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ABSTRACT: A graph G is k-colorable if G has a proper 

vertex coloring with k colors. The chromatic number (G) 
is the minimum number k such that G is k-colorable. A b-

coloring of a graph with k colors is a proper coloring in 

which each color class contains a color dominating vertex. 
The largest positive integer k for which G has a b-coloring 

with k colors is the b-chromatic number of G, denoted by 

b(G). The b-spectrum Sb(G) of G, is defined as the set of 

all integers k at which  G is b-colorable with k colors. A 

graph G is b-continuous if its b-spectrum equals [(G), 
b(G)]. In this paper, we prove that the Peterson graph and 

the power of a cycle are b-continuous. Also, we prove that 

the Cartesian product of two cycles CmCn is b-continuous 
when m and n are multiples of 5. In this case, we give the 

color classes of b-coloring with k colors for each k with 

(G)  k  b(G). 
 

Keywords:  b-coloring, b-continuous. Peterson graph, 
power of a cycle. 

I. INTRODUCTION 
A k-vertex coloring of a graph G is an assignment of k 

colors 1, 2… k, to the vertices. The coloring is proper if no 

two distinct adjacent vertices share the same color. A 

graph G is k-colorable if it has a proper k-vertex coloring 

[5]. The chromatic number (G) is the minimum number k 
such that G is k-colorable. Color of a vertex v is denoted 

by c(v). A b-coloring is a coloring of the vertices of a 

graph such that each color class contains a vertex that has 

a neighbor in all other color classes. In other words, each 
color class contains a color dominating vertex (a vertex 

which has a neighbor in all the other color classes). The b-

chromatic number b(G) is the largest integer k such that G 

admits a b-coloring with k colors.  

The b-spectrum Sb(G) of G is defined by Sb(G) = 

 kN : (G)  k  b(G) and G is b-colorable with k 

colors . A graph G is b-continuous if Sb(G) = [(G), 
b(G)].  

El-Sahili[3] conjectured that every d-regular 

graph with girth at least 5 has a b-coloring with d + 1 

colors.  

Marko Jaovac and Sandi Klavzar[7] disproved 

this conjecture and they proved the following:  

`Peterson graph is a 3-regular graph with girth 5 and b-

chromatic number 3'.  
In section 3, we prove this result in another way. 

Saeed Shaebani[9] proved that some of the Kneser graphs 

are b-continuous. Further, they gave some special 

conditions for graphs to be b-continuous.  

Here we list out some of the necessary 

definitions. For a graph G, and for any vertex v of G, the 

neighborhood of v is the set N(v) =  uV(G) : (u, 

v)E(G)  and the degree of v is deg(v) = degG(v) = |  

 

 

N(v) |[4].  (G) denotes the maximum degree of a vertex 

in G. Note that every graph G satisfies b(G)  (G)+1. 
A graph is a power of cycle, denoted Cn

k, if 

V(Cn
k) = { v0(= vn),  v1, v2, …,  vn-1 } and E(Cn

k) = E1  E2 

 …  Ek, where Ei ={ (vj, v(j+i)(mod n))  : 0  j  n -1} and 

k  (n-1)/2[1]. Note that Cn
k is a 2k-regular graph and k 

1. We take (v0, v1, v2, …, vn-1) to be a cyclic order on the 

vertex set of G, and perform modular operations on the 

vertex indexes [1]. 

The Cartesian product GH of two graphs G and 

H is the graph with vertex set V(GH) = V(G)V(H) and 

edge set E(GH) = { ((x1, y1), (x2, y2)) : (x1, x2)E(G) 

with y1 =  y2 or (y1, y2)E(H) with x1 = x2}[5]. 
A graph G1 is called as a covering graph of G 

with covering projection f : G1G if there is a surjection f 

: V(G1)V(G) such that f | N(v1) : N(v1)  N(v) is a 

bijection for any vertex vV(G) and v1f-1(v) [6]. 
In this paper, we prove that the Peterson graph 

and the power of a cycle are b-continuous. Also, we prove 

that the Cartesian product of two cycles CmCn is b-
continuous when m and n are multiples of 5. In this case, 

we give the color classes of b-coloring with k colors for 

each k with (G)  k  b(G). 

II. B-SPECTRUM OF CN

K
  AND CMCN 

In 2001, Lee [6] obtained the following result which helps 

to obtain independent dominating vertex subset of big 

graph from small graphs under some conditions. He 

proved the following theorem, which we used in the next 

lemma.  

Theorem 2.1 [6]:  Let p : G1G be a covering 
projection and let S be a perfect dominating set of G. Then 

p-1(S) is a perfect dominating set of G1. Moreover, if S is 

independent, then p-1(S) is independent. 

In this section, we find the b-spectrum of the 

graphs Cn
k and CmCn. We prove that these two graphs are 

b-continues. Further, we give a method of b-coloring the 

graph Cn
k with i colors for each i with (G)  i  (G)+1. 

 

Lemma 2.2: Let f : GH be a covering projection from a 
graph G on to another graph H. If the graph H is b-

colorable with k colors, then so is G. 

 

PROOF. Assume that H is b-colorable with k colors. Let 

the corresponding color classes be H1, H2, …, Hk. Define 

Gi = f
–1

(Hi) for 1  i  n. Define  c(v) = i if vGi.  Since 
Hi's are pair wise disjoint independent vertex subsets of H, 

by Theorem 2.1, { G1, G2, …, Gk } is a vertex partition of 

independent subsets of G. This means that the graph G is 

also k-colorable with color classes G1, G2, …, Gk. It is 

enough to prove that each color class Gi contains a color 

dominating vertex.  

B-Continuity in Peterson graph and power of a Cycle 
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Let hH1 be a color dominating vertex of H with color 1 

and let gf-1(h)  G1. we prove that g is a color 
dominating vertex with color 1 in G. 

Note that degG(g) = degH(h). Since hH1 is colorful, and 
by the definition of { H1,H2, …, Hk }, there exist vertices 

h2, h3, …,  hk such that hiHi and (h, hi)E(H) for 2  i  

k. Since f|N(g) : N(g)  N(h) is a bijection, there exist 

vertices g1, g2, …,  gkV(G) such that (g, gi)E(G) and 

f(gi) = hi for 2  i  k. Hence giGi and c(gi) = i for 2  i  
k and so g is a colorful vertex of G with color 1. Similarly, 

we can prove that there exist colorful vertices in G for all 

colors 2,3, …, k. 

 

In [2] S. Chandra Kumar et al. proved the following 

Lemma. 
 

Lemma 2.3[2]: If k+1  d  2k+1 and d divides n, then 
the graph G = Cn

k admits b-coloring with d colors. In 

particular, when d = k+1, the fall chromatic number (G) 
= k+1. 

 

Here, we prove the above lemma more generally.  

 

Lemma 2.4: Let k+1  d  2k+1. Then the graph G = Cn
k 

admits b-coloring with d colors. 

 

PROOF. Let V(G) = { (vn=)v0, v1, …, vn-1 } and E(G) = 

E1 E2  …  Ek, where Ei ={ (vj, v(j+i)(mod n)) : 0  j  n-1 

} Let n = id+t for some t with 1 t  2k. 

Case 1: If 1 t  k + 1. 

Let us color the vertices as follows: For each j with 0  j  
id, color of the vertex vj is defined by c(vj) = j(mod d). 

Also c(vid+1) = k+1, c(vid+2) = k+2, …, c(vid+t) = k+t. 

Case 2: If k + 2  t  2k+1. 

Let us color the vertices as follows: For each j with 0  j  
n-1, color of the vertex vj is defined by c(vj) = j(mod d).  

Note that, for each g with 1  g  k, the vertex vj has 

exactly two neighbors vjg and vj(n-g), where  is the 

operation, addition modulo n. Hence N(vj) = { vj1, vj2, 

…, vjk,     vj(n-1), vj(n-2), …, vj(n-k) }.  Note that, two 

vertices va and vb receive the same color only when adb  

k+1  d, where d is the operation, addition modulo d. 
Hence the adjacent vertices will receive different colors. In 

cases 1 and 2, the vertices v1, v2, …, vg are colorful 

vertices with colors 1, 2, …, g respectively. 

 

Theorem 2.5 : Sb(Cn
k) = [(Cn

k), b(Cn
k)]. 

 

PROOF. Since b(G)  (G)+1, we have b(Cn
k)  2k+1. 

By the definition of Cn
k, it contains a set { v0, v1, v2, …, vk 

} of mutually pair wise adjacent vertices. Hence (Cn
k)  

k+1. By Lemma 2.4, it follows that Sb(Cn
k) = [(Cn

k), 
b(Cn

k)]. 

 

Remark 2.6: The graph C5C5 is b-colorable with i colors 

for each i = 3, 4 and 5. The graph C5C5 is given below:  
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Figure 2.1: c5c5 

Consider the following b-coloring of C5C5 with 3 colors: 
c(a1) = 1, c(a2) = 2, c(a3) = 1, c(a4) = 3, c(a5) = 2, c(b1) = 2, 

c(b2) = 3, c(b3) = 2, c(b4) = 1, c(b5) = 3, c(c1) = 1, c(c2) = 2, 

c(c3) = 1, c(c4) = 3, c(c5) = 2, c(d1) = 3, c(d2) = 1, c(d3) = 3,  

c(d4) = 2, c(d5) = 1, c(e1) = 2, c(e2) = 3, c(e3) = 2, c(e4) = 1,  

c(e5) = 3. Note that c1, b1 and d1 are colorful vertices with 

colors 1, 2 and 3 respectively. 

Consider the following b-coloring of C5C5 with 4 colors:  

c(a1) = 3, c(a2) = 2, c(a3) = 3, c(a4) = 4, c(a5) = 1, c(b1) = 4, 
c(b2) = 1, c(b3) = 2, c(b4) = 3, c(b5) = 2, c(c1) = 1, c(c2) = 2, 

c(c3) = 4, c(c4) = 1, c(c5) = 3, c(d1) = 2, c(d2) = 4, c(d3) = 3,  

c(d4) = 2, c(d5) = 4, c(e1) = 1, c(e2) = 3, c(e3) = 1, c(e4) = 3,  

c(e5) = 2. Here a5, b5, c5 and b1 are colorful vertices with 

colors 1, 2, 3 and 4 respectively. 

Consider the following b-coloring of C5C5 with 5 colors:  
c(a1) = 4, c(a2) = 2, c(a3) = 5, c(a4) = 3, c(a5) = 1, c(b1) = 5, 

c(b2) = 3, c(b3) = 1, c(b4) = 4, c(b5) = 2, c(c1) = 1, c(c2) = 4, 

c(c3) = 2, c(c4) = 5, c(c5) = 3, c(d1) = 2, c(d2) = 5, c(d3) = 3,  

c(d4) = 1, c(d5) = 4, c(e1) = 3, c(e2) = 1, c(e3) = 4, c(e4) = 2,  

c(e5) = 5. In this case, all the vertices are colorful vertices. 

 

Theorem 2.7: The graph CmCn is b-continuous when m 
and n are multiples of 5. 
 

PROOF. Let m and n be positive integers which are 

multiples of 5. Since b(G)  (G)+1, we have b(CmCn)  
5.  

If m and n are even numbers, then the graph is a product of 

two even cycles which is a bipartite graph and hence it has 

a b-coloring with 2 colors.  

Otherwise, CmCn contains an odd cycle and hence 

(CmCn)  3. From the above fact and from Remark 2.6, 

it follows that Sb(C5C5) = [(C5C5), b(C5C5)]. 
As in the proof of Lemma0.10 in [2], there exists a 

covering projection from CmCn to C5C5. Hence the 
result follows form Lemma 2.2. 

III. B-SPECTRUM OF PETERSON GRAPH  

In this section, we find the b-spectrum of Peterson graph 

and we prove that it is b-continues. Throughout this 
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section, the vertices of the Peterson graph are labeled as in 

the following figure. We say that the vertices a1, a2, a3, a4, 

a5 are outer vertices and b1, b2, b3, b4, b5 are inner vertices. 

 

 

 

 

 

 

 

 

Remark 3.1: The Peterson graph P is b-colorable with 3 
colors as shown in the following figure. The colorful 

vertices are marked by dark circles. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Remark 3.2: In Peterson graph, when using 4 colors, all 

the neighbors of a colorful vertex will receive different 

colors. 

 

Lemma 3.3: The Peterson graph P is not b-colorable with 

4 colors. 
 

PROOF. Case 1: If two adjacent outer vertices of P are 

colorful(as shown in Fig.3.3). 

Since the vertex a2 is colorful with color 2, we should 

color the vertices a3 and b2 with colors 3 and 4. 

Sub case 1.1: c(a3) = 4 and c(b2) = 3(as shown in Fig.3.4). 

Note that the adjacent vertices b3 and b5 cannot be colored 

with colors 3 and 4. 

Sub case 1.1.1: c(b3) = 2 and c(b5) = 1(as shown in 

Fig.3.4.1). By Remark 3.2, the vertices a3, a4, a5 and b4 

could not be colorful with color 4 and hence there exist no 
colorful vertex with color 4. 

Sub case 1.1.2: c(b3) = 1 and c(b5) = 2(as shown in 

Fig.3.4.2). In this case, by Remark 3.2, there exists no 

colorful vertex with color 3. 

Sub case 1.2: c(a3) = 3 and c(b2) = 4(as shown in Fig.3.5). 

Then the adjacent vertices a4 and b4 cannot be colored with 

colors 3 and 4. 

Sub case 1.2.1: c(a4) = 1 and c(b4) = 2(as shown in 

Fig.3.5.1). By Remark 3.2, the vertices a5, b2, b3 and b5 

could not be colorful vertices with color 4 and hence there 

exist no colorful vertex with color 4. 

Sub case 1.2.2: c(a4) = 2 and c(b4) = 1(as shown in 

Fig.3.5.2). In this case, there exist no colorful vertex with 

color 3. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Similarly, it is not possible to have two adjacent colorful 

inner vertices. 

Case 2: If two adjacent vertices of P (one is inner and 

another one is outer vertex) are colorful(as shown in 

Fig.3.6). Since the vertex b1 is colorful with color 2, we 

should color the vertices b3 and b4 with colors 3 and 4. 

Sub case 2.1: c(b3) = 4 and c(b4) = 3(as shown in Fig.3.7). 

Here, the adjacent vertices b2 and b5 cannot be colored 

with colors 3 and 4. 

Sub case 2.1.1: c(b2) = 1 and c(b5) = 2(as shown in Figure 

3.7.1). By Remark 3.2, the vertices a2, a3, a4 and b3 could 
not be colorful vertices with color 4 and hence there exist 

no colorful vertex with color 4. 
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Figure 3.1: Peterson Graph 
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Figure 3.3                              Figure 3.4 
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Figure 3.5.2                            Figure 3.6 
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Sub case 2.1.2: c(b2) = 2 and c(b5) = 1(as shown in Figure 

3.7.2). In this case, by Remark 3.2, there exist no colorful 

vertex with color 3. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sub case 2.2: c(b3) = 3 and c(b4) = 4(as shown in Fig.3.8). 

Then the adjacent vertices a3 and a4 cannot be colored with 

colors 3 and 4.  

Sub case 2.2.1: c(a4) = 1 and c(a3) = 2(as shown in 

Fig.3.8.1). By Remark 3.2, the vertices a2, b2, b4 and b5 

could not be colorful with color 4 and hence there exists 

no colorful vertex with color 4. 

Sub case 2.2.2: c(a4) = 2 and c(a3) = 1(as shown in 

Fig.3.8.2). In this case also, there exists no colorful vertex 

with color 4.  
From the above two cases, it is observed that the four 

colorful vertices must be independent and exactly two 

inner(outer) vertices are colorful. This is discussed in the 

following case. 

Case 3: The Four colorful vertices are as given in Fig.3.9. 

The vertex b5 may have one of the color 1 or 4 and without 

loss of generality, assume that c(b5) = 1(as shown in 

Fig.3.10). Then for the colorful vertex b2 with c(b2) = 2, 

we should have c(b4) = 3 and hence c(a2) = 4(as shown in 

Fig.3.10). Consider the colorful vertex a1 with c(a1) = 1. 
Here, we should have c(b1) = 2 and hence c(a5) = 3(as 

shown in Fig.3.11). In this case, by Remark 3.2, the vertex 

a4 with color 4, is not colorful. 

 

 

 

 

 

 

 

 

 
 

 

 

Hence, the Peterson graph is not b-colorable with 4 colors. 

Since the Peterson graph is 3-regular, by Remark 

3.1 and Lemma 3.3, we have the following theorem. 

 

Theorem 3.4: The Peterson graph is b-continuous. 

IV. CONCLUSION 

This work may be extended in the following directions: 

1. Prove that the graph CmCn is b-continuous for 
integers m and n which are not multiples of 5.  

2. Find the b-chromatic number of Cartesian product of 

three or more cycles.  

3. Find the b-chromatic number of power of Cartesian 

product of two cycles and three cycles. 
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