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ABSTRACT: We develop a progressive comparable to Bank’s General Ledger, and call it a General Theory of all
the problems under the head of NP hard problems. Problems have their variables. For instance “Travelling Sales
man problem” can have various different cities. Based upon parameters classification is done and stability analysis,
asymptotic stability and Solutional behaviour of the equations are investigated We eschew from stating any primary
predications, coextensive representations, predicational anteriority of the Problems attributed to space constraints.
In consideration to the parametric based classification and there is both ontological consonance, primordial
exactitude, and phenomenological testimony as one finds in Bank’s ledgers. General Ledger is in fact the statement
of all inflows and outflows and such a one as that occurs in problems and theories in some conditions, like for
example the conservation of energy breaking down in Hawking’s radiation. Emphasis is laid on the fact that for
instance a travelling salesman makes some move and then retracts to redress his move or starts another move to
further his final destination. And this destination is General Ledger.-The General Theory Of all the NP (hard)
problems. .It is a journey, a journey to find the final balance which probably never ends like an account never
closes. So we are on to the journey............ ...

I. INTRODUCTION
As stated in abstract we will not give any introduction, inconsideration to the leviathans’ material and
humungous literature on each subject matter for fear of missing woods for trees. On the other hand, for the
interested reader the literature provides a rich receptacle, repository and treasure-trove of knowledge. And
also because of space constraints. We note that the NP (HARD) problems are classified as follows:

1) Boolean satisfiability Problem
2) N Puzzle

3) Knapsack Problem

4) Hamiltonian Path problem

5) Travelling Salesman Problem
6) Sub graph Isomorphism Problem
7 Subset Sum problem

8) Cligue Problem

9) Vertex Cover Problem

10) Independent Set problem

11) Dominating set problem.

12) Graph Coloring Problem

As in a Bank, various parameters are there for an account like balance standing, rate of interest, implications
of inflation, money depression, depreciation of the currency, implications of Policies, philosophies and
programmes of the Government, each problem has certain parameters. That Gravity is constant does not
mean it does not depend upon the masses of individual particles and there is no total gravity. Stratification is
done based on the parameters of each problem and then consummated with the other to form a monolithic
diaspora for building the Model, which essentially as said is a progressive, nay a General Theory Of all the
ways and means in which the problem can be solved be it by invocation or by abnegation and revocation of
the action. Everything is recorded in the Computer and we draw up a Final General Ledger-nay The General
Theory Of all NP (HARD) Problems. Essentially a prediction model, it as said analyses various other facets
too.

GLOSSARY OF THE SYSTEME BOOLEAN SATISFIABILITY PROBLEM AND N PUZZLE
NOTATION :

G,5 : Category One Of Boolean Satisfiability Problem

G,, : Category Two Of Boolean Satisfiability Problem

G,s : Category Three Of Boolean Satisfiability Problem

T3 : Category One Of N Puzzle

T4 :Category Two Of N Puzzle

T, :Category Three Of N Puzzle
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GLOSSARY OF THE SYSTEM KNAPSACK PROBLEM AND HAMILTONIAN PATH PROBLEM:

Gy - Category One Of Knapsack Problem

G4, : Category Two Of Knapsack Problem

G5 : Category Three Of Knapsack Problem

T, : Category One Of Hamiltonian Path Problem
T, : Category Two Of Hamiltonian Path Problem
T,g : Category Three Of Hamiltonian Path Problem

GLOSSARY OF THE SYSTEM:TRAVELLING SALESMAN PROBLEM AND SUBGRAPH ISOMERISM
PROBLEM

G, : Category One Of Travelling Salesman Problem
G,, : Category Two Of Travelling Salesman Problem
G,, :Category Three Of Travelling Salesman Problem
T,, : Category One Of Sub graph Isomerism Problem
T, : Category Two Of Sub graph Isomerism Problem
T,, : Category Three Of Sub graph Isomerism Problem

GLOSSARY FOR THE SYSTEM: SUBSET SUM PROBLEM AND CLIQUE PROBLEM

G, : Category One Of Subset Sum Problem
G,5 : Category Two Of Subset Sum Problem
G, . Category Three Of Subset Sum Problem
T,4 : Category One Of Clique Problem

T,5 : Category Two Of Clique Problem

T,q : Category Three Of Clique Problem

GLOSSARY FOR THE SYSTEM: VERTEX COVER PROBLEM AND INDEPENDENT SET PROBLEM

G,g . Category One Of Vertex Cover Problem

G,o : Category Two Of Vertex Cover Problem
G5, : Category Three Of Vertex Cover Problem
T,g : Category One Of Independent Set Problem
T, : Category Two Of Independent Set Problem
T, : Category Three Of Independent Set Problem

GLOSSARY OF THE SYSTEM: DOMINATING SET PROBLEM AND GRAPH COLORING PROBLEM
G5, . Category One Of Dominating Set Problem

G;3 : Category Two Of Dominating Set Problem

G5, : Category Three Of Dominating Set Problem

T5, : Category One Of Graph Coloring Problem

T55 : Category Two Of Graph Coloring Problem

T, : Category Three Of Graph Coloring Problem

ACCENTUATION COEFFICIENTS AND DISSIPATION COEFFCIENTS

(013)(1), (a14)(1), (a15)(1); (b13)(1); (b14)(1), (b15)(1) (a16)(2), (a17)(2), (a18)(2) (b16)(2)1 (b17)(2)1(b18)(2):
(azo)(3), (a21)(3), (azz)(3) , (bzo)@); (b21)(3), (bzz)(3)

(a24)(4), (azs)(4); (aza)(4); (b24)(4); (bzs)“), (bze)“), (bzs)(s), (b29)(5). (bao)(s),(azs)(s); (a29)(5); (a3o)(5)'
(a32)(6), (a33)(6); (a34)(6); (b32)(6); (b33)(6), (b34)(6)

(ai3)(1), (ai4)(1): (a,15) ’ (bi3)(1): (bi4)(1)' (bis) ’ (aie)(z)' (al17)(2): (ais)(z): (bie)(z): (bi7)(2)' (bis)(Z)
) (a,ZO)(?’)f (a,21)(3)1 (a,ZZ)(?))J (béO)(?))i (bél)B)! (b£2)(3)

@)@, (@35)“, (@)@, B3)@, (b35) ™", B30, (B3)®, (B3)®, (b)) (a26)®, (@30)®, (@)@,
(aéz)(@, (a§3)(6); (a,34)(6)' (béz)%)' (béa)(é). (b§4)(6)

(6] (€8]

GOVERNING EQUATIONS OF THE SYSTEM BOOLEAN SATISFIABILITY PROBLEM AND N
PUZZLE

The differential system of this model is now
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G ’ "

= = (a;3) V64 — [(a13) D + (a13) P (Tyy, D] Gy3 1
dG

= (a1) V63 — [(a1) D + (a1) P (T1g, )]Gy 2
dG 1) (€D)]

— = (a,5) V64 — [(‘115) + (ags (T14't)] Gis 3
d ' "

T13 = (by3) VT — [(b13)(1) — (b3)M(G, t)]T13 4
”“ = (1) VT3 — [(b1)® = (b1) P (G, D] Ty, 5
dT (D PN ¢8)

T = (b)) Ty — [ (35) ™ = (b]s) (6, 0)] s 6
+(a13)( )(Ty,,t) = First augmentation factor 7
—(bi3)P(G,t) = First detritions factor 8
GOVERNING EQUATIONS:OF THE SYSTEM KANPSACK PROBLEM AND HAMILTONIAN PATH
PROBLEM
The differential system of this model is now
d , .,

616 = (a16)PGy7 — [(a16)(2) + (a16)@(Ty7, t)]Gm 9
d , )

617 (a17)(2)Gl6 [(a17)(2) + ((117)(2)(T17; t)]G17 10
& , )

18— (a18)( )G17 [(a18)(2) + (a18)(2)(T17: t)]Gls 11
i , )

I8 = (by) DTy — [(b16)® — (bis) P ((G19), )| Tis 12
”” = (0))PTys — [(b17)@ = (b17) @ ((Gr10), )Ty 13
dr. , )

L = (big) DTy — [(b1g)® — (big) P ((G19), )| Tig 14
+(a16)(2)(T17, t) = First augmentation factor 15
—(bys 19),t) = First detritions factor

(b16)®((Gyo) First detritions f 16
GOVERNING EQUATIONS: FO THE SYSTEM TRAVELLING SALESMAN PROBLEM AND
SUBGRAPH ISOMERISM PROBLEM:

The differential system of this model is now
4G , )

=2 = (a50)®Gyy — [(azo)(3) + (a30)®(Tyy, t)]Gzo 17
& , )

22 = (ay1) PGy — [(@31)® + (a51) @ (Tyy, )]Gy 18
& , )

—2 = (a)¥Gyy — [(azz)(g) + (a5,) @ (Tyy, t)]Gzz 19
a , )

2 = (by) BTy — [(b20)® = (b30)P (633, D] T 20
i , ,

2 = (b)) BTy — [(021)® = (031)P) (G, DT 21
i , )

2 = (b)) DTy — [(022)® = (532)®) Gy, DTy 22
+(a20)( )(T,,,t) = First augmentation factor 23
—(byo 53,t) = First detritions factor

(b30)®(Gy3,t) = First detritions f 24
GOVERNING EQUATIONS:OF THE SYSTEM SUBSET SUM PROBLEM AND CLIQUE PROBLEM
The differential system of this model is now
dG ’ "

i = (a24) PG5 — [(az4)® + (az4)® (Ty5, )] Go4 25

dG (4) (4)

2 = (ay5) WGy — [(azs) +(azs) (Tzs't)] Gos 26
dG
i = (az6) ™M G5 — [((126)(4) + (a36) @ (Tys, t)]Gze 2
dT ’ "

2 = (byy) D Tys — [(b2)® = (b5) @ ((G7), )] T 28
dT (4) (4)

i = (by5) YTy — [(bzs) = (bs) (&), t)] Tos 29
d

T26 = (by6)PTy5 — [(b36)® — (b5e) P ((G7), )| Tug 30
+(a24)(4)(T25, t) = First augmentation factor 31
—(b3)®((G7),t) = First detritions factor 32

GOVERNING EQUATIONS:OF THE SYSTEM VERTEX COVER PROBLEM AND INDEPENDENT SET
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PROBLEM

The differential system of this model is now

aa ’ "

=2 = (a8) )G9 — [(a26)® + (a35)® (Tao, )| Gog 33
dG

—2 = (az9)®Gpg — [(azq)(s) + (az )(5)(T29;t)]G29 34
d

630 = (az)® Gy — [(a30)(5) + (a30)(5)(T29;t)]G30 35
d ’ "

T28 (bzs)(S)T29 [(bzs)(s) - (bzs)(s)((Gm); t)]Tzs 36
d ’ "

Tz9 = (by9) S Tyg — [(b29)(5) - (b29)(5)((G31); t)]T29 37
d ’ "

T30 = (b30) Ty — [(b30)(5) - (b30)(5)((G31); t)]T3o 38
+(a28)( )(T,9,t) = First augmentation factor 39
—(b5)®((Gs1),t) = First detritions factor 40
GOVERNING EQUATIONS:OF THE DOMINATING SET PROBLEM AND GRAPH COLORING
PROBLEM:

The differential system of this model is now
d , .

T2 = (a3) @635 — [(@3)® + (a5)® (T3, )]G 42
d , .

633 = (a33)®G3; — [(a33)® + (a33)® (T3, )]G 43
d , .

634 = (azq)©Gy3 — [(a34)(6) + (a34) O (Ty3, t)]G34 44
d , .

22 = (by)OTs; — [(b32)© — (b52)©((G3s), )] T 45
d , .

5 = () OTx = [(03) = (b3) O ((G35), )] T 46
d , .

ﬁ = (b3)©T55 = [(03)®@ = (b3)® ((G35), t) T4 47
+(a32)( )(Ts3,t) = First augmentation factor 48
—(b5,)®((Gs5),t) = First detritions factor 49
FINAL CONCATENATED GOVERNING EQUATIONS OF THE SYSTEM:
(1)BOOLEAN SATISFIABILITY PROBLEM
(2) N PUZZLE
(3)KNAPSACK PROBLEM
(49)HAMILTONIAN PATH PROBLEM
(5) TRAVELLING SALESMAN PROBLEM
(6)SUB GRAPH ISOMERISM PROBLEM
(7)SUBSET SUM PROBLEM
(8)CLIQUE PROBLEM
(99VERTEX COVER PROBLEM
(10)INDEPENDENT SET PROBLEM
(11)DOMINATING SET PROBLEM
(12)§GRAPH COLOR_ING RPOBLEM )
a0 ® (a13) [+ (a15) D (14, )|+ (a16) 2 (T17, 0) || +(a50) 52 (51, 0)| >0
—==(a;3)"Gyy — ~ ~ ~ Gi3

| +(az) @44 (Tys, )| [+(a3e) 555 (Tyo, £)| | +(az) €40 (T, )|
s [ (1) W]+ ai) P Ty, O|[+ai) 22 (T, 0] [+(a3) 03 (151, 0)] ] >

= (a1) VG5 — N (d444) T G555 6665 Gy
+(azs) (T, t) |+(az9) 7 (ng,t)”+(a33) 505, (T33:t)|_

[ (D D "22) RYEED 52

dG15 — (@)D (ai5) |+(ais) " (Ti4, ) |+(a18) = (T17,t)“+(a22) o (T21:t)|
15 14 —

| [+@30)®444) (s, )] [+(a30) O35 (Tyo, 0)||+(a54) @540 (T35, 1)
Where | (a13) D (Ty4, t)| | (a14) D (Ty4, t)l, (a{s)(l)(TH, t)| are first augmentation coefficients for category 1, 2 and gg
3 56

|+(a{6)(2'2') (Ty7, t)| , |+(a{7)(2'2') (Ty7, t)l , |+(a{8)(2'2') (Ty7,t) | are second augmentation coefficient for category 57
1,2and 3 £g

|+(a§0)(3'3')(T21, t)|,|+(a£1)(3'3')(T21,t)|,|+(a§2)(3'3')(T21, t)| are third augmentation coefficient for category 1,2 g

and 3
|+(a£4)(4'4'4'4') (Tss, f)| |+ (azs)

(44,4.4)
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|+(a§8)(5'5'5'5')(T29,t) |,|+(a§9)(5'5'5'5')(T29, t)|,|+(a§0)(5'5'5'5')(T29,t)| are fifth augmentation coefficient for

category 1, 2 and 3

|+(a§2)(6'6'6'6') (Ts3,1) | |+(a§3)(6'6'6'6') (Ts3, t)| ,|+(a§4)(6'6'6'6') (Ts3, t)| are sixth augmentation coefficient for

category 1, 2 and 3
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. " i) V=B DG, O] [~ b1 @2 (G, O] |- (b3) 2 (G5, D] ®0
— = (b3) VT, — - - - T
It 13 14 |—(b24)(4'4'4'4')(627, t)”_(bzg)(S,S,S,S,)(G31't)||_(b32)(6,6,6,6,)(635,t)| 13
ma_ oy g, | G0 E@OG O] [0, O] | 02 G ) o
M Tys — T,
dt 14 13 " (4'4'4'4') m” m 14
[|=(b3s) (Gaz, O)|[=(B30) 5555 (G, O)|| = (B33) @00 (G35, 1) |
[ ’ (1) " (1) " ” ] 62
dTys (b1 )T, (b1s) |—=(bis) (G, 1) |_(b18)(2’2’)(G19't)||—(bzz)(3’3’)(023; t)| T
7 - 15 14 — — — — 15
| | —(b26)(4'4'4'4') (Gy7,t) ||—(b30)(5’5’5’5’) (G31; t) || —(b34)(6'6’6’6‘) (635; t) | ]
m - " . . - 63
ere|—(by; || —(bis O], =(b15) (G, £)| are first detrition coefficients for category 1, 2 an 64
Where[—(bi) G, O|,[~ (b1 DG, 0)],|~ (b1s) ™ (G, £) | are first detrition coefficients for category 1, 2 and 3
|—(b{6)(2'2') (Gyo, ) | ,|—(b1"7)(2'2') (Gyo, t)|,|—(b{8)(2'2') (Gyo, t)l are second detrition coefficients for category 1, 2 gg
and 3
- - - . . . 67
|—(b20)(3'3') (Gys, t)| ,|—(b21)(3'3') (Gys, t)|,|—(b22)(3'3') (Gys, t) | are third detrition coefficients for category 1, 2and  gg
3
|—(b§4)(4'4'4'4')(G27, t)|, —(bé's)(4'4'4'4') (Gy7,t) ,|—(b§6)(4'4'4'4') (627,t)|are fourth detrition coefficients for
category 1, 2 and 3
|—(b§8)(5'5'5'5')(G31, t)| , |—(b§9)(5'5'5'5') (Gsy, t)| , |—(b§0)(5'5'5'5') (Gs1,t) | are fifth detrition coefficients for category
1,2and 3
|—(b§2)(6'6'6'6')(G35, t)| , |—(b§3)(6'6'6'6') (Gss, t)| ,|—(b§4)(6'6'6'6') (Gss, t) | are sixth detrition coefficients for category
1,2and 3
s _ @y, | (0P @O T 0| +@) T O] +@0)03D T, ) ®9
— = e 17 — - - - 16
“ | [+(ag) 44449 (Tys, 0| [+(aze) 53559 (Tyo, 0)|[+(azp) G569 (T3, 1) |
w0 _ (g (@) @[+ (ai) @ (T17, 0) ||+ ) (11, ]| +(a3) O3 (T, 1) 0
—= =(a17)"" Gy — 17
dt v\ (4,4,4,4,4) ,, ,,
] +(ajs) (T3s, £) |+(a29)(5'5'5'5'5)(T29, t)“ +(a33) (00000 (Ty, t)l
[ . - v y(11) - 71
46 _ (4 YOG, — (a18)(2)|+(a18)(2)(T17:t)l +(ajs) (T, 1) |+(a22)(3'3'3)(T21,t)|
. 18 17 — — — 18
| [+ (a5e) 4449 (Tys, )| [+(az0) 5555 (Tyo, £)|| +(a30) G455 (T35, 1) |
Where | +(ai) P (T, 1) | ) |+(a{7)<2)(T17, t) | ,|+(a{8)(2)(T17, t) | are first augmentation coefficients for category 1, 7%3
2and 3
75
|+(@)) W (T4, O], [+(@) VD (T, 8] +(a{5)(l'1') (Ty4, )| are second augmentation coefficient for category 1, ;E;
2and 3
- - - . . . 78
| +(ay) B33 (Tyy, t) | | +(ay,) 333 (Tyy, t) | ) | +(a3,) 33 (Ty, t) | are third augmentation coefficient for category
1,2and 3
|+(a£4)(4.4,4,4,4) (Tys, t) | +(aé’5)(4’4’4’4’4) (Tys, t) ,|+(a£6)(4'4'4'4'4) (Tys, t)| are fourth augmentation coefficient for
category 1, 2 and 3
|+(a§8)(5'5'5'5'5)(T29,t) | |+(a§9)(5'5'5'5'5)(T29, t)l ,|+(a§0)(5'5'5'5'5)(T29, t)| are fifth augmentation coefficient for
category 1, 2 and 3
|+(a§2)(6'6'6'6'6) (Ts3, t)|, |+(a§3)(6'6'6'6'6) (Ty3, t)l , |+(a§4)(6'6'6'6'6) (Ts3, t)| are sixth augmentation coefficient for
category 1, 2 and 3
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e ()07 (1) X[~ (b10)® (G19,0)] [~ (013) T (G, O] |- (B30) 33+ (63, 0)] . 7
16 17 — 16
|—(b" Y4448 (G t)||—(b" Y55555) (G, t)||—(b )(66666) (G, )|
i GNP P 6o, O] [~ IGO0 - B30 (G5, D] ] 80
(b17)( )T16 v \(4,4,4,4,4) m I T17
I —(bys) (Gy7,1) |_(b29)(5'5'5'5'5)(G31; t) || —(b33)©0000) (G, t) | ]
[ : v NCEN) P ] 81
dTlB = )( )T (bls)(2)|_(b18)(2)(G19' t)| _(b15) (G, 1) |‘ (bzz)(3'3'3') (Gos, t)| T
18 17 — 18
_ | —(byg) @444 (G 1) | | —(b4y) 55555 (Gay, ) || —(b3,)©6668) (G t) | |

where| —(b{6)(2)(G19,t)| , |—(b{7)(2)(G19,t)| ,|—(b{8)(2)(G19,t)| are first detrition coefficients for category 1,2 82
and 3
|—(b'1'3)(1'1') (G, t)| | —(b1 )G, t)| , —(b{s)m') (G, t)| are second detrition coefficients for category 1,2 and 3
|—(b§0)(3'3'3')(623,t)|,|—(b§1)(3'3'3')(G23,t)|,|—(b§2)(3'3'3')(623,t)| are third detrition coefficients for category
1,2and 3
m v o\(4,4,4,4,4) m . ..
|—(b24)(4'4'4'4'4) (Gy7, 1) | —(bys) (Gy7,0) ,|—(b26)(4'4'4'4'4) (G, t)| are fourth detrition coefficients for
category 1,2 and 3
|=(b36)55555) (Gay, )|, [ = (b30) 5559 (Gyy, )|, [~ (B30) 55555 (Gay, )] are fifth detrition coefficients for
category 1,2 and 3

|—(b§2)(6'6'6'6'6) (Gss,t) |,|—(b§3)(6'6'6'6'6) (Gss, t)| , |—(b§4)(6'6'6'6'6) (Gss, t)| are sixth detrition coefficients for
category 1,2 and 3

dng

“ (@30)®[+(a30)® (Tyy, ) || +(a16) Z22(Ty7, O)||+(aj5) G (T, )| 83
= (a,9)¥G ,, ,, - G
207 T [+ g ) HAAAD (T, 1) ||+ (ag0) 55559 (T, ]| +(az) 5005 (T, 0)| 72

(3@ +(a5)® (Tyy, || +(a;,) @2 (Ty, O] | +(a]) W (T, D) 84

(a21)( )Gzo Gyq
vy (4,4,4,4,4,4) " "
+(ajs) (Tys, O)|[+(a59)E55555) Ty, )| |+ (a33) ©00660) (T3, 1) |

, - - L N(LLL)
(azz)(3)| +(ay,) @ (Tyy, £) | | +(ajg) 2D (Ty5,t) I +(a;5) (Ty4,t)
|+ (az) 44449 (Tyg, 1) || +(aze) S55555) (T, £) || +(aze) G066 (135, 1)

d021

85

dGzz

= (azz)( )G21 G2z

86

|+(a§0)(3)(T21, t)|, |+(a§1)(3)(T21, t) | |+(a§2)(3)(T21, t)| are first augmentation coefficients for category 1, 2 and
3

|+(a{6)(2'2'2)(T17, t) |,|+(a{7)(2'2'2)(T17, t)l , |+(a{8)(2'2'2)(T17, t) | are second augmentation coefficients for
category 1, 2 and 3

” ,, " 1,1,1, . . ..
|+(a13)(1'1'1') (Tyq, ) |,|+(a14)(1'1'1') (T4, t)l, +(a15)( )(T14, t)| are third augmentation coefficients for category
1,2and 3

| +(agy) 444D (Tyg, 1) | +(a
for category 1, 2 and 3
|+(a§8)(5'5'5'5'5'5)(T29, t) |,|+(a§9)(5'5'5'5'5'5)(T29, t)|,|+(a§0)(5'5'5'5'5'5)(T29, t) | are fifth augmentation coefficients for
category 1, 2 and 3

|+(a§2)(6'6'6'6'6'6) (Ts3, t)|,|+(a§3)(6'6'6'6'6'6) (Ts3,t) |,|+(a§4)(6'6'6'6'6'6) (Ts3, t)| are sixth augmentation coefficients
for category 1, 2 and 3

(44,4,44,4)
)

(Tys, t) ,|+(a§6)(4'4'4'4'4'4) (Tys, t)| are fourth augmentation coefficients

87
88

(b30) @[ (b30)® (Go3, ]| (1) 22 (619, || - (b13) 1 (G, )|
| [=(3) 444D (G, £) || = (b39) 55555 (G, ) || = (b32) 06059 (Gas, 1)
(b3) @[ =(b3)® (Go3, D||- (1) @22 (610, || - (1) 1 (G, 1) | 89

v \&44.44.4) - -
| _(bzs) () I_(b29)(5'5'5'5'5'5)(G31. t)“ —(b33)©06080) (Gy, t)| |

dTZO

(bZO)( )T21

dT21

(bZI)( )TZO
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90

, ) P » £(1,1,1)
(bzz)(3)|—(b22)(3)(G23. t) | |- (b15)@*? (Gy, t)| - (by5) @G, 1)
(b36) 444448 (G5, £)|| = (b30) B35559 (Gy1, )| = (b34) @056 (G, )|
|—(b§0)(3)(623, t)|,|—(b§1)(3)(623, t)| ,|—(b§2)(3)(623, t)l are first detrition coefficients for category 1, 2 and 3 91

|—(b1"6)(2'2'2)(619, t)| : |—(b1"7)(2'2'2)(619, t)| , |—(b1"8)(2'2'2)(G19, t)l are second detrition coefficients for category 1,
2and 3

|—(b{3)(1'1'1') @G, t)| ,|—(b'1'4)(1'1'1') (G, t)| , —(b{s)(l'l'l')(G, t)| are third detrition coefficients for category 1,2 and 3

dT:
722 = (b)) Ty — l| Ty,

m v\ (4,4,4,4,4,4) m
| —(b24)(4'4'4'4'4'4) (Gy7,1) |' _(bzs) (Gy7, 1)}, | —(bze)(4'4'4'4'4'4) (Gy7,1) | are fourth
detrition coefficients for category 1, 2 and 3

| = (b3e) 535559 (Gyy, )} = (b30) 55559 (Gyy, 1) |, [ = (b50) B55559)(Gyy, 1) | are fifth
detrition coefficients for category 1, 2 and 3

| = (b5,)©65559) (Gag, )] | = (b35)©66559) (Gag, )] [~ (b3,)©56658) (G4, )| are sixth detrition coefficients for
category 1, 2 and 3

92
dGyy @ (aé4)(4)| +(az)™ (Tys, ) ||+(a£8)(5'5') (Tyo, t) || +(as )(e6) (T3, t)| 9
dt = (224)™Gos — " N(1,1,1,1) " N(2,2,2,2) " ~(3,3,3,3) G2a
| [+(ai) 1D (1, B)||[+(aie) @222 (T, )] [+(az0) 3332 (T, 8)] |
[ @ AN - - ] 94
dGys @ (azs) +(a25) (Tys,t) |+(a29)(5'5')(T29,t)||+(a33)(6'6)(T33,t)|
dt (azs)™Gay — Gys

] |+(a{4)(1'1'1'1)(T14, t) ||+(a{7)(2'2'2'2)(T17, t) | | +(az) 333 (T, t)| ]
dGye (@56) @[ +(a36)® (Tys, D] [+(a30) &% (T, )] [+(a3) ¢ (T3, £)| %

= (azs)(4)G25 - G
L N(LLLD) - ,,
dt ] +(a15) (T14,t) |+(a18)(2'2'2'2)(T17:t)||+(a22)(3'3'3'3)(T21’t)| ]

Where|(ay,)® (Tys,t)|, (ags)m(Tzs,t) , (a£6)(4)(T25,t)| are first augmentation

coef ficients for category 1,2 and 3

| +(azg) 55 (Tyo, t) | , | +(a39) 55 (Tyo, t) | , | +(az0) %) (Tyo, t) | are second augmentation

coef ficient for category 1,2 and 3

| +(az,)®%) (Tys, t) | , | +(a33) %) (Tys, t) | , | +(az4) %) (Ty;, t)l are third augmentation

coef ficient for category 1,2 and 3

|+ (@) VD (T, O} [+ (e ) V1D (T, £ +(a{5)(1'1'1'1)(T14, t)| are fourth augmentation coefficients for
category 1, 2,and 3

|+(a{6)(2'2'2'2)(T17, t) | |+(a{7)(2'2'2'2)(T17, t) |,|+(a{8)(2'2'2'2)(T17, t)| are fifth augmentation coefficients for
category 1, 2,and 3

|+(a§0)(3'3'3'3)(T21, t) | |+(a§1)(3'3'3'3)(T21, t) | |+(a§2)(3'3'3'3)(T21, t)| are sixth augmentation coefficients for
category 1, 2,and 3

96
dT54 = (b, )T, (bé4)(4)|—(b£4)(4)(627,t)l I—(bgs)(s‘s‘)(%pt)“— (bgz)(6’6’)(635:t)| o7
7 = D2y 25 © - - - 24
dt |—(b13)(1’1’1’1)(6, t)l |—(b16)(2‘2‘2‘2)(619' t)”— (bzo)(a,a,a,a) (Gys, t)l
[ @ @ - ; 98
dlys (b,e) DT, — (bys) |=(bss)  (Gy7,1) |—(b29)(5'5')(G31,t)”—(b33)(6'6')(635,t)|
dr Vs 24

| [FGi) D6, 0] [ =i 222D (Gro, O] (05) 2D (G, )|
dTy Y (b26) | =(b30)® (G7, )| [=(B30) 5 (Gs1, )| |- (31) ©*) (G5, | %
ac (b26) a5 = »\LLLD "N@2222 (3333 26
| [—(b1s) G,1) I_(b18)( oo )(G19.t)“-(b22) = )(623,t)|
Where|— (b)) @ (G, t)|, —(b;S)M)(Gn,t) ,|—(b£6)(4)(627,t)|are first detrition
coef ficients for category 1,2 and 3

|—(b£8)(5'5') (Gs1, t)| ,|—(b£9)(5'5') (Gsq, t)l,l—(bgo)(S'S') (G, t)l are second detrition
coef ficients for category 1,2 and 3

100
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|=(03)©%) (G35, D)|,| = (15) 9 (G35, O], |~ (03) €5 (Gss, ) | are third detrition
coef ficients for category 1,2 and 3

[FO™ D6, 0 [~ ki) TG, 0] |- (bis) 6,0
are fourth detrition coef ficients for category 1,2 and 3

|=(b10) @22 (G1g, )], [ = (b11) 222 (619, 1) |, |~ (bis) 2#22 (Gyg, )|
are fifth detrition coef ficients for category 1,2 and 3

= (0303339 (G5, )} |- (05433 (G, O} |- (63) 239 (G, 1))
are sixth detrition coef ficients for category 1,2 and 3

(a9) [ +(az)® (Tao, O] [+(az)“* (s, O)|[+(a3) @49 (T35, 1)
m m m 28
| +(a13)(1'1'1'1'1) (Ty4,t) ||+(a16)(2'2'2'2'2) (Ty7,t) || +(a20)(3'3'3'3'3) (Ty1,8) |

dG
728 = (azg)(s)ng -

, m v \(44) ”
dGyy (@00)5) G — (a29)(5)|+(a29)(5)(T29;t)| +(ays) " (Tys,t) |+(a33)(6’6‘6)(T33;t)| G
ar - G2 28 . = — 29
] | +(a;)PI(T,, 1) ||+(a17)(2'2'2'2'2)(T17, t) | | +(ay,) 3333 (T, 0) | ]
dG (aéo)(5)| +(az0)® (T, 1) ||+(a£6)(4'4') (T35, £) | | +(az4) ©00 (T3, t)|
30
= (a3o)(5)G29 - »1(1,1,1,1,1) - - Gsp
dt +(a15) (Ty4,t) |+(a18)(2'2'2'2'2)(T17' t) || +(ay,)33333)(Ty,, t)|

Where | +(a28)® (Tpo, t) | , | +(a39)® (Ty, t) | , | +(az0)® (T, t)l are first augmentation
coefficients for category 1,2 and 3

" v\ (44)
And | +(az4) 4 (Tys, t) | |+ (azs)
coefficient for category 1,2 and 3
| +(a3,) 00 (Ty3, 1) | ,| +(az3) 000 (Ty,, t) | , | +(a34) 00 (T3, 1) | are third augmentation
coefficient for category 1,2 and 3
| +(ay3) (T, t) |,| +(ay) DT, t) |, +(ai’5)
category 1,2, and 3

(Tys,t) ,|+(a£6)(4'4') (Tys, t)l are second augmentation

(1,1,1,1,1)

|+(a{6)(2'2'2'2'2)(T17, t) |,|+(a{7)(2'2'2'2'2)(T17, t) |,|+(a{8)(2'2'2'2'2)(T17, t) | are fifth augmentation coefficients for

category 1,2,and 3

|+(a§0)(3'3'3'3'3)(T21, t) |,|+(a§1)(3'3'3'3'3)(T21, t) |,|+(a§2)(3'3'3'3'3)(T21, t)| are sixth augmentation coefficients for

category 1,2, 3

AT _ o, sorp,. — [ (030) = b3)® Gs1, D] [~ 30 ™ G, O] [~ (b3 (G5, 0)] | -
dt |=(b1) D (G, 6)| [ = (b1) 222D (Gyo, 1) |- (30) 3333 (s, 0|

dTy _ (byo) STy — (bé9)(5)|—(b£9)(5)(G31;t)l —(bgs)(4'4')(G27,t) |—(b§3)(6'6'6)(635,t)| I,
dt | [= (1) OAD (G, 6)| = (b1) @222 (Gyo, )| |- (b31) 33339 (63, 1) |

dTs, © (b30)®|=(050)® (61, )| [ = (b36)“*) (G, D) ||- (B3)C59 (Gas, 1)
ar - (030)" T = ACEEEED) NCERRR RCREEE 30
|| =(b1s) (6,)| [~ (1) #2222 (Gy9, 1) ||- (b32) 33333 (Gps, D) |

where |— (byg) ™ (Gs4, t)| ,|—(b£9)(5)(G31, t)l ,|—(b§0)(5)(G31, t)l are first detrition coef ficients

for category 1,2 and 3

" ” (4141) ” g
|—(b24)(4'4') (Gy7, t)| J=(bys) (G, ) ,|—(b26)(4'4') (Gy7, t)l are second detrition
coef ficients for category 1,2 and 3
| _(bgz)(6'6'6) (635, t) | ,| _(bgg)(6'6'6) (635, t) | ) | _(b§4)(6'6'6) (G35, t) | are tthd detrition
coef ficients for category 1,2 and 3

101
102
103

104

105

106

(Ty4,t)| are fourth augmentation coefficients for

107
108

109

110

111

m " " 1,1,1,1,1, . ..
|—(b13)(1'1'1'1'1)(6, t) |,|—(b14)(1'1'1'1'1)(6, t)l , _(b15)( )(G, t)| are fourth detrition coefficients for category

1,2,and 3

|—(b{6)(2'2'2'2'2)(619, t) | | —(b;;)?2222(G,q, t) | | —(byg)@2222) (G, t)| are fifth detrition coefficients for category
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1,2,and 3

|— (byg) 33333 (6,3, 1) | |— (by1)B3333)(Gys, t) | |— (by,)B3333)(G,s, t)| are sixth detrition coefficients for
category 1,2, and 3

112
113

(@3) @[+ (a3) O (Ty3, O || +(ass) ©59) (Tho, O] | +(a5) 44 (Tys, 0|

J+(a{3)(1,1,1,1,1,1)(7~14' t)”+(a{6)(2'2'2'2'2'2)(T17, t)||+(a§0)(3'3'3'3'3'3)(T21, t) |

, - - PNCYYS)
dGsz ()66 (a33)(6)|+(a33)(6)(T33,t)||+(a29)(5'5'5)(T29,t)| +(as) (Tys,t)
= (as3 32~

dt " " "
| +(a,) LD (T, t) ||+(a17)(2'2'2'2'2'2)(T17, O][+(ay) 33333 (T, £) |
s _ 0 o (@3) @ +(@3)® (T3, 0| +(a30) 559 (T, )| [ +(az) 44 (75, | 114
= (a34)*G33 — G4
dt +(ajs) (T14,t) |+(a18)(2'2'2'2'2'2)(T17' t) | | +(ay,)B33333)(T,,, t)|

|+(a§2)(6)(T33,t) |,|+(a§3)(6)(T33,t) |,|+(a§4)(6)(T33,t)| are first augmentation coef ficients

dGs,
dt

= (a32)(6) Gsz —

(1,1,1,1,1,1)

115

for category 1,2 and 3
| +(a2g) ) (Tho, t) | , | +(a39) G5 (Th, t) |,|+(a§0)(5'5'5)(T29, t)l are second augmentation
coefficients for category 1,2 and 3

m " 4,44, ,, 3 .
|+(a24)(4'4'4')(T25,t)|, +(a25)( )(Tzs,t) ,|+(a26)(4'4'4')(T25,t)| are third augmentation
coefficients for category 1,2 and 3

m ,, " 1,1,1,1,1,1 . ..
|+(a13)(1'1'1'1'1'1)(T14, t) |,|+(a14)(1'1'1'1'1'1)(T14, t) | +(a15)( )(T14, t)| - are fourth augmentation coefficients
|+(a]5)@22222(1,,, O] [+(a;,) 222222 (T, )| | +(ajs) #2222D (T, )| - fifth augmentation coefficients
|+(a30)B33333(Ty;, 0)|, [ +(a5,) 23333 (T, )| +(a5,) 333333 (T, )| sixth augmentation coefficients

116
(052) @[ =(05)® (G35, D|[- (h35) 559 (G351, ][~ (b)) (G, 1) . 17
m - - 32
=i VD (G, 0)| | = (b1e) @2222D (Gro, £)]| - (by) 23339 (Gys, 1)

, m - (444
dlsz (bs)©OT,, — (b33)(6)|_(b33)(6) (Gss,t) | |— (b39) 5% (G, t)l - (bzs) (Gy7,1)
o Wss 32 . _ =
=) O (G, )| | = (biy) @222 (Gig, B)||- (b3)P33339 (G, 1) |
dTs, ®) (b§4)(6)|_(b§4)(6) (Gss, 8) ”— (bé:o)(s's's)(631; t) |— (bge)(4‘4‘4‘) (G, t)l 119
dt (b34) ™ T3 — » (LLLLL1) "N2.2,2.2,2.2) " (3,33333) T
—(bis) (6, 0)| |~ (big) @222 (Gro, )| (b3,) 33333 (Gy3.8)]

|—(bé'z)(G)(G%,t)|,|—(b§3)(6)(635,t)| ,|—(b§4)(6)(635,t)| are first detrition coef ficients 120
for category 1,2 and 3

|—(b£8)(5'5'5)(G31, t)|,|—(b£9)(5'5'5)(G31, t)l,l—(b;o)(s's's)(Gﬂ, t)l are second detrition
coef ficients for category 1,2 and 3
[Z(;0% ) (G, D). |~(b35) " (G2, ], [=(03)#* 9 (G, ©)] are third detrition
coef ficients for category 1,2 and 3
|—(bf3)(1'1'1’1'1'1)(6, t) |,|—(bf4)(1'1'1'1'1'1)(G, t) | —(bl”s)(l'l'l'l'l'l)(G, t)| are fourth detrition coefficients for
category 1, 2, and 3
|—(b{6)(2'2'2'2'2'2) (Gyo, t)|, |—(bl”7)(2'2'2'2'2'2)(Glg, t) |,|—(bfg)(z'z'z'z'z'z)(619, t)| are fifth detrition coefficients for
category 1, 2, and 3
|— (byg) 333333 (6,3, 1) | |— (byy) 333333 (6,5, 1) ||— (byy)B333333)(G,,, t)l are sixth detrition coefficients for
category 1, 2, and 3

dt

= (b32)(6)T33 -

118

T33

121
Where we suppose 122
ND on @) D @
(A) (@)@, (a) " () ", )W, (b;) ", (b))~ >0, 123
i,j =13,14,15
(B)  The functions (a[)m, (b[)m are positive continuous increasing and bounded.
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Definition of (p,)®, (r)®:

(@) (T, ) < PI® < (Ayy D 124 124
B) VG0 < ) < BYO < (B )®
©  timp, (@) (T ) = @) 125
limg_.(5)) " (6.0 = ()
Definition of (A3 )™, (B3 )™ :
Where|(Ay3)®D, (B3 )D, ()™, ()@ are positive constants and
They satisfy Lipschitz condition: 126
@)D Ty, ) = (@)D (T, O < (Ryz YOITyy — Tyyle (1)t 127
()P, 6) = BHID G, < (ki3 YD]|G — G et 128
With the Lipschitz condition, we place a restriction on the behavior of functions 129

(@)D (Tyy, ) and(a;) P (T, t) . (T1,, t) and (T, t) are points belonging to the interval [( &y3 )@, (M5 )] . It
is to be noted that (a;)™ (Ty,, t) is uniformly continuous. In the eventuality of the fact, that if ( M5 ) = 1 then
the function (a;)®(Ty4, t) , the first augmentation coefficient would be absolutely continuous.
Definition of (M3 )@, (k3 )® : 130
(D) (My3)D, (ky3)D, are positive constants
@®  _pp®
(M13)® 7 (My3)D

Definition of (P;3 )M, (@3 )M : 131
(E) There exists two constants ( B3 )™ and ( Q5 )™ which together with ( M3 )®, (ki3 )P, (A;3)@ and 132
(B13 )™ and the constants (a,)™®, (a)®, (b)®, B)D, @)™, ()W, i = 13,14,15, 122

satisfy the inequalities

1 , A ~ ~ 135
()@ [(@)® +@)® + (Adi3)P + (P3)® (ki3)P] <1

1 ’ ~ A ~
W[ B)P + (1) + (B3 )V + (013)P (ki3)P]<1
Where we suppose 136

N®) n (2) N2 n(2) ..

P @ (@) (@), 6D, (6) (b)) >0, ij=161718 137
(G) The functions (a; )@, (b; )® are positive continuous increasing and bounded. 138
Definition of (p)®, (r;)@: ) 139
(a; )P (Ty7, ) < ()P < (A6 )( : 140
(b )P (G, ) < ()P < (b)P < (B )P 141
(H) limy, o (a; )@ (Ty7, ) = ()@ 142
limg_e (b; ) ((Gio),t) = (1)@ 143
Definition of (A4 )@, (B )@ : 144
Where| (A1)D, (B )P, ()P, ()@ |are positive constants and [i = 16,17,18
They satisfy Lipschitz condition: 145
@ )P (T35, 1) = (@ )P (T17, O] < (Rys YP|Tiy = Tipe=(Fis) 146

" / " - - @
(6 )P ((G19)', ) = (5 )P ((619), Tro) | < (kig )P NI(Gro) = (Gyo)'[Je Mot 147

With the Lipschitz condition, we place a restriction on the behavior of functions (a; ) (T;,t) and(a; )@ (Ty,,t) 148
. (T{7,t) And (T;,, t) are points belonging to the interval [( k1)@, (M5 )®] . Itis to be noted that (a; )? (T}, t)
is uniformly continuous. In the eventuality of the fact, that if ( M5 )® = 1 then the function (a; )® (T},,t) , the
SECOND augmentation coefficient would be absolutely continuous.
Definition of (M )@, (k6 )@ : 149
0] (M )@, (k16 )@, are positive constants 150
@® _p®

(M16)® 7 (M)
Definition of ( P13)@, (Q43)®: 151
There exists two constants ( P,z )@ and ( 0,4 )® which together with ( M5 )@, (k16 )@, (A;6)Pand (B, )@
and the constants (a;)®, (a))®, ()@, (b)?, (p)®, )P,i=16,17,18,

satisfy the inequalities
—H @)@+ @)P + (Ri6)@ + (Pig)@ (Ry6)@] <1 152

(M16)®
[ ()@ + B)P + (B )P+ (016)? (k)P < 1 153

_r
(M16)®
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Where we suppose 154
) (@)@, (@), (@), )P, )P, ;)P >0, i,j = 202122 155

The functions (a; )®, (b; )® are positive continuous increasing and bounded.
Definition of (p,))®, (r;)®:

(@ ) (Ty1,0) < @)D < (A )®

bHIPGH < )P < B)® < (B,))®

lime, e (@ )® (Tyy, ) = (p)® 156
lim_, (b )® (6,6) = (1)@ 157
Definition of ( Az ), ( By )@ : 158
Where|(A20 Y®),(By )@, ()@, (1;)® | are positive constants and

They satisfy Lipschitz condition: 159
1@ ) (T30, 8) = (@ YD (T, )] < (g YTy — Ty e~ (P20t 160

16D, 6) = DG, T < (g YOG — G [Tt 161

With the Lipschitz condition, we place a restriction on the behavior of functions (a; )®(Ty,,t) and(a; )P (Ty,t) 162
. (Ty1,t) And (Ty4, t) are points belonging to the interval [( &40 )®, (M, )@ ] . It is to be noted that
(a;' )®) (T, t) is uniformly continuous. In the eventuality of the fact, that if ( M,, )® = 1 then the function
(a; )®(T,,, t) , the third augmentation coefficient would be absolutely continuous.
Definition of ( M,y )®), (ky )@ : 163
(K) (M )®, (kyo )@, are positive constants

@®  _ep®

(M20)® 7 (My0)® <1
There exists two constants There exists two constants ( P,, )@ and ( Q,, ) which together with 164
(Ma0)®, (k20 )®, (Az0)®and ( By )@ and the constants (a)®, ()@, (5)P, )P, @)P, ()@, i = 165
20,21,22, 166
satisfy the inequalities 12;
1 7 ~ ~ ~
(120)® [(@)® +(@)® + (Ay)D + (Py)® (ky)®]<1 169
1 7 ~ ~ ~
W[ B)® + 1) + (B)® + (020)® (k)P <1
Where we suppose 170
L @, @)@, (@)D, B, B)D, (b )P >0, ij= 242526 171
(M) The functions (a; ), (b; )® are positive continuous increasing and bounded.
Definition of (p,))®, (r;)™®:
(@, ) (Ty5,t) < ()™ < (Azy )™
B)P((G7), ) < ()W < ()@ < (Byy )™
172

(N) limy, e, (@; ) (Tys,0) = (p)@
limg o (b, )® ((G7),£) = ()@
Definition of (A, )®, ( By, )™ :
Where|( A2, )®, (B2, )®, )@, ()™ | are positive constants and
They satisfy Lipschitz condition: 173
(@) )P (T35, ) = (@] )9 (T, D] < (R )| Tys — Ty le™ (P22t
1B P(G27)', 0) = (B P((62), T < (ko YDNI(G7) = (Gy7) [~
With the Lipschitz condition, we place a restriction on the behavior of functions (a; ) (T,s,t) and(a; )®(T,s,t) 174
. (Tys, t) and (Tys, t) are points belonging to the interval [( &y, )™, ( My, )®] . Itis to be noted that (a; )® (Tys, t)
is uniformly continuous. In the eventuality of the fact, that if ( M,, ) = 4 then the function (a; ) (Tys,t) , the
fourth augmentation coefficient would be absolutely continuous.

Definition of (M, )®), (kpy )® : 175
(0) (M )@, (kyy )@, are positive constants
(P)

@® _kp®
(M24)® 7 (Mg )®
Definition of (P, )™, (0,4 )™ : 176
Q) There exists two constants ( P,, )™ and ( 0,4 )™ which together with
(Mps )™, (kpy )@, (Ap) P and (B, )™ and the constants (a,)®, (a)®, ()@, ()@, (p)®, )P, i =
24,25,26,
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satisfy the inequalities
1

(M24)® [(@)® + @)® + (A )P+ (Pyy)P (k)P <1

T [ G+ )W + (B)® + (020)® (k)W) <1

Where we suppose .
(R) @)®, @), @)D, b)), BN, (b)) >0, i,j = 28,2930 7
©) The functions (a; ), (b; )® are positive continuous increasing and bounded.

Definition of (p,)®, (r,)®:
(a; ) (T, 1) < () < (Ay5)®
(b)P((G0),t) < )P < ()P < (Byg )®
179
M limy,ae (@) (T, ) = ()
limg_e (b; )® (G31,8) = (1)
Definition of (A,g )®, (Byg )™ :

Where |( A25)®, (B2 )®, (0)®, (1,)® |are positive constants and
They satisfy Lipschitz condition: 180

(@ ) (Ty9, ) = (&) )P (T, D] < (Ko )®|Tpg — Tpole™(Maa)t
6P (G30)',0) = ()P ((G51), (T3))] < (Rag YDI(G1) = (G3)'[Je™ Tzt
With the Lipschitz condition, we place a restriction on the behavior of functions (a; ) (Ty9,t) and(a; )®(Tye,t) 181
. (Ty9,t) And (Tyo, t) are points belonging to the interval [(&y5 )®, ( M5 )] . It is to be noted that (a; )™ (Tyo, t)
is uniformly continuous. In the eventuality of the fact, that if ( M,g )® = 5 then the function (a; )®(Ty,t) , the
fifth augmentation coefficient would be absolutely continuous.
Definition of ( M,g ), (kg )® : 183
L) (Mg )®), (kg ), are positive 184constants

@®  _ep®
(M) 7 (Mpg)®

Definition of ( Pyg )™, (Q26 )™ : 184
(V) There exists two constants ( P,g )® and ( §,5 ) which together with
(Mg )®, (kpg)®, (Az)Pand (Byg )™ and the constants (a,)®, (a,)®, (b)®, (b)®, (p)®, (1)®,i =
28,29,30, satisfy the inequalities

182

T L@ + @)+ (Ag)® + (Pg)® ()@ < 1
m[ b)) + 1) + (B )+ (Q58)® (k)] <1
Where we suppose 185
(@)@, (@)®, (a; )@, ()@, (B)®, (b )@ >0, i,j=323334 186
(W)  The functions (a; )©, (b; )® are positive continuous increasing and bounded.
Definition of (p,)©, (;)®:

(a, )@ (T35,8) < @)® < (A3, )©®

(b )O(G35), ) < (1)@ < (5)® < (Bz,)®

187

X) limy, e, (@; )© (T33,0) = (p)©

limg (bg,)(G) ((035); t) = (ri)(G)
Definition of ( A3, )®, (B3, )© :

Where | (A3,)©,(B3,)®, ()@, 1)® | are positive constants and

They satisfy Lipschitz condition: 188
(@) ) O (T35, 0) = (@ ) O (T, D] < (s YO |Ts3 — Taz|le™ (M)t
157 )@ (G55), ) = (B ((G35), (T3))| < (Rap YO[1(Gs) = (Gas)'[|e~(M2 )t
With the Lipschitz condition, we place a restriction on the behavior of functions (a; )© (T3, t) and(a; ) (T35, t) 190
. (T33,t) and (Ty3, t) are points belonging to the interval [( k3, )©®, ( M3, )©] . Itis to be noted that (a; )® (Ty3, t)
is uniformly continuous. In the eventuality of the fact, that if ( M5, )(® = 6 then the function (a; )© (Tys,t) , the
sixth augmentation coefficient would be absolutely continuous.

Definition of ( M;, )©, (k3, )© : 191
(M3,)®, (k3, )®, are positive constants
(a))® b)® 192
(M32)©® 7 (M35)®
Definition of ( P;, )®), (03, )® :1 193
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There exists two constants ( 25, )© and ( 05, )® which together with ( M5, )®, (k3 )©, (43,)®and ( B;, )©
and the constants (a,)©, (a))®, (b)), (b))®, (p)©, )©®,i = 32,33,34,

satisfy the inequalities

(@)@ + (a)©@ + (A3) O+ (P3)®@ (k3 )®] <1

() + () + (B) @+ (03)® (k3)®]<1

1t
(M33)® [

1
(M32)® [

194
Theorem 1: if the conditions (A)-(E)( first five conditions related to the system Boolean satisfiability problem) 195
above are fulfilled, there exists a solution satisfying the conditions
Definition of G;(0),T;(0) :
G < (Py) Ve TG0 =60 > 0]
Ti(t) € (Qu3)De™)Pe [1,(0) =T >0

196
If the conditions of second module pertaining to Knapsack problem and Hamiltonian Path Problem above are 197
fulfilled, there exists a solution satisfying the conditions
Definition of G;(0),T;(0)
Gi(t) < (Pg)@PeMe)t - G,(0)=G2>0
Ti(6) < (Q16)Pe™e)®c T,(0) =T >0

198

If the conditions pertaining to the third module Sub graph Isomorphism problem and Subset sum problem above are 199
fulfilled, there exists a solution satisfying the conditions

Gi(t) < (P )PP G,(0) = 62 >0

T,() < (Qg0 )P0Vt T,(0) =T >0

If the conditions of the fourth module Subset Sum Problem and Clique problem above are fulfilled, there exists a 200
solution satisfying the conditions

Definition of Gé4()0) ,T;(0) :

(1) < (Byy ) Vem)Vt TG (0) = 60 > 0]

Ti(6) < (Qz4 )W)Vt [T,(0) =T >0

If the conditions pertaining to the module five namely Vertex Cover Problem and Independent Set problem are 201

fulfilled, there exists a solution satisfying the conditions

Definition of _G;(0), T;(0) :

Gi(t) < (P )(5)€(M28 ®e I G(0) =G> 0| 202
T,(t) < (0z5)®e)®t [T (0)=T" >0

If the conditions pertaining to Dominating set problem and Graph Coloring Problem above are fulfilled, there exists 203

a solution satisfying the conditions
Definition of _G;(0), T;(0) :

G0 < ()™ [G0) =60 > 0]

T,(t) < (Q3,)@e2)Pt [1(0)=T) >0

Proof: 204

Consider operator A™M defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy

G (0) =GP, T.(0) =T, G < (P3)V,T? < (Q13)D, 205
0 < G(t) —GP < (Ppy )De(M) Ve 20
0T, () =T < (03 )DelMha) D o
i 208
Gia(0) = G5 + [ [(@2) V614 (503)) — (@)@ + ai5) P (Tog (50, 503) ) Grs (s3)) | dsas)

Gua(®) = 6% + J, [(@) 615 (s03)) — (@) ® + (@) (Tia (50139 Sa9)) ) Gua (5013)]| dsazy 209
Gis® =Gl +y [(a15)(1)614 (san) - ((ais)“) + (a15) (T1a(s13)), 5(13))) 615(5(13))] ds(3) 210
Ts(t) =T% + fot [(b13)(1)T14 (5(13)) - ((bﬁ)(l) — (bi’3)(1)(G(s(13)), 5(13))) Ty (5(13))] dss) 211
Tia(0) = T + Jy [ (1) PTia(50)) = (B1)D = B1DP(6(s03)), 5a9) ) Taa (Sa)| dsas) 212
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— t ’ "
Tis () = Tfs + fo [(b15)(1)T14 (sas) = ((b15)(1) — (b15)V(6(sa3), 5(13))) T15(5(13))] dss) 213
Where s(;3y is the integrand that is integrated over an interval (0, t)
214
215
Consider operator A® defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy
G;(0) = Gio , T;(0) = Tio ’ Gio < (1316 )(2) ;Tio =< (016 )(2), 216
0 <G;(t) — G < (Pg ) PeMs B¢ 217
0 <Ti(6) =T < (Qu5 )Pl Me)™ 218
By 219
— t ’ "
Gie () = Gfs + fo [(a16)(2)Gl7 (5(16)) - ((am)(z) +a16)® (Ti7 (sa6)), 5(16))) Gie (5(16))] dse)
— t ’ "
Gi7(t) = Glo7 + fo [(a17)(2)G16 (5(16)) - ((a17)(2) + (a17)(2)(T17(S(16))' 5(17))) Gy (5(16))] d5(16) 220
— t ’ "
Gig(t) = Gy + fo [(alg)(Z)Gn (5(16)) - ((am)(z) + (a18)® (T17 (sc16)), 5(16))) Gig (5(16))] dse) 221
— t ’ "
Tio(®) = T + Jy [ (b16)PTir (s06) — (B16)® = b1 P (6(s06): Sa6))) Tas (Saer) | dsciey 222
— t ’ "
Ty (0) =T + [y [(01)PTi6(506) = (01)P = BINP(G(s06))506)) Trr (Sa6))| dsey 223
— t ’ "
Tig(t) =T + [y [(b1)PTir (506) — ((b1)® = Bi0)P(G(s06))506)) Tas (Sa6))| dsaey 224
Where s34 is the integrand that is integrated over an interval (0, t)
225
Consider operator A®) defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy
G:(0) =G, T,(0) =T, G) < (Py)®, T < (Q2)®, 226
0 < G,(t) — G < (Pyy )Pe(M20 )®e 227
0 <Ti(6) = T < (Qp0 )P M) 228
By 229
— t ' "
Gao () = G2 + |, [(azo)(3)621 (sen) = ((azo)(s) +a20)® (To1 (520))s S(zo))) G2o (5(20))] ds (20
— t ' "
Gy (8) = GD) + [(021)(3)620 (s@0) = ((a21)(3) + (a20)® (21 (520, 5(20))) 621(5(20))] ds 20 230
— t ' "
Gy (8) = G5, + [, [(azz)(3)621(5(20)) - ((azz)(s) + (a22)® (T21 (520, 5(20))) Gzz(s(zo))] ds 20 231
— t ’ "
Ty (t) = T3 + fo [(bzo)(g)Tm (5(20)) - ((bzo)(3) - (bzo)(3)(G(S(20)). S(zo))) Ty (5(20))] ds (20 232
— t ' ”
T =THh + fo [(b21)(3)T20 (5(20)) - ((b21)(3) - (b21)(3)(G(S(20)). S(zo))) Ty (5(20))] ds (20 233
— t ' ”
T, () = Tf; + fo [(bzz)(g)Tm (5(20)) - ((bzz)(3) - (bzz)(3)(G(S(20)). S(zo))) Ty, (5(20))] ds 20 234
Where sy is the integrand that is integrated over an interval (0, t)
Proof: Consider operator A™ defined on the space of sextuples of continuous functions G;, T;: R, — R, which 235
satisfy
G(0) =G, T,(0) =T, G) < (P ), T < (Q24)™, 236
0<G,(t) -G < (P, )(4)e(M24 Bt 237
0 <Ti(0) =T < (Qpy )Mt 238
By 239
— t ' "
Gou () = GJy + fo [(‘124)(4)625 (sen) = ((024)(4) +a20) D (Tos (52))s 5(24))) Goa (5(24))] ds(24)
— t ’ "
G5 (8) = G35 + fo [(azs)(4)624 (sen) — ((azs)(4) + (a25) ™ (Tas (52, 5(24))) G25(5(24))] ds 24) 240
= t ’ "
G (t) = G + fo [(aze)(4) Gas (Sn) = ((aze)(4) + (az6) ™ (Tos (5(24)).5(24))) Gae (5(24))] ds(24) 241
= t ’ "
T () = T3, + fo [(b24)(4)T25 (5(24)) - ((b24)(4) - (b24)(4)(G(5(24)). 5(24))) Tos (5(24))] ds4) 242
— t ’ "
Tps(6) = Tgs + | [(bzs)(4)T24 (s@n) = ((bzs)(4) = (b25)®(G(se2m), 5(24))) T25(5(24))] dS(24) 243

WWW.ijmer.com 1841 | Page



International Journal of Modern Engineering Research (IJMER)

WWW.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1828-1871 ISSN: 2249-6645
= t ’ "
Tye (8) = T3 + fo [(b26)(4)T25 (sen) = ((bza)(4) — (b20)® (G (s2m), 5(24))) T2 (5(24))] ds(24) 244

Where s(,4) is the integrand that is integrated over an interval (0, t)
Consider operator A®) defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy 245

246
G;i(0) = Gio , T;(0) = Tio , Gio =< (1328 )(5) 'Tio =< (QZB )(5)' 247
0 < G,(t) = GY < (Pyg )De(M2s)®t 248
0 <Ti(6) =T < (Qop )M )™ 249
By 250
= t ’ "
Gpg(t) = 0208 + fo [(azs)(5)629 (5(28)) - ((‘128)(5) + azg)(s)(ng (5(28))' 5(28))) Gag (5(28))] ds(zs)
= t ’ "
G () = Ggo + fo [(a29)(S)G28 (5(28)) - ((a29)(5) + (a29)(5)(T29 (5(28))' 5(28))) Gy (5(28))] ds(zg) 251
— t ’ "
G () = G3p + fo [(a30)(5)G29 (ses) — ((a30)(5) +(a30)® (Tao (528 5(28))) G3o (5(28))] ds 28) 253
— t ’ "
Tys(t) = Tps + fo [(bzs)(s)TZf) (5(28)) - ((bzs)(s) — (b28)®(G(508)), 5(28))) Ts (5(28))] ds(zs) 254
— t ’ "
Tyo(t) =T + fo [(b29)(S)T28 (5(28)) - ((b29)(5) - (b29)(5)(G(5(28))' 5(28))) Ty (5(28))] ds(zg) 255
— t ’ "
T30 () = T5 + fo [(b30)(5)T29 (s@s) — ((b30)(5) — (30)®(G(508)), 5(28))) Tso (5(28))] ds(zs) 256
Where s,y is the integrand that is integrated over an interval (0, t)
257
Consider operator A® defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy
Gi(0) =G, T,(0) =T, G/ < (P )@, T < (02)®, 258
0 < G,(£) — G? < (Pyy )©e(M32)Ot 259
0 <T,(t) = TP < (Q5, )@e M) 260
By 261
— t ' "
G (t) = G, + | [(a32)(6)G33 (sG2)) = ((a32)(6) +a3) @ (T35 (s@))s 5(32))) G3z (5(32))] ds(32)
— t ' "
G33(t) = GS5 + [ [(033)(6)032 (sG2)) = ((ass)(@ + (a33) @ (T35 (532)), 5(32))) G33(5(32))] ds 32) 262
— t ' "
G4 () = G3) + fo [(a34)(6)G33 (5(32)) - ((a34)(6) + (a34) (T3 (5(32)),5(32))) G34(5(32))] ds(s2) 263
— t ' "
T () =T + fo [(b32)(6)T33 (5(32)) - ((bsz)(6) - (b32)(6)(G(5(32)). 5(32))) T3, (5(32))] ds(32) 264
— t ' "
T3 () =T + fo [(b33)(6)T32 (5(32)) - ((b33)(6) - (b33)(6)(6(5(32)), 5(32))) T33 (5(32))] ds(s2) 265
— t ' "
Tz, (O = T304 + fo [(b34)(6)T33 (5(32)) - ((b34)(6) - (b34)(6)(G(5(32)); 5(32))) T34(5(32))] ds 32) 266
Where s (3, is the integrand that is integrated over an interval (0, t)
267
@) The operator A™) maps the space of functions satisfying into itself .Indeed it is obvious that 268
t = (1)
Gi3(8) < G5 + [(a13)(1) (6104"‘(P13 )Wt 5(13))] ds(i3) =
1 o, (a13)W(P3)D 12D
(1 + (61_13)( )Gl +W(e( 1 - 1)
From which it follows that 269
@ _ (@13)® <_ = )(01)+G(1)4)
— a -3 PN
(615 (6) = Gf)e (M) < T (P ) + Gl Jet Tl /4 (B )®
(G?) is as defined in the statement of theorem 1
Analogous inequalities hold also for Gy, , Gy, Ti3, Tha, Tis 270
(b) The operator A ®?) maps the space of functions satisfying into itself .Indeed it is obvious that 271
t ~ 2)
Gi(t) < Gl + [(‘116)(2) (GIO7+(P16 )®elfe) 3(16))] dsge) = 212
(a16) ) (P16)@ @
(1 + (a16)(2)t)6107 + %T(lze) (e(Mlé) t— 1)
From which it follows that 273
— a ~ A~
(Gy6 (1) — Gf)e~ (e ) < (Mllz @ [((P16 Y + G e 617 + (P )<2>l
Analogous inequalities hold also for G;; , Gig, Tig, Thi7, Tig 274
@) The operator A®) maps the space of functions satisfying into itself .Indeed it is obvious that 275

t 5 3
Gao(t) < G + [(azo)(g) (6201 +( Py )P M0) S(ZO))] dso) =

(2200 (P20)® ®
(1+ (@) Pe)68, + LI (o000 — 1)
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From which it follows that
@ _ (a0)® <_ = )(3)+G(2)1)
— a E 0 ~
(Gyo () — G)e™(M20)™ < m ((Pyp)® + G e 621 + (P )®| 277
Analogous inequalities hold also for Gy, , G2z, T2, T21, 15,278
(b) The operator A™ maps the space of functions satisfying into itself .Indeed it is obvious that

t ~ “)
Gy (t) < G2y + fo [(a24)(4) (Gzos +( Py )(4)9(M24) 5(24))] dsca) =

(az24)® (Pyy Y® 4)
(1+ (az)®t)G3s + W(e(m“ - 1)

From which it follows that
(P24)®+69s

oo e [ (astict)
(G4 (t) = GIy)e (Maq ) B o (@240 (( Py )™ + Gzos)e o3 + (P )(4)l

T (M24)®

(G?) is as defined in the statement of theorem 4
(© The operator A®) maps the space of functions satisfying 35,35,36 into itself .Indeed it is obvious that

t ~ )
Gos(t) < G5 + [, [(azs)(s) (G209+(P28 )®eM20) 5(28))] ds(zg) =

5 0 4 (@)®(P)® (7,6
(1 + (azg)( )t)ng +W(Q( 28 )/t _ 1)

From which it follows that
(P28)®+6%

P o[ (-Lapuch)
(Gag (8) — G9p)e~ (M)t < LB (B, Y6) 1 GY e\ 0 /4 (P )(”l

T (M)

(G?) is as defined in the statement of theorem 1
(d) The operator A maps the space of functions satisfying 34,35,36 into itself .Indeed it is obvious that

t PN (6)
6oz (©) < 6% + J; [(@5)@ (G +( Py YO 1520V )| oy =

(a3)©(P3)© M2 )6
(1+ (az2)®@t)G3; + W(e( 27— 1)

From which it follows that
_(P32)®©+6%;

_ 0 O] - a4 -
(Gaz () — G9,)e~(Ms2) Ve o Ls) (( P; )©® + G§)3)e< 933 ) + (Ps, )(6)l

(M32)®

(G?) is as defined in the statement of theorem1
Analogous inequalities hold also for G5 , Gag, Tos, Tos, Tog

: » @® _wp®
It is now sufficient to take( L L < 1 and to choose

Mq13)D 7 (M13)D
(Pi3)® and (Qy3 )™ large to have

(P13 )(1)+G})
@) | % 5 T -
1)@ (P)® + ((P3)D + Gjo)e J < (P;)®
[ (213)D+1}
CHIS I ‘( 0 ) A -
(13)D Qi)™+ 7}0)6 J +(013)P] < (043)®

In order that the operator A™ transforms the space of sextuples of functions G, , T; into itself
The operator A is a contraction with respect to the metric

d ((G(l),T(l)), (G(Z),T(Z))) -
sup{max |G.(1)(t) — G-(Z)(t)|e‘(M13)(1)f,max |T(1)(t) _ T.(Z)(t)|e‘(M13)(1)f}
i teRp ! : tery | L i
Indeed if we denote
Definition of G, T :
(G, T)=ADG,T)
It results
A1) _ 7@ t A ~@ | —(Ty)D @D
|Gl3 — G |S fo (a13)(1) |G14 — Gy |e (M13)" a3 (M13)sa3) ds(3) +
fot{(a’lg)(l)|61(;) - Gl(?|e—(m13)(1)5(13)e—(ﬂ13)(1)s(13) +
(@) V(T 500) |63 = 613 |~ Pstan) g (Fia)Psaas) 4
@y, (€3] " @) —(My3)D 42y
Gy 1(a13)P(Tyy s sas)) — (a3) P (T, sas )| e M3 san e (M) sanyds g
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Where s 43y represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows
|G(1) _ G(2)|e—(ﬂl3)(1)t <

G (@)D + (@)D + (A) D + (P)V (R D) (60, 70; 6D, 7)) 298
And analogous inequalities for G; and T;. Taking into account the result follows

Remark 1: The fact that we supposed (a;3)™® and (b;3)® depending also on t can be considered as not conformal ~ 294
with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the
uniqueness of the solution bounded by ( ?,5)Pe ™)Vt and (0y5)Pe™13)¢ respectively of R,.

If instead of proving the existence of the solution on R,, we have to prove it only on a compact then it suffices to
consider that (a; )™ and (b, )¥,i = 13,14,15 depend only on T,, and respectively on G(and not on t) and
hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not existany t where G; (t) =0and T;(t) =0 295
From the governing equations of the holistic system it results

G (t) = Gioe[—fg{(aé)(l)—(a; YD(T1a(s13))513) s | >0

T, () = TPtV > 0 fort> 0

Definition of ((M13)®),, (M13)®), and ((My3)®), : 296
Remark 3: if G, is bounded, the same property have also G4 and G5 . indeed if

Gz < (M)W it follows d(% < ((M13)®), = (a14)VGy4 and by integrating

Gia < ((/M13)(1))2 =Gy + 2(“14)(1)((/M13)(1))1/(a’14)(1)

In the same way , one can obtain

Gis < ((My3)®), = Gl + 2(a15) D ((My3) D), /(a;5)D

If Gy4 or G;5 is bounded, the same property follows for G5, Gi5 and Gy3 , Gy, respectively.

Remark 4: If G5 is bounded, from below, the same property holds for G,, and G,5 . The proof is analogous with 297
the preceding one. An analogous property is true if G;, is bounded from below.

Remark 5: If T,5 is bounded from below and lim,_,., ((b; )V’ (G(t), t)) = (by4)® then T}, — oo. 298
Definition of (m)® and ¢ :

Indeed let t; be sothatfort > t;

(1) — (b”)(l)(G(t) t) <&, Tis () > (m)®

Then L4 > (g, )P ()@ — &, T,, which leads to 299

W ()™
Ty = (M) (1 —e1t) + TS e #1t If we take t such that e~¢1t = 1 it results

(a14)<1>(m)<1>
Ty, = (f) t= log— By taking now ¢&; sufficiently small one sees that T;, is unbounded. The same

property holds for T;5 if lim,_,, (bls)(l) G(t),t) = (by5) D
We now state a more precise theorem about the behaviors at infinity of the solutions of equations solution to the
governing equations of the global system

300
(al) Do _w® 301
It is now sufficient to take )@ (1)@ < 1 and to choose
(P )® and (Q,4)® Iarge to have
[ ((1315 )(2)+G?> 302
@)® | 4 5 AUG 5
m (Pye)@ + (P )@ + G;'O)e K < (Pg)@
303
[ (016)@+7?
()@ A ‘( 0 > A A
B ((Q16)® + 7}0)3 g +(016)P| < (016)@ ggg
In order that the operator A transforms the space of sextuples of functions G, , T; into itself 306
The operator A is a contraction with respect to the metric 307
d (((619)(1); (T19)®), ((619)®, (T19)(2))) =
sup{max |Gl.(1)(t) - Gi(z)(t)|e‘(M16)(2)t,max |Ti(1)(t) - Tl.(z)(t)|e‘(M16)(2)t}
i teR4 teRy
Indeed if we denote 308
Definition of Gyg, T : ((Gro, Tio ) = A®(Gyro, Tyo)
It results 309

|(‘;"1(1) G(Z)| < J' (a16)(2) |G(1) Gl(’?)|e_(ﬂ16)(2)s(16)e(ﬂ16)(2)s(16) ds(16) +
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J‘{( 16)(2)|G(1) (2)| ~(M16)Ps(16) o ~(M16) Ps16) 4

(a16)(2)(T1(7) 5(16))|G(1) - G(Z)l (1) s16) ¢ M16)Psas) 4
2 —(M16)@ M16)P
Gg'l(a 16)(2)(T17 5(16)) _(a16)(2)(T17 S(l()))l e~ (Me)™sae) g (Mie) 5(16)}‘15(16)

Where S(16) represents integrand that is integrated over the interval [0, t] 310

From the hypotheses it follows

|(G19)(1) - (G19)(2)|e_(ﬁ16)(2)t < 311
1 ’ —~ P -

e ® (@)@ + (@)@ + (A1) P + (P1) P (k1) @)d (((G19)(1), (T1)Y; (G19)®, (T19)(2)))

And analogous inequalities for G; and T;. Taking into account the hypothesis (34,35,36) the result follows 312

Remark 1: The fact that we supposed (a;js)® and (b;¢)@® depending also on t can be considered as not conformal ~ 313
with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the
uniqueness of the solution bounded by (,,)@e(™16)®t and (Q,4)@e(™M16)®t respectively of R, .

If instead of proving the existence of the solution on R,, we have to prove it only on a compact then it suffices to
consider that (a; )® and (b; )¥,i = 16,17,18 depend only on T,; and respectively on (G;o)(and noton t) and
hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) = 0and T; (t) =0 314
From 19 to 24 it results

G, (D) > G?e[—fé{(aé)(”—(ai' YA(T17(s16))5016))}d5016) >0

T, > T0e-tOP) > 0 fort>0

Definition of ((My6)@),, (My6)@), and ((My5)@), : 315
Remark 3: if G4 is bounded the same property have also G, and Gyg . indeed if

Gig < (M;)@ it follows <2 < (( M;6)@), = (a17)P Gy, and by integrating

Gy < (Me)®), = G, + 2@ (( M16><2>)1/(a17><2>

In the same way , one can obtain

Gig < ((/1\7[16)(2))3 = Gig + 2(a18)(2)((/M16)(2))2/(a’18)(2)

If Gy or G;g is bounded, the same property follows for G,4, Gig and Gq4, G5 respectively.

Remark 4: If G4 isbounded, from below, the same property holds for G;; and G5 . The proof is analogous with 316
the preceding one. An analogous property is true if G, is bounded from below.

Remark 5: If T, is bounded from below and lim,_,., ((b; )® ((G15)(1),t)) = (by,)® then Ty, — oo. 317
Definition of (m)® ande, :

Indeed let t, be sothatfort >t,

(b17)(2) — (0 )P((G19) (), 1) < &5, Ty () > (M)P

Then L2 > (q,,)® (m)@ — &,T,, which leads to 318
@ (m)@
Ty = (M) (1 —e®2t) + T e ®2t If we take t such that e~*2t = l it results
€2
Om)®
Ty; = (w) log— By taking now ¢, sufficiently small one sees that T;, is unbounded. The same 319
property holds for Tyg if lim,_, (blg)(z) ((G1o) (), 1) = (byg)@
We now state a more precise theorem about the behaviors at infinity of the solutions of equations 37 to 42
320
(al) Do) 321
It is now sufficient to take T )® " iy )@ < 1 and to choose
(P )® and (Q, )® Iarge to have
[ ((1320 )(3)+G?> 322
@)® [ 4 5 AG 5
(Mazom (P2)® + ((Py )(3)‘*‘6}0)3 K < (Py)®
[ ( (Qz20 )(3)+TJQ> 323
b)® 4 T 5 A
BE) ((Q20)® + 7}0)3 g +(020)®] < (030)®
In order that the operator A®) transforms the space of sextuples of functions G, , T; into itself 324
The operator A®) is a contraction with respect to the metric 325

d (((623)(1); (T23)@), ((G23)®, (ng)(z))) =
sup{max |6V () = 62 ©e @0, max |10 (6) = T2 (0)] e~}
i teRy teER
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Indeed if we denote - 326
Definition of Gys, T3 :( (Gg3), (Ty3) ) = AP ((Gy3), (Tz3))

It results 327
16D = 62| < [1(a20)® |6 = 62 e M) 5206 M20)Vs0) sy, +
J‘ {(a 20)(3)|G(1) G(Z)|e—(mzo)(3)5(20)e—(ﬂzo)( )20 +

(@)@ (157, 500) |65 — G55 =P Ve s 4

G(Z)K 20)(3)(T21 5(20)) —(a )(3)(T2(12)'5(20))| e_(m())ms(zo)e(mO)(g)s(zo)}ds(zo)

Where s,y represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

|6 — @]~ (M20)Pe < 328

m((azo)e) + (a20)® + (Az0)® + (Pyg) P (ko) ®)d (((023)(1); (To3)@; (G3)@, (T23)(2)))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (a;)® and (b5,)® depending also on t can be considered as not conformal ~ 329
with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the
uniqueness of the solution bounded by ( P,)®e (™20t and (0,)®e™200® respectively of R, .

If instead of proving the existence of the solution on R,, we have to prove it only on a compact then it suffices to
consider that (a; )® and (b; )®,i = 20,21,22 depend only on T,; and respectively on (G,3)(and not on t) and
hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0 330
From 19 to 24 it results

G (t) = GiOe[—fot{(a;)G)—(a;’ )(3)(T21(5(20))5(20))}‘15(20)] >0

T, () = TPe-t0P) > 0 fort> 0

Definition of ((M;0)®),, (M30)®), and ((M0)®), : 331
Remark 3: if G, is bounded, the same property have also G,; and G,, . indeed if

Gyo < (My)® it follows d(% < (Mp0)®), = (a21)® Gy, and by integrating

Go1 < ((/MZO)G))Z =Gj + 2(“21)(3)((/Mzo)(”)l/(a’m)@)

In the same way , one can obtain 332
Gop < ((ﬂzo)(3))3 =G + Z(azz)(g)((7‘7[20)(3))2/(61’22)(3)

If G,; or G, isbounded, the same property follows for G,, , G,, and G, , G, respectively.

Remark 4: If G,, is bounded, from below, the same property holds for G,; and G,, . The proof is analogous with 333
the preceding one. An analogous property is true if G,; is bounded from below.

Remark 5: If T,, is bounded from below and lim,_, ((b; )® ((G3)(£),£)) = (b31)® then Tp; — co. 334
Definition of (m)® and &5 :

Indeed let t; be so that fort > ¢,

(b21)(3) - (b”)(3)((023)(t) t) < &, Ty (£) > (M)®

Then £2L > (a,,)® (m)® — &,T,, which leads to 335
Bm)®
T,y = (M) (1—e53t) + THe et If we take t such that e~#3¢ = % it results
(a21)(3)(m)(3) 2 . .. .
T,y = (f) t= logg— By taking now &; sufficiently small one sees that T,; is unbounded. The same
3

property holds for Ty, if lim,_, (b32)® ((Go3)(t), t) = (b3,)®
We now state a more precise theorem about the behaviors at infinity of the solutions:

336
. . @) NO)
It is now sufficient to take ((;l—))m) ,% < 1 and to choose 337
24 24
(P, )® and (Q,4 )™ large to have
[ ((ﬁ24 )(4)+G?) 338
@)@ | = o I G ~
o | (Pa)® + ((Pa)® + G)e j < (Py)®
(Q24 )(4)+T]Q 339

(bH®

(le4)<4) (( 024 )(4) + 7}0)3_( —Tfo—) + ((?24 )(4) <( Qz4 )(4)
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In order that the operator A™ transforms the space of sextuples of functions G, , T; into itself 340
The operator A™ is a contraction with respect to the metric 341

d (((627)(1), () D), ((6)®, (T27)(2))) =
Sup{,’;n]]%x |Gl(1) (t) _ Gi(Z) (t)le—(M24)(4)t'.rtnu%x |7"l(1) (t) _ 7'1(2) (t)|€_(M24)(4)t}
i ER4 ER4

Indeed if we denote 342
Definition of (G,;), (T37) : ( (Gy7), (Ty7) ) = AD((Gy), (T7))
It results
|G~z(i) _ G~i(2)| < fot(a24)(4) |Gz(é) _ Gz(?|e‘m24)(4)5(24)em24)(4)5(24) ds(24) +
fot{(a'm)(‘l) |Gz(i) — Gz(i)|e—(mz4)(4)5(z4)e—(ﬂz4)(4)5(24) T
(@)D (155, 500|653 = 657 oMo Ve e(Fa) iy 1
2 % 1 " 2 _ “4) “4)
G2(4)|(a24)(4) (Tz(s)'5(24)) - (‘124)(4) (Tz(s)'5(24))| e (M24)™s24) o (M24) *eN}ds 4y

Where s(,4) represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows

- ®
|(Gz7)(1) - (627)(2)|€ (M24)™t < 343

m((azﬂm + (a2)® + (A2)® + (P) W (kp)®)d (((027)(1), (T)D; (6@, (T27)(2)))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (a;4)™® and (b,4)™® depending also on t can be considered as not conformal ~ 344
with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the
uniqueness of the solution bounded by ( P,,)®e ™2™ and (0,,)®e ™2™t respectively of R, .

If instead of proving the existence of the solution on R,, we have to prove it only on a compact then it suffices to
consider that (a; )® and (b; )®,i = 24,25,26 depend only on T,s and respectively on (G,,)(and not on t) and
hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0 345
From 19 to 24 it results

G, (t) = Gioe[—fot{(a;)(‘”—(a! ) (125 (5(24))r5(24))}d5(24)] >0

T, (t) = T0e-t)®) > 0 fort>0

Definition of ((M,4)®),, (M,)®), and ((M,)®), : 346
Remark 3: if G,, is bounded, the same property have also G,s and G, . indeed if

Gpy < (My)™ it follows dg_tzs < (M4)®), = (a25)™® Gys and by integrating

Gas < ((ﬂ24)(4))2 = G35 + 2(a25)(4)((ﬁ24)(4))1/(a;5)(4)

In the same way , one can obtain

a6 < (( M24)(4))3 =Gjs + 2(“26)(4)(( M24)(4))2/(a26)(4)

If G,5 or Gy s bounded, the same property follows for G,, , G,5 and G4, G, respectively.

Remark 4: If G,, is bounded, from below, the same property holds for G,5 and G, . The proof is analogous with 347
the preceding one. An analogous property is true if G, is bounded from below.

Remark 5: If T,, is bounded from below and lim,_,,, ((b; )™ ((G;)(t),t)) = (bys)™® then Tys — co. 348
Definition of (m)® and ¢, :

Indeed let t, besothatfort >t,

(by5)® — (b )P ((G27) (), 1) < &4, Ty (£) > (M)®

Then % > ()@ (M)® — g, T, which leads to 349
O )@ i
Tys = (M) (1 —e~54t) + T e 54t If we take t such that e=54¢ = % it results
4
(azs)®m)® 2 , - .
Tys = (f) t= log; By taking now ¢, sufficiently small one sees that T,s is unbounded. The same

property holds for Tpg if lim,_, (b36)® ((Go7) (), t) = (bye)™®
We now state a more precise theorem about the behaviors at infinity of the solutions ;

Analogous inequalities hold also for G,q , Gz, Tog, Tag, T3
350

(@)® )™ 351

It is now sufficient to take )0 i) ®
(P,g )® and (Q,g )™ large to have

< 1 and to choose
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[ ((ﬁzs )(5)+G]Q> 352
@® | % 5 BN B
(Mamﬁ (P)® + (( Py )(5)"'6]'0)9 K < (Py)®
[ ( (028 )(5)+T}’> 353
®)® 5 T 5 5
(M25)® ((Q2)®+ 7}'0)9 g +(028)P[ < (Q25)®
In order that the operator A®) transforms the space of sextuples of functions G; ,T; into itself 354
The operator A®) is a contraction with respect to the metric 355
d (((G:)D, (T3)D), ((6:1), (T3,)@)) =
sup{max |Gl.(1)(t) - Gl.(z)(t)|e‘(m28)(5)t,max |Ti(1)(t) - 7'1.(2)(t)|e‘m28)(5)t}
{ teERy tERy
Indeed if we denote
Definition of (G31), (Ts1) : ((G31), (T51) ) = AP ((G31), (T31)) 356

It results
|G(1) G(2)| <f (aze)® |G(1) Gz(g)|e—(ﬂzs)(s)s(zs)e(ﬂzs)(s)s(zs) dszg) +
f{(azg)(5)|G(1) G(2)| ~(M28)®)s(28) o =(M28) s (28) 4

(azg)(S) (Tz(c)l)'S(ZB))|G(1) Gz(g)|e—(wzs)(5)5(28)e(mzs)(s)s(zs) +

G(2)|(azs)(s)(Tz(gl)'S(zg)) - (ags)(s)(Tz(s):S(zs)N 9_(%8)(5)5(28)e(mS)(S)s(zs)}ds(ZS)

Where s,y represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

|(€31)® — (6P e~ < 37

5 (@) + (@) + (Ae)® + (Prp)® (o)) (G2, (3D (63)P, (T3)@))

And analogous inequalities for G; and T;. Taking into account the hypothesis (35,35,36) the result follows

Remark 1: The fact that we supposed (a,g) and (b,5)® depending also on t can be considered as not conformal ~ 358
with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the
uniqueness of the solution bounded by ( P,5)®e (280t and (0,5)®e™20)®t respectively of R, .

If instead of proving the existence of the solution on R,, we have to prove it only on a compact then it suffices to
consider that (a; )® and (b; )®,i = 28,29,30 depend only on T,, and respectively on (Gs;)(and not on t) and
hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0 359

G (t) = Gioe[—fot{(a;)(s)—(a! )(T29(528)5 28)) 5 28 | >0

T, () = TPe-t)P) > 0 fort> 0

Definition of ((M,5)®),, (M55)®), and ((M5)®), : 360
Remark 3: if G,g is bounded, the same property have also G,q and G5 . indeed if

Gog < (M) it follows d‘% < ((Mp)®), — (a20)® Gyo and by integrating

Gag < ((/117128)(5))2 = Gjo + 2(a29)(5)((7&7128)(5))1/(51'29)(5)

In the same way , one can obtain

Gzo < (( Mzs)(s))3 = GSo +2(az)®(( Mzs)(s))z/(a3o)(s)

If G,9 or G, is bounded, the same property follows for G,g, G35 and G,g, G,q respectively.

Remark 4: If G,5 is bounded, from below, the same property holds for G,y and G;, . The proof is analogous with 361
the preceding one. An analogous property is true if G, is bounded from below.

Remark 5: If T, is bounded from below and lim,_,, ((b; ) ((G31)(£),t)) = (by9)® then Tpq — oo. 362
Definition of (m)® and & :

Indeed let t; be so that for t > ¢

(b20)® = (b YO ((G31)(1), ) < &5, Tyg (£) > (M)

Then ﬂ% > (ay9)® (M)® — 5T,y which leads to 363
E\m)® .
Ty = (M) (1—e~s5t) + THe st If we take t such that e 65t = % it results
(a29)P () 2 . _ i
Ty = (f) t =log— By taking now &5 sufficiently small one sees that T,q is unbounded. The same
5

property holds for Ty if lim,_,, (b30)® ((G31)(),t) = (b30)®
We now state a more precise theorem about the behaviors at infinity of the solutions;
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Analogous inequalities hold also for Gs3 , Gz4, T35, T33, T34
364
- i @)® _ep® 365
|tl$ now SUffICIint to take 1 0® ) < 1 and to choose
(P;,)® and (Q3, )® large to have
[ (( P32 )(6)+G]Q> 366
@® | % 5 AU 5
(1;32))(5) (P)® + ((P3)® +G)e ‘) < (P)©®
[ ( (@32 )(6)+T1(-)> 367
(b)®© A AU N A
(Maz))(s) ((032)© + 7}'0)9 L +(032)® < (0:2)®
In order that the operator A® transforms the space of sextuples of functions G, , T; into itself 368
The operator A is a contraction with respect to the metric 369
d (((635)D, (T35)D), ((635)®, (T35)@)) =
sup(max |6(0) = G O]~ max 10 (@0) - T 0]~
i teER4 teER4
Indeed if we denote
Definition of (G3s), (T3s) - ( (Gss), (T35) ) = cﬂ(ﬁ)((Gss)' (Tss))
It results
370

~(1 ~(2 t 1 2)|  —(Ma2r)® M=5)©)
|G3(2) _ Gi( )| < fo (a32)(6) |G3(3) _ G3(3)|e (M32)™532) o (M32)*’5(32) d5(32) +
@) OGP - G2 e a5t (e Vs .
(az2)® (T3(31)'5(32))|G3(;) - G3(§)|e_m32)(6)s(32)€m32)(6)5(32) +

@)y, (€] " ) —(T2,)(©®) 2,)©)
Gs; |(a32)(6)(T33 '5(32)) - (a32)(6)(T33 '5(32))| e~ (Ms2) 752 o (M32) G2 }ds 32
Where s (3, represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows
|(G35)® = (G35)@|e~ M2t < 371

m((%z)@ + (@32)©@ + (A3)@ + (P32) @ (k32)@)d (((635)(1). (T35)W; (G35), (T35)(2)))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (as,)® and (b3,)® depending also on t can be considered as not conformal ~ 372
with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the
uniqueness of the solution bounded by ( P;,)©e ™32t and (05,)©e™s®t respectively of R, .

If instead of proving the existence of the solution on R,, we have to prove it only on a compact then it suffices to
consider that (a; ) and (b; )©®,i = 32,33,34 depend only on Ts; and respectively on (Gss)(and not on t) and
hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) = 0and T; (t) =0 373
From governing equations it results

G (t) = Gioe[—fot{(a;)(@—(a; )O(T33(5(32))532)) Y5 32) | >0

T, (6) = Tioe(_(bé)(@t) >0 fort>0

Definition of ((M3,)®),, (M3,)®), and ((M5,)®), : 374
Remark 3: if G5, is bounded, the same property have also Gs; and Gs, . indeed if

Gy, < (M3,)® it follows d‘% < ((M3,)®), — (as3)® G35 and by integrating

Gzz < (M) @), = G5 +2(a33) @ (M3,) @), /(az3)®

In the same way , one can obtain

Gzq < (M) @), = G4 +2(az) @ ((M3,)®), /(a3)®

If G35 or G3, is bounded, the same property follows for G;, , G4 and Gs, , G35 respectively.

Remark 4: If G;, is bounded, from below, the same property holds for G;; and G;, . The proof is analogous with 375
the preceding one. An analogous property is true if G;5 is bounded from below.

Remark 5: If T;, is bounded from below and lim,_,., (b, )® ((G35)(t),t)) = (b33)® then T35 — oo. 376
Definition of (m)® and & :

Indeed let t, be so that fort > t,

(b33)©® — (b )O((G35)(D), t) < &, T, (£) > (M)©
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Then 222 > (a43)©® (m)©® — &, Ty3 which leads to 377

(6)(m)(®)
Ty = (M) (1 —e~%6t) + TXe~6¢ If we take t such that e 66t = % it results

€6

(a33><6)(m)<6))
>t - -
T 2 ( 2

property holds for Ty, if lim,_, (b34)© ((G35)(0), £(), £) = (b34)®
We now state a more precise theorem about the behaviors at infinity of the solutions

, t= loggi By taking now &g sufficiently small one sees that T;; is unbounded. The same
6

378

Behavior of the solutions 379
Theorem 2: If we denote and define
Definition of (o,)®, (6,)V, (t)D, (1,)@ :
(a) o), (0,)V, (t)D, (r,)® four constants satisfying
—(o)® < —(a1,3)(1) + (a1,4)(1) - (a1”3)(1)(T14 )+ ("(114)(1)(7'14 ) < —(0)®
_(Tz)(l) < _(b13)(1) + (b14)(1) - (b13)(1)(G; t) — (b14)(1)(G' t) < _(71)(1)
Definition of (v;)®, v,)®, (u)®, (uy) D, v, 4@ : 380
(b) By (vp)® >0,,)® < 0and respectively (u;)® >0, (u,)? < 0 theroots of the equations
@)V (D) + @)DV ~ (@)D = 0and (b)) D (D) + @) Pu® — (by)® =
Definition of (7,)@,, (1,)®, (&1,)®, (i1,)® : 381
By (7)™ >0, ({#,)® < 0and respectively (;)® >0, (@i,)® < 0 the roots of the equations
(a14)(1)(v(1))2 +(0)v® — (ay3)® = 0 and (b14)(1)(u(1))2 + (@) Mu® = ()P =0
Definition of (m,)®, (m,)®, (u)®, (u)®, (vp)® :- 382
(c) If we define (m)®, (m,)™®, (u)®, (u)® by
(mz)(l) = (Vo)(l)' (m1)(1) = (V1)(1): if (Vo)(l) < (V1)(1)
(my)W = (Vl)(l) m)® = @)D, if v < ()P < @)D,

and |(vp)® = —0
1

(mz)(l) = (Vl)(l)'(mﬂ(l) = (Vo)(l): if (171)(1) < (Vo)(l)

and analogously 383
(.“2)(1) = (uo)(l)' (#1)(1) = (u1)(1): if (uo)(l) < (u1)(1)

(12)® = @), ()W = @)@, if w)® < (ue)® < @),

0
and|(uy)® = ;1—03
14

(1) = (w)®, (@)® = W)W, if @) < (up)® where (u)@, (@)™

are defined above

Then the solution satisfies the inequalities 384
62 e(EDV-01))t < 6. () < G eV

where (p,)® is defined above

1 @_ @ @
WGB e(GDW-e1))t < (t)< )(1)G eGnWe

(a15)M615 51D _(p1) D) (s 0 —s )M 385

DGO -G D=5 D) [e(( v (pm) e t]+6156 GO < Gis(0) <
(a15)V6s Reh) () ® 0 —(a )@

m)D(s)D-(a15)D) [e( D et t]+ Grse (1) t)

T0 RDWt < Ti3(t) < T1O3e((R1)(1)+(r13)(1))f 386

-~

un® T13e(R1)( & < Ti5(t) < T1O (RO +(r13)D)e 387
(11 )

(b15) s R (1)t EPAENCIN 0 (b Dy 388
WO (RDD—(o75)D) e — e We| 4 T em019™ < Ty (1) <

(a15) Vi3 [ (ROD+(r13)D)e _ —(Rz)(l)t] 0 ,—(R)MDt
O (RDD+15) DR ) 1 ¢ +Tise

Definition of (5))™, (5,)®, (R)W, (R,)W:- 389
Where (S))® = (a;3)® (my)® — (a;3)®

(52)(1) = (‘115)(1) - (P15)(1)

(Rl)(l) = (blg)(l)(#z)(l) - (b,13)(1)

(Rz)(l) = (bis)(l) - (ﬁs)m
Behavior of the solutions 390
Theorem 2: If we denote and define
Definition of (6,)®, (6,)@, (1))@, (1,)@® : 391
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(d) 6,)?,(6,)@, (1P, (1,)P four constants satisfying

—(02)® < —(a16)® + (a17)P = (a16) P (Ty7, ) + (a17) P (Ty7,8) < —(01)@
—(1)® < =(b16)® + (b17)® = (b16) P ((G19), t) = (b17) P ((Gro), t) < —(1)P
Definition of (v;)®, (v,)®, (u)®, (uy)® :

By (v{)® >0, (v,)® < 0and respectively (u;)® >0, (u,)?® < 0 the roots
(e) of the equations (a17)(2)(v(2))2 + (0)@v® — (g;)@ =0

and (by)@(u®)” + (1)Pu® — (bys)® = 0 and

Definition of (,)®,, (1,)®, (i1,)@, (i1,)@ :

By (1)@ >0, (¥,)® < 0 and respectively (i1;)® > 0, (1,)® < 0 the

roots of the equations (a17)(2)(v(2))2 + (0,)Pv® — (q,)®@ =

and (b1))?(u®)” + (1,)Pu® = (b)) =0

Definition of (m;)®, (m,)®, (u)@, (up)® :-

) If we define (m,)®, (my)®, (1)@, (u)@® by

(mz)(z) = (Vo)(z): (ml)(z) = (V1)(2)' if (Vo)(z) < (V1)(2)

(mz)(z) = (Vl)(z) (ml)(z) = (‘71)(2) Jif (V1)(2) < (Vo)(z) < (171)(2),

and [(v))® = 016

(mz)(z) = (Vl)(z)' (ml)(z) = (Vo)(z)' if (171)(2) < (Vo)(z)

and analogously

(.“2)(2) = (uo)(z)' (#1)(2) = (u1)(2), if (uo)(z) < (u1)(2)

12)? = W)@, ()P = @)P ,if w)? < (ue)® < (@)@,

0
and | (uo)® = %
17

(Hz)(z) = (ul)(z)' (#1)(2) = (uo)(z): if (ﬁ1)(2) < (uo)(z)
Then the solution satisfies the inequalities

G?ese((sl)(n_(pl"’)(z))t < Gt < G?fse(sl)(z)t
(pl-)(z) is defined by equation above

@_ @) )
W GYe(GP~(r16) )t<G7(t)< <2)G eD@t
(a18)@cY @)_ (z) —(5,)@ —(s)@
((ml)(”((51)5?—@161)6(2)—(SZ)@) el (ms) St t] + Glge™CT < G (1) <
(a18) P @ PN (@
(mz)<2>((1581)<2>—1(2'18)(2)) [eED — e T 4 Glgen (0
TS e®DPt <, (£) < TS e((Rl)(Z)"'(Tls)(z))t
( )(2)T106 (Rl)(z)t<T (t)< (2) Tfs (RO +r1e) )
1
(b15) D19 @ b )@ b @
PRSI EETNE] LA W] 4Tyt < Ty (1) <
(a18)P1Yg R)@ 4 @)t —(R,)@¢ 0 —(R,)@¢
O D0 D1 D) [e(( DP+16) D)t _ o=R2) ]+T18e R2)

Definition of (5,)@, (S;)®, (R)@, (R,)@:-
Where (Sl)(Z) = (a16)(2) (mz)(Z) _ (a'16)(2)
($2)® = (a15)® — (p1g)®

(R1)(2) = (b16)(2)(ﬂz)(1) - (bie)(z)
(R)® = (b1g)® — (115)@

Behavior of the solutions
Theorem 2: If we denote and define

Definition of (0,)®,(6,)®, (1)®, (1,)® :
(a) )@, (0,)®, (1P, (1,)® four constants satisfying
—(02)® < —(a20)® + (@31)® = (@20)® (T, 1) + (a2) P Ty, 1) < —()®
—(1)® < =(b30)® + (021)® = (b20)P (G, 1) = (1) ((G3), t) < (1))@
Definition of (v;)®, (v,)®, ()@, (uy)® :
(b) By (v{)® >0,1,)® < 0and respectively (u;)® >0, (u,)® < 0 theroots of the equations
(a21)(3)(v(3))2 + ()PP = (a)® =0
and (b)) (u®)’ + (1) Pu® — (byo)® = 0 and
By (7))® >0, (,)® < 0 and respectively (&i;)® > 0, (i1,)® < 0 the
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roots of the equations (az1)®(v®)” + (a)Pv® — (a)® =0
and (b,)®(u®)” + @)Pu® — (b)) =0
Definition of (m;)®, (m,)®, (u))®, (uy)® -
(c) If we define (m)®, (m,)®, (1)@, ()@ by
(M) = 1))@, (m)® = 1D, if V)@ < (1)@
m)® = (1)@, (Mm@ = TP, if (1) < V)P < (7,)®,

and |(vy)® = o
63

(mz)(S) = (Vl)(3)r (ml)(g) = (Vo)(g)' if (171)(3) < (Vo)m
and analogously
U)® = W)®, (u)® = W)®, if w)® < w)®
_ , _ T3
12)® = W)@, ()® = @)D, if W) < @)® < @)®, and|(w))® = %
(Hz)(S) = (ul)(3)' (Hl)(3) = (uo)m, if (ﬁ1)(3) < (uo)(3)
Then the solution satisfies the inequalities
GZfJOe((Sl)(a)—(pzo)(3))t < Gy (t) < Gzooe(51)(3)t
()@ is defined by equation above

3)_ 3) 3)
ﬁGzoe((Sl) @20)t < G,, (1) < )(3) Gy e
(a22)®65 (s)®- (on)(3))t _ —(5)® 0 ,—(S2)®¢
((ml)(3)((51)(3)_(pzo)(3)_(52)(3)) [e e ] + GZZ e < GZZ (t) <
(a22)® 65 [6(51)(3)t _ e_(a'zz)(3)t] + Gé)ze_(a'zz)ﬁ)t)

(m2)®((5)®=(az,)®)
To ROVt < T (1) < T, e((R1)(3)+(T20)(3))t

—TH e®Pt < NG < s, e (RDP+(r20)®)e

(3)
(u1)<3>El(];iigiz&'zz)(w) [e(Rl)mt B e_(b”)mt] + The 02Vt < Ty, () <
(ﬂz)(3)((ngt(l;)zjszz:%)+(Rz)(3)) [e((Rl)G)WZO)G))t - e_(RZ)G)t] + Thhe R
Definition of (5,)®, (5,)®, (R)®, (R,)®:-
Where (5)® = (a39)® (m,)® — (az0)®

(52)(3) = (azz)(3) - (Pzz)(g)

(R1)(3) = (bzo)(g)(ﬂz)(g) - (béo)(s)

(Rz)(3) = (béz)(g) - (7”22)(3)

(11 )(3>

Behavior of the solutions

_If we denote and define

Definition of (0,)®,(6,)® ,(1)®, (1,)@ :

(d) (6)W,(0,)?,(1)®, (1,)® four constants satisfying

—(0)™ < —(a24)™ + (a5)® — (a24)P (T35, 1) + (a5) P (Tys, 1) < —(07)@
—()® = =(b2) + (b3) W = (02) P ((G7), t) = (bys) P ((Go), 1) < = ()@
Definition of (v;)®, (v,)®, ()@, (uy)®,v®,u® :

(e) By (21/1)(4) >0, (v,)™ < 0 and respectively (u,)® >0, (u,)® < 0 theroots of  the equations
(@)@ (@) + (201)(4)‘/(4) — (az)® =0
and (by5)®(u®)” + (7)) @Pu® — (byy)™® = 0 and

Definition of (7,)®,, #,)®, ()@, (i1,)® :
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By (7)™ >0, (1,)® < 0 and respectively (;)® >0, (7i,)® < 0 the
roots of the equations (ays)® (v(‘*))2 + (0)Pv® — (a)® =0
and (b5)® (u®)” + () Pu® — (b,)@ = 0
Definition of (m,)®, (m,)®, (u)™®, (u)™®, (vp)® -

) If we define (m )@, (m)®, (1)@, (u)® by
(mz)(4) = (Vo)(4): (m1)(4) = (V1)(4)' if (Vo)(4) < (V1)(4)

()@ = )@, (m)® = D, if @)D < 1)@ < )P,

and |(vg)® = 0]
G9s

(mz)(4) = (V4)(4): (ml)(4) = (Vo)@)' if (174)(4) < (Vo)(4)

and analogously 437
438

(.”2)(4) = (uo)m' (#1)(4) = (u1)(4): if (uo)(4) < (ul)(4)

()™ = @)@, ()@ = @), if w)® < )™ < @)H®,

0
and|(uo)® = :Z—O‘*
25

()@ = W)@, ()@ = ()™, if @)™ < (ue)™ where (u)®, ()@

are defined
Then the solution satisfies the inequalities 439
440
Gzo4e((51)(4)—(pz4)(4))t <Gy < G204e(51)(4)t 441
where (p,)™ is defined by equation above
@ _(p,)® @
Wcm (D™= < G5 (1) S p® )<4 5 Grae SVt 242
(a26)™ ) @ _(p,,)® ()@ _($,)® 443
((ml)(4)((.5‘1)(‘%;3—(;)242)4(4)—(32)(4)) [e((sl) @20) D)t _ p=(52) t]+G206e G < Gye(b) <
(a26)4G240(m2)4(S1)4—(a26")4e(S1)4t—e—(a26")4t+ G260e—(al6")4¢
T e @Yt < T, (1) < Tf e (FP+020) W)t 444
@) @ @
= )(4) TS, e Rt < T, (1) < (4) Te (RDW+(r20) )t 445
(b26) TS, @ AR (b ® 446
P ®) e — o2 t| 4 o020 < Ty (1) <
447
(a26) 1, R1Y®) (g )@ (R)@® 0 —(RH®
EDO(RDD+(r0) P+ (Ry) D) e B T
Definition of ()™, (5,)®, (R)™, (R,)®:- 448

Where (S))® = (azy)® (my)® — (a34)®
(52)(4) = (‘126)(4) - (Pze)m

(R)™ = (b2)™ ()™ — (bps)™
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(R)® = (b36)® — (126)®

Behavior of the solutions 449

_If we denote and define

Definition of (a,)®, (6,)®, (1))®, (1,)® :

(@) (6)®,(6)®, (1), (r,)® four constants satisfying

—(0)® < —(a28)® + (a29)® = (a28) ™ (Tp9, 1) + (a29)® (Ty9, 1) < —(07)®

—(1)® < =(b2e)® + (b20)® = (b38) P ((G31), t) = (b29) P ((G31),8) < =(2)®

Definition of (v{)®, (v;)®, (), (u)®,v®,u® 450

(h) By (21/1)(5) > 0,(,)® < 0and respectively (u;)® >0, (u,)® < 0 theroots of the equations
(a29)®(v®)" + ()P = (a0)® = 0
and (b)) (u®)” + (1) ®u® — (byg)® = 0 and

Definition of (¥,)®,, (#,)®, (i1,)®, (i1,)® : 451

By (#,)® >0, (#,)® < 0 and respectively (;)® >0, (%i,)® < 0 the
roots of the equations (azg)(s)(V(S))2 + (0,)OV® — (a5)® =0
and (by9)® (u®)" + (@) Ou® = (b)® = 0
Definition of (m)®, (m,)®, (11)®, (1), (v)® :-

(i) If we define (m)® , (m)® , (1), (u)® by

(m)® = ()@, () = ()@, if () < (v)®

(m)® = ()®, (M) = @), if (1) < (W)® < @),
Glg

and |(vy)® = %

O

(mz)(S) = (V1)(5)'(m1)(5) = (Vo)(s): if (171)(5) < (vo)(s)
and analogously 452
(12)® = ), (1)® = W)@, if we)® < (u)®
#)® = @), @)@ = @, if @) < (u)® < @),

0
and|(uo)® = ;2—08
29

453

(12)® = @)®, () = (w)®,if @) < (up)® where (u)®, (@)
are defined respectively

Then the solution satisfies the inequalities 454
Gzose((sl)(S)_(pZS)(S))t S Gyg(t) < Gzose(sl)(s)f

where (p;)® is defined by equation above

Gy (@D < Gy (£) < —5 GFe 455

1
(ms)®) (mg)®
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(a30)®)68s $1Y5) (g )®) —(5)® 0 - —(5® 456
((ml)@((so(S)—(ng)<5>—(52><5>) [0 — om0 |4 G0 < Gy (0) <

(@30)56280(m2)5(S1)5—(a30)5e(S1)5¢—e—(a30)5t+ G300e—(a30)5¢

Tzoge(Rl)(S)f < Tye(t) < Tzoge((Rl)(S)Jr(rzg)(S))t 457
o e ™ < Ty (8) < gy Ty (R0 4020 458
e L AL R
(Hz)(S)((ngt(l:)o-l)—i:z:z)+(Rz)(5)) [e((Rl)(S)Hrzg)(S))t B e_(RZ)(S)t] + The
Definition of (5;)®, (5,)®, (R))®, (R,)®:- 460
Where (51)® = (az5)® (my)® — (azg)®

($2)® = (a30)® — (p30)®

(R)® = (b26)® (12)® = (b25)®

(R)® = (b30)® — (130)®
Behavior of the solutions 461
_If we denote and define
Definition of (¢,)®, (0,)®, (1,)©, (7,)© :
) (06)®,(6,)@, (1)@, (1,)©® four constants satisfying
—(02)® < —(a3)® + (a33)© = (a32) @ (T3, 1) + (a33) @ (T3, 8) < —()©
—(12)@ < =(b3)©@ + (b33) = (b3) ((G35),t) = (b33) @ ((G3s), ) < —(2))®
Definition of (v;)©, (v,)©, (u;)©, (u,)©,v®,u® : 462
(k) By (v,)® >0,(1,)® < 0and respectively (u;)® >0, (u,)® < 0 theroots of the equations
(033)(6)(1/(6))2 +(0)Ov® — (a3,)® = 0
and (b53)©u®)” + (1)©u® — (bs,)® = 0 and 463
Definition of (¥,)®,, (#,)®, (@,)®, (i1,)©® : 464

By (#,)® >0, (#,)©® < 0 and respectively (;)©® >0, (7i,)® < 0 the
roots of the equations (as3)® (v(ﬁ))z + (6,)Ov® — (a;,)® =0
and (b39)®@ (u®)" + () Ou® — (bs)® = 0
Definition of (m;)©, (m,)®, (1), (ux)®, (v)® -
0 If we define (m;)©, (m,)©@, (1)@, (u)©® by
(my)©® = (1)@, (Mm@ = VD@, if W)® < (¥)®

(my)® = W)@, (m)® = @)@, if )@ < (v)® < @),

0
and [(vy)©® = %
3

w
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(m)® = ()®, ()@ = ()@, if )@ < (w)®
and analogously 465

(12)® = ()@, (1)@ = W)@, if we)® < (w)®

W)@ = @)@, (1)@ = @)@, if )@ < (w)® < @)@,
and|(up)©® = ;3—2

(12)® = @)@, (1)@ = W)@, if (@)® < (up)® where (u)®, (@)
are defined respectively

Then the solution satisfies the inequalities 466
G, e(ED@=-0))t < . (1) < 68Dt

where (p,)©® is defined by equation above

1 6)_ (6) (6) 467

W L e((D=03) )t < G, () < )(6) G, eD® 6

(a39)©68, SO _ (2, ) e _(5,)O)¢ 0 (5O 468
((m1)<6>(<51)<6>—(p32)<6>—(5z)<6>) [e(( DE @) — gD ] +GheTCVTE < G (1) <

(@34)6G320(m2)6(S1)6—(a34)6e(S1)6t—e—(a34)6t+ G340e—(a34)6¢

T302€(R1)(6)t STy < T302€((R1)(6)+(732)(6))t 469
o )(6) —T, e RD©t < Ty, (1) < (6) TS, (R @ +(rs2) @)t 40
)79 , ,
" )<6>E?;4;<6>T3<2b’ ) e - e_(b“)(s)t] +The 0Dt < Ty (1) < 471
1 1) =034
0
1) ©((R §‘(1:;tj$)T3)2(6)+(R 3G [e((R1)(6)+(r32)(6))t _ e_(Rz)(G)t] + T304e_(R2)(6)t
2 1 32 2
Definition of (5,)©, (5,)®©, (R,)®, (R,)®:- gg
Where (5,)© = (as,)® (m,)© — (a4,)©®
(S2)©® = (a30)© — (p3)®
(R)© = (b3,)© (1) © — (by,)©
(R)® = (b3)® = (13)®
474

Proof : From Governing equations we obtain 475
PO
2= (a) W - ((‘113)(1) - (‘114)(1) + (a13)® (T, t)) = (a1)® (T14, VD — (a1) Pv®

Deflnltlon of v :- y =218
I — G14

It follows

((a )(1)(V(1)) + (0) Vv D — (q )(1)) < dv(l)

<~ (@OPEO) + @)OVO ~ (@y)D)

From which one obtains
Definition of (¥,)®, (vy)® :-

@  Foro<|w)® =& < a)® < (7)®
1

'S
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DDV De[ @10V (@D -0 D) ©)® = V-00®
1+ We[~@DD(@DO-0M®) ] ' o) D-(vp)®
it follows (v)™® < v (¢) < (v)®

vAD() >

In the same manner , we get
(vl)(1)+(5)(1)(52)(1)e[—(a14)(1)((V1)(l)—(V2)(1))t]
1+(5)(1)e[—(a14)(1)((V1)(1)—(V2)(1)) t]

From which we deduce (v)® < v (t) < (¥,)W

©W = TV -(we)®

) [0 1)
vi(t) < " w)D-(w)®

0

Gi3
0

Gis

(b) If 0<(v)® < ) ==L < (%)D we find like in the previous case,

YD) D) We[~@1D(@DD-02D) ]

< < @
V- v t) <
()= 140 We[f@D(EDD-0D)d = 0=

, a1 D (11D D

O HODEHWe [P (ED-02T) ] @)@
_ _ M (D =wHD = \"1
14O W@V (D= M) ]
0

©) If 0< v)® < @)D <|(vy)® =g+)j , we obtain

1
T D+OD @y De~@ D (V-2 D) ]
1+(C—)(1)e[—(a14)(1)((171)(1)—(172)(1)) ¢
And so with the notation of the first part of condition (c) , we have
Definition of vV (¢t) :-

(mz)(l) < v(l)(t) < (m1)(1). V(l)(t) _ G3®
G14(t)

)W < vO (@) < < (v)W

In a completely analogous way, we obtain
Definition of u™®(¢t) :-

1) < uD @ < (), [uP@ =23
T14(t)
Now, using this result and replacing it in concatenated equations of global system we get easily the result stated in
the theorem.

Particular case :

If (aj3)® = (ay,)®D, then (6))® = (6,)® and in this case (v,)® = (#,)@ if in addition (vy)® = (v;)D
then v(D(t) = (v,)™® and as a consequence G5 (t) = (Vo) G4 (t) this also defines (v,)™ for the special case
Analogously if (b13)® = (b1,)D, then (t,)® = (1,)® and then

(u)® = (@) Pif in addition (uy)® = (u)® then T3 (t) = (uy) P Ty, (t) This is an important consequence
of the relation between (v;)™® and (v;)®, and definition of (uy)™®.

Proof : From the concatenated set of global governing equations we obtain

dv® ' ' o Y
pranie (a16)® — ((a16)(2) — (@)@ + (a16)(2)(T17:t)) = (a17) P (Ty7, v P — (a;,)Pv@
Definition of v® :- y@ = b6
G17
It follows

2 dv @ 2
~ (@@ @) + @)V - (4)?) < 2= <~ (@)D @) + (0)PV® - (a,6)®)
From which one obtains
Definition of (¥,)@®, (vy)@ :-

GY _
(d) For 0 < (v)@ = ﬁ < ()@ < (@)@

v@) (t) > (V1)(2)+(C)(2)(vz)(2)e[_(“17)(2)((V1)(2)_(V0)(2))t] (C)(Z) — v)®-e®
T 1@@e[fe@(eD®-00@)] ' )@ -)®
it follows (v)® < v@(t) < (v))®
In the same manner , we get
vO(8) < TP +QR @y @e[- 1O (EDD-2) ©@ = WP-00®
- 1+ @ @e @@ (TDP-2 @) ] ' V) P-)®
From which we deduce (vy)® < v@(t) < ()@
0
(e) If 0< ()P < )?® = 2% < (¥)@ we find like in the previous case,
17
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@@ @), [~ @17 B (DD =)D ¢
(v)® < O E[(Z) (2() - Mo ow <

1+(c)(2)e[_(“17) ((V1) -(v2) )t]

~ —a1) (@@
(71)(2)+(C)(2)(72)(2)E[ (a17) (( 1) 2) )t] < (17 )(2)
OO @PE@-e@) ] -
0

) If 0<(v)® < @) < (v)®@ =% , we obtain

7

Y@ 4@ @[~ @P (VD= @) ]
1+@©)@e [~@1@(En@-®)]

And so with the notation of the first part of condition (c) , we have

Definition of v®(t) :-

(m)@ < v () < m)@, |vO () = 245
17

)@ < v () <™ < ()@

In a completely analogous way, we obtain
Definition of u®@(t) :-

)@ < u®(©) < )@, |u@() = 248
Now, using this result and replacing it in global equations we get easily the result stated in the theorem.
Particular case :

If (a)s)® = (a;;)@, then (0,)® = (6,)@ and in this case (v;)® = (¥,)@ if in addition (vy)® = (v;)®
then v@(t) = (v,)® and as a consequence G4 (t) = (Vy) @ Gy (t)

Analogously if (b1)® = (b;;)®,then (1))@ = (1,)® and then

(u)@® = () @if in addition (uy)@® = ()@ then T4 (t) = (uy)P Ty, (t) This is an important consequence
of the relation between (v;)® and (v,)®

Proof : From Global equations we obtain

dv® / / " "
P (a20)® = ((azo)(3) = (az)® + (a20)® (T, t)) — (@21)® (1, VP = (a1 )PV
Definition of v® :- v@® = gﬂ
21
It follows

dv®

~(@DOMO) + @)V = (@:0)?) £ = < = (@DP VD) + @)V - (@)®)

From which one obtains

G _
(@) For 0 < (v))® = ﬁ <)® < @)®

P+ @y @@ DD @) ]
140)® e[ @D (DD -00®) ]

it follows (v)® < v®(t) < (v))®

In the same manner , we get

T+ @y P~ @DD(EDD-02®) ]
1+ ®e[@DP(EDD-T2®) ]

Definition of (¥,)® :-

From which we deduce (vy)® < v®(t) < ()@

0
(b) If 0<(v)® < )® = % < (1,)® we find like in the previous case,
21

_ vD®-®
— v9®-®

v® () > C lo®

_ o)P-®

3)
Vi) < " w)®-)®

' (5)(3)

)+ By @el~ @D (D=2 ]
140 @~ @2DP (DB -2 3)) ]

T +O® @y~ @D (TDO-2®) ]
11O @~ @2DP(EDE-T2)3)) ]

v)® < < V() <

< @)®

© o< )®<@)® < )® = % , we obtain

TP +(OB® @@l @2(TDP-2®) ]
11O B~ @2D® (D -2P)) <]

And so with the notation of the first part of condition (c) , we have

v)® < v (@) < < ()@
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Definition of v®)(¢t) :-

Goo(t)
(my)® < v(©) < )@, |vO (@) = 25

In a completely analogous way, we obtain
Definition of u®(¢t) :-

) < u® () < @)@, |u®(©) = 28
Now, using this result and replacing it in Global Equations we get easily the result stated in the theorem.
Particular case :

If (ay0)® = (ay)®, then (6,)® = (6,)® and in this case (v;)® = (¥,)® if in addition (vy)® = (v;)® then
v®(t) = (v,)® and as a consequence G,, (t) = (vo) G,y (1)

Analogously if (byo)® = (by)®, then (7,)® = (1,)® and then

(u)® = (@) ®if in addition (ug)® = (uy)® then Tyo () = (uy)® Ty, (t) This is an important consequence of
the relation between (v;)® and (#,)®

500

Proof : From Global equations we obtain

dv@®
.

(az)® — ((a’24)(4) — (az5)® + (az4)® (Tys, t)) = (az5)® (Tps, VP — (ap5) v ®

Definition of v :- y@® = Gz
G5

It follows

2
_ ((azs)(4)(V(4)) + (0,)Ov® — (a24)(4)) <
From which one obtains

dv@®

=- ((azs)(4)(v(4))2 + (o) v — (a24)(4))

Definition of (¥,)®, (v)® -

G, _
(d) For 0 < |(vp)® = f < ()W < ()W

3

DB+ Oy @e @29 P (DD-00P) €)@ = D=0 ®

)] ) —ve) -
v t) > =
0= 1102 P (DD~ D) (] 0@ -w)®

it follows (v))® < v®(t) < (v))@

In the same manner , we get 501

TOO O @y ®el-@2)P(TDWD-2®) ]

(€)@ = W -(v)™®
11O W[~ @2P (DD -T®) ] '

€3] =
v () < o)D) ®

From which we deduce (vy)® <v®(t) < ()@

0

() If 0< @)@ < (W)@ = % < ()™ we find like in the previous case, 502

(Vl)(4)+(5)(4)(1/2)(4)e[_(“25)(4)((V1)(4)—(v2)(4))t]
14(0)®e [~@25)® (1D -w2)®) ¢|

v)® < < v®() <

THD OB @) De [—(azs)(4)((71)(4)—(72)(4)) t]
1+ We @29 (TDD-®) ]

< (@)™

503
504

0
) If 0< (1)@ < @)@ <|(v)® =2 , we obtain
25

T +(O® @y @el~ @29 (TD®-2)®) ]
1O @l @2) P (DB -T2)®) ]
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And so with the notation of the first part of condition (c) , we have
Definition of v (t) :- 505

Goa(t)
(my)® < v(R) < ()@, | v () = 25

In a completely analogous way, we obtain
Definition of u™®(t) :-

)@ < uD(E) < )@, |u®(0) = 2
25

Now, using this result and replacing it in Global equations we get easily the result stated in the theorem.
Particular case :

If (a34)® = (ay5)®, then (0,)® = (0,)® and in this case (v;)® = (#,)@ if in addition (vy)® = (v;)® then
v (1) = (v))@ and as a consequence G,, (t) = (Vo)™ G,s () this also defines (vo)® for the special case .

Analogously if (byy)® = (bys)®,then (1,)® = (,)® and then
(u)® = () @if in addition (uy)® = (u)® then T, (t) = (up) @ Ty5(¢) This is an important consequence of
the relation between (v;)® and (¥,)™®, and definition of (u,)®.

506

Proof : From concatenated set of equations we obtain
dv® ®) NOBENCEPING! NGO ®) ),(5)

= (a)Y — ((azg) = (@29)™ + (azg) (T29;t)) — (a29)™ (T, )V = (a29)™v
Definition of v® :- v®) = &8
- G29
It follows
_ ) (1)) () (5) _ ®) <« ® o _ ) (1)) ) (5) _ )

(@0) P (V)" + (0) v = (a)® ) < == < = (@) P (V)" + (3)PVE — (azs)
From which one obtains
Definition of (¥,)®, (vy)® :-
G _
) For 0 <|(vp)® = ﬁ < (v)® < (@)®
VO (1) > DO+ (v D@2 (DO -0 ) ] ©)® = WO-00®
B 54(0)®e @290 DO-00®) ] ' v0)®-(v2)®
it follows (v)® < v®(t) < (v))®
In the same manner , we get 507
v® (D) < 0O+ @ el 2 (VD) ] (©)©® = T
T si®e[ @O -2 ' 00)®-)®
From which we deduce (v)® < v®(t) < (75)® 508
0
(h) If 0<()® < )® = % < (%)™ we find like in the previous case, 509
29
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—a29) (S - p)®
©) < (vl)(5)+(C)(5)(vZ)(5)g[ (a29) (( D¥=v2) )t] < 45 <
)™ = SN NENG) s v <
1+(C)(5)e[—(a29) ((V1) -(v2) )t]
. —(az9)(FE) @ )®
O HOO @[ 2P (ED-T2D) ] NG
1+ (O[T @2 (@ED®-G2®) ] T N
. 9 . 510
(i) If 0< (1)® < (#)® <|(v)® =2 , we obtain
29

T+ P (w)Oe [—(a29)(5)((V1)(5)—(172)(5)) t]
1+(0)Be [—(a29)(5)((71)(5)—(72)(5)) t]

v)® < v < < (v)®

And so with the notation of the first part of condition (c) , we have
Definition of v©®)(t) :-

m)® < vO®) < (m)®, |vO () _ Gs®
Gog(t)

In a completely analogous way, we obtain
Definition of u®(¢t) :-

(1)® < U () < (1)®, | u® () = 29
Tz9(t)

Now, using this result and replacing it in global equations we get easily the result stated in the theorem.
Particular case :

If (a26)® = (a39)®, then (6,)® = (0,)® and in this case (v;)® = (#,)® if in addition (v,)® = (v5)® then
vO(t) = (v))® and as a consequence G,g (t) = (Vo) G,o(t) this also defines (v,)® for the special case .

Analogously if (byg)® = (bye)®, then (t,)® = (1,)® and then
(u)® = (@) ®if in addition (uy)® = (u)® then Tog(t) = (uy) T (t) This is an important consequence of
the relation between (v;)® and (¥,)®, and definition of (u,)®.

511
Proof : From Global equations we obtain 512
dv(® , / " "
— = (a5,)® - ((a32)(6) — (az3)® + (a3)® (T3, t)) — (a33) @ (T35, v — (az3)Ov®
Definition of v(© :- v = 532
- G33
It follows
2 dv(© 2
~ (@)@ @) + (@) - (a5,)@) < 2= < = ((@5)@ (V)" + (6) OV — (a5,)®)
From which one obtains
Definition of (¥,)®, (vy)® :- 513
0
M) Foro<|w)® = <)@ < @)@
33

) O+(0) O () ©e|~@3 (DO -0 @) ]
1+(C)(6)e [—(a 33)(6)((V 1)(6)_(1/0)(6)) t]

(6)_(1)(©®)
(6) — v —(o)
- © ) ©—(2)®

v () >

it follows (v5)® < v®(t) < (v;)©®
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In the same manner , we get 514

TDO+()O (7)© |~ @33) O (TDO-T2®) ]
R B O] R RO '

©© = DO —()®

6 D)™
vi(t) < T w)©-7)®

From which we deduce (v,)©® < v©®(t) < (#,)©®

0

()
0

G33

515

(k) If 0<(v)® < (v))® =32 < (9,)® we find like in the previous case,

w1)®+(0) O (vy)®e [—(a33)(6)((1/1)(6)—(1/2)(6)) t]
140)©) @3 O (0O -2 @) ¢]

v)® < < vO@M) <

T+ O @y ©e [~ @3 O (TDO-2)®) ]

< (v,)®
140 ©e[@3O(EDO-G2®) ] < ()

0 1
(I If 0<(v)® < @)® <|(v)® =§% , we obtain 516
3

w

TDO+(O) O () ©e[~@3) O (DO -2 @) ]
14(0)®)[~@33) (DO -2 ¢]

v)® < vO () < < (v))®

And so with the notation of the first part of condition (c) , we have
Definition of v©(t) :-

m)© < vO(©) < m)©, |vO) = 25
33

In a completely analogous way, we obtain
Definition of u®©(¢t) :-

(1)@ < u®@®) < W)@, |u®@®) = ;ﬂg;
33

Now, using this result and replacing it in global equations we get easily the result stated in the theorem.

Particular case :

If (a3,)© = (a33)®, then (6,)© = (0,)® and in this case (v;)©® = (#,)@ if in addition (v,)©® = (v;)© then
vO (1) = (v,)© and as a consequence G (t) = (vo)© G35 (t) this also defines (v,)® for the special case .
Analogously if (b3,)® = (b33)®,then (1,)© = (1,)© and then
(u)® = (@;)@if in addition (uy)® = (u;)® then T3, (t) = (uy)®Ts3 (t) This is an important consequence of
the relation between (v;)® and (¥,)©®, and definition of (u,)®.
517
518
We can prove the following 519
Theorem 3: If (a; )P and (b; )™ are independent on ¢ , and the conditions
(a13) P (a1) P = (a13) P (a) P < 0
(a13)P (1) P = (a13) P (@1) D + (a13) P P13) P + (@1) P P1)D + P13) P (1)P >0
(b13) P (b1) P = (by3) V(b)) >0,
(b13) P (b1) D = (b13) D (b1) D = (b13) P (r1) D — (b1) P (1) D + (13) P ()P < 0
with (p;3)®, (r,)® as defined are satisfied , then the system
If (a; )P and (b; )® are independent on t , and the conditions 520
(a;e)(z)(ay)(z) - ((116)(2)((117)(2) <0 ) 521
(a16)(2)(a17)(2) - (a16)(2)(a17)(2) + ((116)(2)(1716)(2) + (‘117)(2)(1717)(2) + (p16)(2)(2717)(2) >0 522
(b16) P (b17)@ = (b16) @ (b17)@ >0, 523
(b16)(2)(b17)(2) - (b16)(2)(b17)(2) - (b16)(2)(r17)(2) - (b17)(2)(r17)(2) + (rlé)(Z)(r17)(2) <0 524
with (py)@, (1;,)® as defined are satisfied , then the system
- 1f (a; )P and (b; ) are independent on ¢ , and the conditions 525
(a20)®(a21)® = (a20)® (a,1)® < 0
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(a20)®(a21)® = (a0)® (@21 + (a20)® (P20)® + (@21) P P21)® + (P20) P (1)@ >0

(b20)® (b31)® = (b)) P (b)® >0,

(béo)(g)(bé1)(3) - (bzo)(3)(bz1)(3) - (béo)(3)(rz1)(3) - (bé1)(3)(7'21)(3) + (7‘20)(3)(7'21)(3) <0

with (py0)®, (1,1)® as defined are satisfied , then the system
We can prove the following

If (a; )®and (b; )™ are independent on t , and the conditions
(a24)® (az5)™ — (a24)® (a5)*® < 0

(a'24)(4) (aés)(4) - (a24)(4) (azs)(4) + (a24)(4) (p24)(4) + (alzs)m (pzs)m + (P24)(4) (st)(4) >0

(b24)® (bys) @ — (b3 )P (bys)® >0,

(b'24)(4) (bés)m - (b24)(4) (bzs)(4) - (bé4)(4) (Tzs)(4) - (blzs)m (Tzs)m + (T24)(4) (Tzs)(4) <0

with (py)™@, (,5)® as defined are satisfied , then the system
If (a; )P and (b; )™ are independent on ¢ , and the conditions
(a28)® (a29)® — (aze)®(a29)® < 0

(aés)(s)(aé9)(5) - (azs)(s)(azg)(s) + (azs)(s)(pzs)(s) + (a20)® (p0)® + (P28)(5) (P29)® >0

(bég)(s)(bé9)(5) - (bzs)(s)(bz‘))(s) >0,

(bég)(s)(bé9)(5) - (bzs)(s)(bm)(s) - (bés)(s)(rw)(s) - (b’29)(5)(7‘29)(5) + (7"28)(5) (7"29)(5) <0

with (p,g)®, (159)® as defined are satisfied , then the system
If (a; )@ and (b; )© are independent on ¢ , and the conditions
(a32)© (a33)® — (a3,)®(as3)® <0

(a,32)(6) (a§3)(6) - (a32)(6) (a33)(6) + (a32)(6) (p32)(6) + (a’33)(6) (Pss)(é) + (P32)(6) (P33)(6) >0

(b32)® (b33)© — (b33) @ (b33)® >0,

(32) @ (b33) @ = (b32)® (b33)® — (b3,)(@ (r33)® = (b33) @ (133)©@ + (13,) @ (133)©@ < 0
with (p3)©, (133)© as defined are satisfied , then the system Boolean satisfiability problem and N puzzle

(a13) PGy — [(@13) D + (@73) PV (T1)]Gi3 = 0

(1) D613 = [(@1) D + (a1) P (T19)]Grs = 0

(a15) VG4 = [(a15)D + (a;5)P(T14)]Gys = 0

(b13) DTy, = [(b13)® = (b13)P(6) T3 = 0

(1) DTi3 = [(b1) P = (b1)P(G) T4 = O

(b15) DTy = [(by5)® = (by5)P(G) Tys = 0

has a unique positive solution , which is an equilibrium solution for the system
(a16)P Gy = [(a16)® + (a16) P (T17)]Gis = 0

(7)) PGy = [(@17)P + (a17) P (T17)] 67 =
(1:18) PGy — [(@19)P + (a15) P (T17)]G1g =
(b16)@Ty7 = [(b16)® = (b16)® (Gro) 1T16
(b17)(2)T16 - [(b,17)(2) - (b,1,7)(2)(019) 1Ty, =
(b18)(2)T17 - [(bis)(z) - (bllls)(z)(Gw) [Tig =0

has a unique positive solution , which is an equilibrium solution for the system
(a20)PGy1 = [(@20)® + (a20)® (T31)] G0 = 0

(a20)®6z9 — [(a20)® + (a20)® (2] 6oy = 0

(a22)®6y1 — [(a22)® + ()@ (T2)] 6oz
(bzo)(3)T21 - [(b,zo)(B) - (blzlo)(g)(GB) 1Ty =
(b21)(3)T20 - [(b,21)(3) - (blzl1)(3)(G23) 1T =
(bzz)(3)T21 - [(b,zz)(B) - (blzlz)(g)(GB) 1T =0

has a unique positive solution , which is an equilibrium solution for the system
(424) P Gos — [(@2)™® + (a24)® (T35)]Gos = 0

oS O o

(az5)PGpy — [(a25)™ + (a35) ™ (T25)]Gos = 0
(az6) PG5 — [(@26)™ + (a26)™ (T25)]Gp6 = 0

(b24)PTys — [(b24)® — (b3) P ((G37)) 1Tos = 0
(bas) P Ty — [(b35)® — (b35) P ((G27)) 1Tos = 0O
(b26)PTos — [(b26)® — (b36) P ((G37)) 1Ty = 0
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has a unique positive solution , which is an equilibrium solution for the system

(a28) ™G9 — [(a28)® + (a28)®(T29)]Gr = 0

I
o

(az9)®Gyg — [(aég)(s) + (a;9)(5)(T29)]G29 =

(az0)® G,y — [(aéo)(s) + (ago)(s)(Tz‘))]Gm =0

(bzs)(S)ng - [(bés)(s) - (bgs)(s)(Gm) ]T28 =0

I
o

(bzg)(s)Tzs - [(bég)(s) - (bg9)(5)(G31) 1Ty =
(b30) P Tye = [(b30)® — (b30)®(G31) T30 = 0
has a unique positive solution , which is an equilibrium solution for the system
(a32)® 633 — [(a32)® + (a3)©(T33)] G5, = 0

(a33)®Gsy — [(a33)©@ + (a33) @ (T33)]Ga3 = 0

(a34)®Gs3 — [(a,34)(6) + (azy)® (T33)]G34 =0
(b32)(6)T33 - [(béz)(6) - (bgz)(6) (G35) 15, =0

(b33)(6)T32 - [(bé3)(6) - (b§3)(6) (G35) 153 =0

|
o

(b34)(6)T33 - [(bé4)(6) - (b§4)(6) (035) 1154 =

has a unique positive solution , which is an equilibrium solution for the system

Proof:

(a) Indeed the first two equations have a nontrivial solution G5, Gy, if

F(T) =

(a:1,3)(1)(a’14)(1)”_ (a13)(1)(a14)(1) + (a'13)(1)(a'1'4)(1)(T14) + (a'14)(1)(a'1'3)(1)(T14) +
(a13) P (T14) (a14) P (T14) = 0

(@) Indeed the first two equations have a nontrivial solution G4, G, if

F(Ty) =
(a’1’6)(2)(a17)(2)”— (a16)P(a17)® + (a16) P (a17) P (T17) + (a17) P (a16) P (Ty7) +
(a16) @ (Ty7)(a17) P (Ty7) = 0

(@) Indeed the first two equations have a nontrivial solution G, Gy, if

F(Ty3) =

(a20)®(a21)® = (a20)® (210 + (a20)® (a21) P (T21) + (@21)® (A20) P (T) +
(a20)®(T21) (az1) P (Tp1) = 0

(@) Indeed the first two equations have a nontrivial solution G,4, G5 if

F(Ty;) =

(a24)® (@25)® = (@)™ (a25)® + (a24) P (a35)® (Ty5) + (a25)® (@24)® (Tp5) +
(a24) @ (Tp5)(az5) @ (Tp5) = 0
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577
(a) Indeed the first two equations have a nontrivial solution G,g, G,q if
F(Ts) =
(a28) ) (a29)® = (a28)® (a29)® + (a25)®(a29) ) (T39) + (A26)® (a25)® (To) +
(a28)® (T39) (a29) ™ (T39) = 0
578

(a) Indeed the first two equations have a nontrivial solution Gs,, Gz3 if

F(Ts55) =

(a32)® (a33) @ — (a32)© (a33)® + (a3,)@ (a33)© (T33) + (a33) @ (a3,) @ (T33) +

(agz)(@ (T33)(a§3)(6) (T33) =0

Definition _and unigueness of Ty, :- 579
After hypothesis £(0) < 0, f(e) > 0 and the functions (a; )™ (T,) being increasing, it follows that there exists
aunique Ty, for which f(Ty,) = 0. With this value , we obtain from the three first equations

Gia = (a13) V614 Gie = (a15) D614
13. . [(ala)(1)+(a13_)(1)(Tf4)] ' 157 (1) D+(a15)D(14,)]
Definition_and unigueness of Ty :- 580

After hypothesis £(0) < 0, f(e) > 0 and the functions (a; )®(T;,) being increasing, it follows that there exists
aunique Ty, for which f(T;;) = 0. With this value , we obtain from the three first equations

581

Gi = (a16) PGy Gia = (a18) PGy 582

167 [a10)@+@1)@ (1)) 7 BT [(e1g)@P+(a1)@(1iy)]
Definition_and unigueness of T;; :- 583
After hypothesis f(0) < 0, f(e0) > 0 and the functions (a; )*’(T;;) being increasing, it follows that there exists
aunique Ty; for which f(T,;) = 0. With this value , we obtain from the three first equations
G = (a20)¥621 G = (a22)® 6y

20 [(a20)®+(az0)®(T51)] ’ 22 [(a22)®+(az)®(131)]
Definition and unigueness of Tys :- 584
After hypothesis f(0) < 0, f(e0) > 0 and the functions (a; )™ (T,s) being increasing, it follows that there exists
aunique Ty for which f(T;s) = 0. With this value , we obtain from the three first equations
G = (a24)W6ys G, = (a26)™ G5

T @)W @)@ (15)] T T T [(aze)®+(aze) D (135)]
Definition and unigueness of T, :- 585
After hypothesis f(0) < 0, f(e0) > 0 and the functions (a; ) (T,,) being increasing, it follows that there exists
aunique Ty, for which f(T5y) = 0. With this value , we obtain from the three first equations
G = (a28)™6z9 G = (a30)®) 629

27 [aze)@Haz)®(15)] 1 0T (a3 +(a39)® (1)
Definition _and unigueness of T3; :- 586
After hypothesis f(0) < 0, f(e0) > 0 and the functions (a; ) (T33) being increasing, it follows that there exists
aunique Ty; for which f(T55) = 0. With this value , we obtain from the three first equations
Gor = (a32)©633 Gar = (a34)©633

27 [@3)©+as)©(15)] 1 T (@30 © +(a3)©(153)]
(e) By the same argument, the equations of global system admit solutions G;3, G4 if 587
@(G) = (b13) P (b1)® — (by3) M (b)) —
[(B13)P (b)) + (b1) P (b13) V(@) +(b13) P (G) (1) P (6) = 0

Where in G(G;3, G14,Gys5), Gi3, Gis must be replaced by their values from 96. It is easy to see that ¢ is a decreasing
function in G, taking into account the hypothesis ¢(0) > 0, @ () < 0 it follows that there exists a unique G,
such that (G*) =0
) By the same argument, the equations 92,93 admit solutions G, G;7 if 588
@(Gw) = (f’ie)(z)(bﬁ)(z) N (b16)(i) (b17)(2) - . .
[(b16)(2) (b17)(2) (619) + (b17)(2) (b16)(2) (619)]+(b16)(2) (Gl‘))(b17)(2) (619) =0 589
Where in (G19)(G1g, G17, Gig), G16, G1g Must be replaced by their values from 96. It is easy to see that ¢ is a 590
decreasing function in G, taking into account the hypothesis @(0) > 0, @(c0) < 0 it follows that there exists a
unique Gj, such that @((G,9)*) =0
@ By the same argument, the equations of the global system admit solutions G,q, G, if 591

@(Gy3) = (by0)® (b21)® = (by)® (b)) —

[(620)® (b21) (G3) + (b21)® (b20) P (G23)]+(b20) P (G33) (b31) P (G3) = 0

Where in G,5(G,g, Go1, Go2), Gag, Go; must be replaced by their values from 96. It is easy to see that ¢ is a
decreasing function in G, taking into account the hypothesis @(0) > 0, () < 0 it follows that there exists a
unique G, such that ¢ ((G,5)*) =0
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(h) By the same argument, the equations of the global system admit solutions G,4, G55 if

9(Gy7) = (’?’24)(4) (bys)™ - (b34) @ (bys)™ — )

[(bé4)(4) (b25)® (Gp7) + (bys)™ (bp0)™® (G27)]+(bg4)(4) (G27)(by5) ™ (Gr7) =0

Where in (G,7)(G,4, Gos, Gag), Goa, Goc Must be replaced by their values . It is easy to see that ¢ is a decreasing
function in G, taking into account the hypothesis ¢(0) > 0, () < 0 it follows that there exists a unique G,
such that ¢ ((G,;)*) =0

(i By the same argument, the global equations admit solutions G,g, Gy if

¢(G31) = (bés)(s)(bé9)(5) - (bzs)(s)(bw)(s) -

[(028)® (b20) ) (G31) + (b29)® (b2)® (G31)]+(b25) (G31) (b39)®(G31) = 0

Where in (G31)(Gag, Gog, G3), Gag, G5 must be replaced by their values from 96. It is easy to see that ¢ is a
decreasing function in G4 taking into account the hypothesis ¢(0) > 0, ¢(o) < 0 it follows that there exists a
unique G54 such that ¢((G3;)*) =0

()] By the same argument, the global equations admit solutions Gs,, G35 if

<P(q35) = (Péz)(@ (b,33)(6) N (b32)(,6,) (b33)(6) - ., .,
[(B32)® (b33)® (G35) + (b33) @ (b32)® (G35)]+(b32)© (G35) (b33) @ (G35) = 0
Where in (G35)(Gsy, Gs3, G34), G32, Gs4 must be replaced by their values from 96. It is easy to see that ¢ isa
decreasing function in G taking into account the hypothesis ¢(0) > 0, ¢ () < 0 it follows that there exists a
unique G35 such that (G*) =0
Finally we obtain the unique solution of the global system:
Gy4 givenby ¢ (G*) = 0, T}, given by f(T},) = 0 and
G = (a13)M6iy Gr = (a15)M6iy
B 7 a1 D+@p®(rf)] T T [(a19) W4y D (7))
T = (b13)ITfy T = (b15) D1y
B e ®-01p®En] T T [01)M-01)M 6]
Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution
Gi7 givenby @((G19)*) = 0, Ty; given by f(Ty7) = 0 and

G = (a16)?Gis Gr = (a18)?Gis

16 [(316)(2)*'(31(62(2)(Ti7)] 18 [(a18)(2)+(a18)(2()()T;7)]
b16)@)T} b1g) @) T}

Ty = (b16)'“)T1y R (b18)*~Tiy

[616)@-(b16) P (619)9)] 187 [015)D—(015) @ (G19)7)]
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution
Gy, givenby ¢((G,3)*) =0, Ty givenby f(T,;) = 0 and

G* — (aZO)(3)GZ*I G* — (aZZ)(3)G§1

207 [(ap)®+@0)@(T51)] ' 22 T [(ag)®+az)®(T5)]
T — (b20)PT5 TE = (b22) 315

20 ’ 22 —

T 0200 =030 (6237)] [(b22) ) —~(b22)®) (G237)]
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution
G55 givenby ¢(G,;) = 0, Tys givenby f(T,5) = 0 and

G* — (a24)(4)62*5 G* — (aZG)G)GES
27 [(a2)W+@z)®(135)] T 20 T [(a26) P +(az6)®(155)]
(b24) T35 (b26) D135
Ty = , Tze =

02 ® =2 ((627)")] [(b26)® —(b36)® ((G27)7)]
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution

Gy given by @((G31)*) = 0, Tyy givenby f(T5,) = 0 and

G = (a28)®)63q Gi = (a30)®)639
28 7 [(a29)P+(az)®(139)] T T30 T [(a30)®+(a30)®)(T59)]
T — (b28)®) T3 TE — (30)®) T3,
28 7 ) ®-03)®(G300] 1 30 T [030) =30 ((631)7)]

Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution
G35 givenby @((G35)*) = 0, T55 given by f(T53) = 0 and

G = (a32)©)633 G = (a34)©)G33
32 7 [(as)®+@3)©@(133)] 3 T [(a30)©+(az4)©(T53)]
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T = (b32)©)T33 (b34)©)T33

32 7 [(h3)©—(b3)© ((G35)")] [(b34)©—(b3)© ((G35)")]
Obviously, these values represent an equilibrium solution
ASYMPTOTIC STABILITY ANALYSIS

*
1T34_

Theorem 4: If the conditions of the previous theorem are satisfied and if the functions (a; )V and (b; )

Belong to CW( R,) then the above equilibrium point is asymptotically stable.
Proof:_Denote
Definition of G;, T; :-
G, =G + G T =T+ T,
e @
%(Tﬁ) = (CI14)(1) ) a(b ) —(G") = Sij

Then taking into account equations of global system neglecting the terms of power 2, we obtain

‘%13 = —((a’13)(1) + (P13)(1))G13 + (a13)V Gy — (q13) PG5 Ty,
dg;tm = _((a,14)(1) + (p14)(1))(G14 + (1) PGz — (q14) VG Ty
dg;tls = _((a,15)(1) + (p15)(1))@’15 + (als)(l)@u - (Q15)(1)G1*5T14
T8 = (1) ® = (3) )Tz + (b)) VT + I 15(s05)() T3 G )
Dot (b)) D = (1) V) Ty + (1) DTy + T3 (501076 Tir )
dj_;s = —((b15)® = (r15) )Ty + (b1s) VT4 + Xi215(505)0) 5 G;)

If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b, )® Belong to
C@(R,) then the above equilibrium point is asymptotically stable
_Denote
Definition of G;, T; :-
G=G+G T =T +T,

a(a1)® ., ab,
2902 (1) = (@)@, 222 () ) =5
taking into account equations (global) and neglecting the terms of power 2, we obtain

d(:% = —((@16)® + (016)?) G5 + (a16)P Gy — (916)PGi6Tyy
d(:% = —(@)NP + (1)) ?)Gy; + (a17)P Gy — (917)PGi, Ty
d(:% = —((@0)? + (P18)?P)Gyg + (a15)PGy7 — (915)PGigTyy
dg% = —((b16)® = (6)P)T16 + (b16) DTy + Z/816(506)() Tis Gy )
d:% = (1)@ — 1) P) Ty + (1) DTy + X116 (sany Ti7 G )
dTg

e _((b,w)(z) - (r18)(2))T18 + (byg) DTy, + 2}216(5(18)0)Tf8«;’]')
If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b; )®® Belong to
C®(R,) then the above equilibrium point is asymptotically stable.

_Denote

Definition of G;, T; :-
G =G + G T =T +T,
a<a21)< )

a(b )

(T51) = (g1)® ((G23) ) =sy
Then taking into account equations (global) and neglecting the terms of power 2, we obtain

20 = —((@30)® + P20)P) Gz + (20) PGy — (420) PG50 Ty
8 = —((@)® + P21)D) Gy + (0)P Gz — (921) P65, Ty
T2 = —((@2)® + P22)P) Gz + (@2)P Gy — (42)P 65, Ty
d;r% = —((020)® = (r20)®) Ty + (b30) DTy + X450(520)H T50G;)
d;r% = —((02)® = ()P Ty + (b)) P Ty + X200(5021y(H T51G;)
d;r% = —((02)® = () D) Ty + (b)) DTy + X200(5020() 152G )

If the conditions of the previous theorem are satisfied and if the functions (a; )* and (b; )* Belong to
C®(R,) then the above equilibrium point is asymptotically stable.

_Denote

Definition of G;, T; :-
G, =G + G T-=T*+’Il"
a(azs)( ),

a(b )

(Tzs) - (qZS)(4) ((627) ) - Sl]
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Then taking into account equations (global) and neglecting the terms of power 2, we obtain

T = (@)@ + (p20)P)Gos + (a20) PG5 — (42) PG5, Tos

df% = —((a5)™® + (P25)®) G5 + (az5) PGy — (425) P G35 Ts

22 = —((a26)® + (P26)®) Gz + (a26)PGigs — (426)“ G5 Ts

Dot — (53 = (1) )T + (bp)DTs + T2, (02000 T4 ;)

25 — ()@ = (125)®) s + (bs) DT + 254 (525,755 G;)

2026 — ()@ — () D) T + (b6) D5 + 22,4 (50261 T35 )

If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b; )® Belong to
C®(R,) then the above equilibrium point is asymptotically stable.

_Denote
Definition of G;, T; :-
GiZGi*-l_Gi ,Ti=Ti*+']Ti
2(a30)® .., a (b )® )
ﬁﬂwz‘a) = (q20)® a—c;j((G31) ) =s;

Then taking into account equations(global) and neglecting the terms of power 2, we obtain

d% = _((aés)(s) + (Pzg)(s))@'zg + (a28) P Gog — (425) P G35 Ty
d:’% = —((a20)® + 29)) Gg + (a29)® G5 — (429) ) G39Too
90 = —((@30)® + 30)) Gz + (a30) P Gizg — (q30) PG50 Tag
d:% = —((b28)® — (126) )T + (bog) PTpq + ngzg(s(zg)U)Tz*s (Gj)
djtz'a = —((b20)® = (129) )T + (b39) STy + ngzg(s(zg)(j)Tz*ng)
9 — ((3) = (130)) a0 + (b30) VT + 20 (00 Ti0G) )

If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b; )® Belong to
C©(R,) then the above equilibrium point is asymptotically stable.

_Denote

Definition of G;, T; :-
Gi=Gi*+(Gi ,Tl-=Tl-*+']Ti
9(az)® . 06 )@ .
%(733) = (CI33)(6) ) a_(;j((G35) )= Sij

Then taking into account equations(global) and neglecting the terms of power 2, we obtain

d(d;zjz = —((a'32)(6) + (P32)(6))G32 + (032)(6)(@33 - (CI32)(6)G3*2 T33
d(d;t33 = _((a,33)(6) + (P33)(6))G33 + (033)(6)(@32 - (CI33)(6)G3*3 T33
dii% = —((@3)@ + (03.)©) G4 + (a34) @ G33 — (g34) @63, T3
d% = —((b5)©@ = (r3) @) T3, + (b3) T35 + X33, (532)) T2 G;)
d:{% = —((b33)©® — (r33)©) T35 + (b33) O T3, + X35, (533y) T3 G; )
d:ir% = —((b34)© — (134)©) T34 + (b3) OTy5 + Z?i32(5(34)0)T3*4(G]-)

The characteristic equation of this system is

(WD +(b15)® = () OHDD + (a15)® + (15)V)

[(((/1)(1) + (@13)® + 13)P) (1) V65 + (@)D (@161 )]

(((/1)(1) + (b13)® = (113)V)say,anTia +(b14)(1)5(13),(14)T1*4)

+ (((/1)(1) + (@)@ + (1)) (q13) V613 + (a13)(1)(q14)(1)6{‘4)

(((/1)(1) +(b13)® = (113)V)say,anTia + (b14)(1)5(13),(13)T1*3)

(WD) + (@)D + @) + @)@ + @) P) DHD)

(WD) + (B + B ~ (1) + (3)D) WD)

+ (((/1)(1))2 +((@3)® + (@) + (1) + (p1)®) (A)(D) (415) VG5
+H(DD + (a1)® + (1)) (@)D (@) V6 + (a12) P (a15)P(q13)V613)

(((/1)(1) +(b13)® = (1) P)saay a5 T +(b14)(1)5(13),(15)T1*3)} =0
+

WWW.ijmer.com

642
643

644
645
646
647
648
649

650

651
652

653
654
655
656
657
658

659

660
661

662
663
664
665
666

667
668

1868 | Page



International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1828-1871 ISSN: 2249-6645

(WP + B15)® = (1) P)(DP + (a18)® + (18)?)
[(((/1)(2) + (016)@ + (016)?) (@17)PGi; + (a17)(2)(Q16)(2)G16)]
(((/1)(2) + (b16)® = (116)@)san,anTi7 +(b17)(2)5(16),(17)Tf7)
+ (((/1)(2) + (@)@ + (217)P)(916)PGi6 + (a16)(2)(Q17)(2)GI7)
(((/1)(2) + (bys)? — (T16)(2))5(17),(16)T1*7 + (b17)(2)s(16),(16)T1*6)
(((/1)(2))2 + ( (a16)® + (a17)® + (p1)@ + (p17)(2)) (/1)(2))
(((/1)(2))2 + ( (b16)@ + (b17)@ — ()@ + (7‘17)(2)) (/1)(2))
+ (((/1)(2))2 + ((a16)@ + (@)@ + (216)® + (017)P) (/1)(2)) (918)PGg
+((/1)(2) + (a,16)(2) + (P16)(2)) ((a18)(2)(Q17)(2)GI7 + (a17)(2)(a18)(2)(Q16)(2)G§6)

(((/1)(2) + (bye)? — (T16)(2))5(17),(18)T1*7 +(b17)(2)5(16),(18)Tf6)} =0
+

(DD + (22)® = ()PP + (a)® + (p22)®)

[(((/1)(3) + (aéo)(3) + (on)(3))(CI21)(3)G2*1 + (a21)(3)(q20)(3)62*0)]

(((/1)(3) + (byo)® — (Tzo)(3))5(21),(21)T2*1 +(b21)(3)5(20),(21)T2*1)

+ (((/1)(3) + (a20)® + 021)®)(920)P 63 + (azo)B)(CIzﬂ(l)Gz*l)

(((/1)(3) + (020)® = (120)®)s21),20) T + (b21)(3)5(20),(20)T2*0)

(WD) + (@)@ + (@) + @) + @:21)P) WD)

(WD) + ()@ + (b3)® = (0P + (15)P) WD)

+ (WD) + (@)@ + @)D + P20 + P21)P) WD) (422) PG
+((DP + (@20)® + (220)P) ((@22)P(@20)P631 + (a21)® (@22) P (g20)®630)

(((/1)(3) + (b20)® = (20)®) 521,020 T1 +(b21)(3)5(20),(22)T2*0)} =0
+

(DD + (b36)® = () )@ + (az6)® + (p26)*)
[(((/1)(4) +(a2) @ + (p24)®) (@25) W G35 + (a5)® (CI24)(4)G2*4)]
(((/1)(4) + (b24)® = (124)®) 525, 25) T25 +(b25)(4)5(24),(25)T2*5)
+ (((/1)(4) + (a25)® + (P25) ) (q20) P G35 + (a24)® (QZS)G)GZ*S)
(((/1)(4) + (b24)® = (1)) 525,20 T5 + (bzs)(4)5(24),(24)T2*4)
(WD) + (@)@ + (@)@ + @)@ + (p25)®) D®)
(WD) + (B)® + ()@ — ()@ + (15)®) HP)
+ (((/1)(4))2 +((@20)® + (a25)® + (P2)® + (p25)?) (A)m) (426)Gag
H(DW + (a24)® + (024)®) ((a26)® (G25) PG5 + (a25)® (a26)® (424) P G34)

(((/1)(4) + (h24)® = (24)®)5(25,26) T25 +(b25)(4)5(24),(26)T2*4)} =0
+

(DO + B30)® = (3))(DD + (az0)® + (p30)®)
[(((/1)(5) + (az8)® + (p26) ) (G29) P G3o + (029)(5)(1128)(5)@8)]
(((/1)(5) + (b2g)® = (128))5(29),29) T +(b29)(5)5(28),(29)T2*9)
+ (((/1)(5) +(a20)® + (020)®) (428) P G35 + (028)(5)(1129)(5)@9)
(((/1)(5) + (b2s)® = (128) ) 5(29),28) T30 + (b29)(5)s(28),(28)T2*8)
(W) + (@) + (@) + ) + (20)®) D)
(W) + (B)® + B3)® = (36)@ + (129)P) D)
+ (((/1)(5))2 + ( (az8)® + (a20)® + (p2)® + (P29)(5)) (A)(S)) (930)®G3o
+((DD + (aze)® + (p25)®) ((a30)(G20) P G30 + (a20)® (a30) (q26) G35)
(((/1)(5) + (b2g)® = (128))5(29),30) T +(b29)(5)5(28),(30)T2*8)} =0
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+
(DO + (b3)@ = (3O (D + (az)®@ + (p34)©)
[(((/1)(6) +(@32)®@ + (p32)©) (@33) @ G35 + (a33) @ (932) @63, )]
(((/1)(6) + (b32) @ = (13)©)5(33),33) T3 +(b33)(6)5(32),(33)7‘3*3)
+ (((/1)(6) + (a33)© + (933)©) (q32)© 63, + (az,)© (Q33)(6)G3*3)

(((/1)(6) + (b32)© = (132)®)s33),32) T3 + (b33)(6)5(32),(32)T3*2)
(((/1)(6))2 + ( (a32)® + (a33)©@ + (p32)© + (p33)(6)) (/1)(6))

(((/1)(6))2 + ( (b32)® + (b33)® — (r3,)©@ + (7'33)(6)) (/1)(6))
+ (((/1)(6))2 + ( (a52)®@ + (a33)®@ + (p3)© + (p33)(6)) (/1)(6)) (931)©Gs4
+((/1)(6) +(az)®@ + (P32)(6)) ((a34)(6) (33) @G35 + (a33) @ (a34)® (Q32)(6)G§2)
(((/1)(6) + (b32) @ = (13)©) 533,30 T3 +(b33)(6)5(32),(34)T3*2)} =0

And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and this proves
the theorem.
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