

