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Abstract: This paper considers the scheduling problem of minimizing the sum of flowtime on single machine with release 
dates. It is well known that the problem is NP-Hard, therefore in order to solve the problem, two approximation algorithms 

(KSA1 and KSA2) were proposed. KSA1 and KSA2 algorithms were compared with the MPSW (selected from the 

literature) and the Branch and Bound (BB) method. All the four solution methods were evaluated on a set of randomly 

generated problems. Twenty problem sizes ranging from 3 to 100 jobs and fifty problem instances under each problem size 

were generated. A total of 1000 (50x20) problem instances were solved. Experimental results based on effectiveness show 

that the MPSW algorithm performs closest to the BB method and outperformed both the KSA1 and KSA2 algorithms for all 

the problem sizes considered.  On the other hand, based on efficiency, the KSA1 and KSA2 algorithms outperformed both 

MPSW and BB methods. 
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1. INTRODUCTION 
Scheduling can be defined as the allocation of a set of defined resources to a set of defined tasks subject to certain 

constraints, in order to satisfy a specific objective [9]. Scheduling has wide applications in computer systems, Hospital 

administration, Transportation management, Lecture and examination planning, Manufacturing e.t.c. Generally, scheduling 
problems involve jobs that must be scheduled on machines subject to certain constraints in order to optimize one or more 

objective function(s).  

 

The methods for solving general scheduling problems can be classified into: exact and approximation methods. Exact 

method yield optimal solutions (e.g. total enumeration method, Hungarian method, Johnson’s method for 2-machine 

sequencing, implicit enumeration method such as branch and bound or dynamic programming methods). The approximation 

method, on the other hand, involves the use of heuristic algorithms. Heuristic methods usually involve the use of an intuitive 

approach or rule of thumb.  Heuristic methods are techniques for obtaining acceptable solutions to scheduling problems at 

reasonable computational costs. While they do not always guarantee optimal results, the techniques are relatively economical 

in terms of computational resources utilized. In view of the computational difficulty required by the exact methods, the 

benefit of lower computational costs has been an attraction to being utilized by researchers in order to solve scheduling 

problems [13]. This is the motivation for adopting approximation algorithms in this work. 
 

There are several objectives (performance measures) in scheduling [12]. In systems involving queuing and networks, for 

example, the flow time of a job consists of both the waiting time in the queue and the job processing time on the machine so 

that minimizing flow time improves service quality [11]. The desire to improve service quality makes the minimization of 

the total flow time (or sum of flow time) an important scheduling criterion. The foregoing also motivated the selection of the 

sum of flow time as the criterion to be minimized. Scheduling jobs on a single machine is important because single machine 

environments are common and can usually be modeled as a special case of other environments. Because the assumption that 

all jobs are available at time zero does not always hold, we focus on problems for which jobs have distinct ready or release 

dates. 

Therefore, the main aim of this work is to develop approximation algorithms that can be used to solve the scheduling 

problem of minimizing the sum of flow time on a single machine with release dates. 
 

Three variants of the problem have been explored by researchers. These are:  

(1) problems in which the release dates are zeros (i.e. 


n

i

iF
1

||1 ),  
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(2) problems in which pre-emption is allowed (i.e. 


n

i

ii Frpmtn
1

|,|1 ), and  

(3) the general non preemptive problems in which the release dates are different and distinct (i.e. 


n

i

ii Fr
1

||1 ).  

Smith [15] showed that the first variant of the problem can be solved optimally using the Shortest Processing Time (SPT) 

rule. The second variant of the problem (the preemptive version) can be solved optimally in polynomial time by using the 
Shortest Remaining Processing Time (SRPT) rule [2]. The solution of the preemptive version of the problem provides a 

lower bound for the third variant (the general non-preemptive version) of the problem [1]. The general non-preemptive 

version of the problem is known to NP-Hard [10]. We are unaware of any exact solution method for this third variant of the 

problem. A number of authors have developed branch-and-bound algorithms for the general non-preemptive version of the 

problem [3]-[6]. 

Guo et al. [8] noted that an optimal solution for 


n

i

ii Cr
1

||1  is also an optimal solution for 


n

i

ii Fr
1

||1 . In view of this, 

Guo et al. [8] modified the PSW algorithm (proposed for 


n

i

ii Cr
1

||1 by Phillips et al., [14]) to solve the 




n

i

ii Fr
1

||1 problem. The algorithm is called MPSW.  

2. PROBLEM DEFINITION 
Given the general one-machine scheduling problem where a set J of n jobs has to be sequenced on a machine in order to 

minimize the sum of flow time (also called total flow time). We assumed that only one job can be processed at a time and 

that the arrival time of every job Ji at the machine is known, distinct and denoted by ri (release date). Also, each job Ji 
requires pi time units on the machine (processing time). The time the processing of job Ji starts on the machine (start time) is 

designated as si with the property: 

 

si    ri          (1) 

the completion time of each job (Ci) is defined as: 

Ci = si + pi .        (2) 

The flow time of each job is defined as: 

Fi = Ci –ri         (3) 

The sum of the flow time (also called total flow time) is defined as  





n

i

intot FFFFF
1

21 ...            (4) 

Using the notations of Graham et al. [7], the problem being explored is represented as 

)(||1 toti Fr  or  


n

i

ii Fr
1

||1
      

It is assumed that pre-emption is not allowed and that the problem is static and deterministic i.e. number of jobs, their 

processing times, and ready times and due dates are all known and fixed. 

 

3. MATERIALS AND METHODS 
The methods adopted in this study are now described: 

 

3.1. Solution Methods 
In order to solve the scheduling problem of minimizing the sum of flow time on a single machine with release dates, two 

approximation algorithms (labeled KSA1 and KSA2) are proposed. In order to compare the performances of the proposed 

algorithms, the MPSW algorithm of Guo et al. [8] was selected while a branch and bound (BB) procedure was also 

implemented. All the four solution methods are now described. 
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3.1.1. Branch and Bound (BB) Method 

The branch and bound (BB) procedure is an implicit enumeration scheme where certain schedules or classes of schedules are 

discarded by showing that the values of the objective function obtained with schedules from this class are worse than a 

provable lower bound. The BB procedure gives optimal results. In order to compare the performances of the proposed 

approximation algorithms, the branch and bound method was implemented. The Shortest Processing Time (SPT) rule was 

used to obtain the lower bound at each node. The SPT is optimal for the relaxed (1 |  |


n

i

iF
1

) problem [9]. The node that 

gave the best lower bound value (total flow time) determines the branch to explore. At the terminal node, when all the jobs 
must have been assigned, the node that gave the best solution was noted and became the solution to the considered problem. 

 

3.1.2 MPSW ALGORITHM 

The MPSW algorithm was proposed by Guo et al. [9] for the scheduling problem of minimizing total flow time criterion on a 

single machine with release dates (i.e. 


n

i

ii Fr
1

||1  problem). The MPSW algorithm produces non-preemptive schedules 

from preemptive ones as follows: 

Step 1: Form a preemptive schedule using the Shortest Remaining Processing Time (SRPT) rule. 

SRPT always picks jobs with the shortest remaining processing times among those already released at the current 

time and processes these first. Each job i has a (preemptive) completion time Ci
P.  

Step 2: Form an ordered list L of jobs based on their preemptive completion time Ci
P using a simple sort.  

 

A non-preemptive schedule is then obtained if we continue to assign the first job in L to the machine when it is freed and 

delete it from L. 

 

3.1.3 KSA1 Algorithm  
The KSA1 algorithm schedules the job that has the least value of the sum of the processing time and release date in the first 

position (breaking ties by selecting the job with the job that has the lowest release date among the tied jobs). The remaining 

jobs are scheduled in the increasing order of their waiting times. Waiting times of the remaining jobs are computed as the 

absolute value of the time difference between the release date of each job and the completion time of the first scheduled job. 

The steps of KSA1 algorithm are now described: 

 

KSA1 Algorithm Steps 

 

 STEP 1:  Initialization 

Job_Set_A = [ J1, J2, J3, …….Jn], set of given jobs 

Job_Set_B = [0], set of schedules job 

Job_Set_C = [ J1’, J2’, J3’, …….Jn’], set of unscheduled jobs, Jj’ = Jj  

Job_Set_D = [0] 

n=number of jobs 

STEP 2: Compute the index= pi+ri for each of the jobs in Job_Set_A, i = 1, .., n 

STEP 3:  Arrange the jobs in Job_Set_A in the order of increasing index computed in Step 2  

and put the jobs in Job_Set_D. If there is a tie (i.e. two or more jobs have the same index value), select first the job 
that has the lowest release date among the tied jobs. If there are still ties, break ties arbitrarily. 

STEP 4: Select the job in the first position from Job_Set_D, add this job to Job_Set_B and  

 remove same  job from Job_Set_C. 

STEP 5: Compute the Completion time of the job scheduled in step 4 (C1) 

STEP 6: Compute ΔWj= |Rj – Ci|  for all the  remaining jobs in Job_Set_D. Where Rj is the 

release date of each of the remaining jobs in Job_Set_D and Ci is the completion time of jobs in Job_Set_D , j= 2, 3, 

…, n-1, i= 1, 2, 3, …, n.  

STEP 7 :  Re-arrange the remaining jobs in Job_Set_D in the order of their increasing ΔW  

 computed in Step 6 

STEP 8 :  Append Job_Set_D to Job_Set_B 

STEP 9 :  Stop 
 

3.1.4 KSA2 Algorithm  
The KSA2 algorithm is similar to the KSA1 algorithm. The main differences between the KSA2 and KSA1 algorithms are as 

follows: after obtaining the initial schedule, while the KSA1 break ties by selecting the job with the least release date, the 

KSA2 algorithm in addition proceeds to break ties by selecting the job with the least processing time. Also, the KSA2 

algorithm computes the raw waiting time of jobs instead of the absolute values of the waiting time.  

The steps of KSA2 algorithm are now described:  
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KSA2 Algorithm Steps 

                       

STEP 1 : Initialization 

Job_Set_A = [ J1, J2, J3, …….Jn], set of given jobs 

Job_Set_B = [0], set of schedules job 

Job_Set_C = [ J1’, J2’, J3’, …….Jn’], set of unscheduled jobs, Jj’ = Jj  

Job_Set_D = [0] 

n=number of jobs 

STEP 2: Compute the index = pi+ri for each  

of the jobs in Job_Set_A,   i= 1, 2 ………, n. 
STEP 3:  Arrange the jobs in the order of 

increasing index computed in Step 2 and put the jobs in Job_Set_D. If there is a tie (i.e. two or more jobs have the 

same index value), select first the job that has the lowest release date among the tie jobs. Also, if there is a further 

tie in the release date, arrange the jobs in the order of their increasing processing time. If there are still ties, break 

ties arbitrarily. 

STEP 4: Select the job in the first position from Job_Set_D, add this job to Job_Set_B and  

 remove same  job from Job_Set_C. 

 

STEP 5: Compute ΔWj = (pi+ri) – Rj for all  

 the remaining jobs in Job_Set_D. Where Rj is the release date of each of the remaining jobs in Job_Set_D, j=2, 3, 

…, n; i = 1,2,…, n-1.  
 

STEP 6: If ΔWj is negative or zero, set   

 ΔWj  =  ΔWi  

 

STEP 7: Re -arrange the remaining jobs in  

Job_Set_D in the order of increasing ΔWj.  If there is a tie in ΔWj, arrange the tie jobs in the increasing order of 

their release dates.  Also, if there is a further tie in the release date; arrange the tied jobs in the increasing order of 

their processing times. If there are still ties, break the ties arbitrarily. 

STEP 8: Append Job_Set_D to Job_Set_B. 

STEP 9:  Stop 

 

3.2 Data Analysis 
A total of 20 problem sizes ranging from 3 to 100 jobs and 50 problem instances under each problem size were randomly 

generated (1000 problems in all). The processing times (pi) of jobs were randomly generated (using random number 

generator in Microsoft Visual Basic 6.0) with values ranging between 1 and 100 inclusive. Also, the ready times (ri) of jobs 

were randomly generated with values ranging between 0 and 49 inclusive. 

 

Coding was carried out in Microsoft Visual Basic 6.0. The program computes the value of total flowtime (Ftot) obtained by 

each solution method and each problem instance. Also computed was the execution time taken by each solution. The 

Statistical Analysis System (SAS version 9.2) was used to carry out detailed statistical analysis.  The hardware used for the 

experiment had a 1.87 GHz P6000 Intel CPU with 4 GB of main memory.  

 

The mean value of total flowtime obtained by the various solution methods over the 50 problem instances solved under each 
problem size was computed using the General Linear Models (GLM) procedure in SAS. The GLM procedure was also used 

to carry out the test of means (t-tests). The t-test was carried out in order to determine whether or not the differences 

observed in the mean value of total flowtime obtained by the solution methods are statistically significant. In order to 

measure the tendency of the solution methods to obtain best and worse results, the percentage of time each solution method 

obtains best and worse results were computed using the Summary procedure in SAS. Also, the approximation ratio of each 

solution methods was computed. The results obtained are presented and discussed in section 4. 

 

4. RESULTS AND DISCUSSIONS 
In order to measure the effectiveness of the solution methods, the value of the total flowtime was computed for each solution 
method, each problem size and problem instance. The mean value of the total flowtime obtained by the various solution 

methods over the 50 problem instances solved under the 20 different problem sizes ranging from 3 to 100 jobs is shown in 

Table 1. For a minimization problem, the smaller the value of the total flowtime, the better the solution method. Based on the 

minimum mean value of the total flowtime, a ranking order of BB, MPSW, KSA2 and KSA1 was obtained for all the 

problem sizes considered (3 ≤ n ≤ 100) (Table 1).  

 

In order to determine whether or not the differences observed in the mean value of the total flowtime obtained by the 

solution methods are statistically significant, the test of means (t-test) was carried out and the results obtained are 
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summarized in Table 2. The differences observed in the mean values of the total flowtime obtained by the four solution 

methods (BB, MPSW, KSA1 and KSA2) are not significant at 5% level for all the problem sizes considered (Table 2).  

 

In order to compare the performances of MPSW, KSA1 and KSA2 algorithms with that of the BB method, approximation 

ratios (MPSW/BB, KSA1/BB and KSA2/BB) were computed and plotted (Figure 1). The MPSW algorithm performed 

closest to the BB, followed by KSA2 while the KSA1 lag behind (Figure 1). The overall approximation ratio is shown in 

Table 3. The MPSW, KSA2 and KSA1 algorithms when compared with the BB method have approximation ratios 1.0099 

(indicating that with respect to effectiveness the MPSW algorithm is about 0.0099% worse than BB method), 1.0191 

(indicating that with respect to effectiveness the KSA2 algorithm is about 0.0191% worse than BB method) and 1.0201 

respectively (indicating that with respect to effectiveness the KSA1 algorithm is about 0.0201% worse than BB method) (see 
Table 3). 

 

To further examine the internal performances of the MPSW, KSA1 and KSA2 solution methods, the percentage of time each 

solution method obtained the best and worse results was computed (see Tables 4 and 5). The MPSW gave the best results for 

all the considered problem sizes, indeed yielding 100% in instances involving 7, 80 and 100 jobs (Table 4). Thus, excluding 

the BB (which is optimal), the MPSW has the tendency to produce best results compared to KSA1 and KSA2. Generally, the 

KSA1 algorithm has the tendency to produce worse results compared to KSA2 and MPSW (Table 5). 

 

In order to measure the efficiency of the solution methods, the execution time (seconds) taken by each method to obtain a 

solution to an instance of a problem was computed, plotted and are shown in Figures 2 and 3. As expected, the BB being an 

implicit enumeration method was the slowest followed by the MPSW (Figure 2). The KSA1 and KSA2 algorithms are very 
fast. It is observed that the BB and MPSW begin to exhibit exponential time complexity function when the number of jobs 

exceeds 40 and 70 respectively (Figures 2 and 3). To determine whether or not the differences observed in the mean 

execution time taken by the solution methods are statistically significant, the test of means (t-test) was carried out and the 

results obtained summarized in Tables 6 and 7.  

 

The mean time taken by the KSA1 is not significantly different at 5% level from that of the KSA2 algorithm for all the 

problem sizes considered (3 ≤ n ≤ 100) (Tables 6 and 7). Also, the mean time taken by the MPSW is not significantly 

different at 5% level from that of the BB for 3 ≤ n ≤ 25 problems (Tables 6). However, the mean time taken by the KSA1 

and KSA2 algorithms are significantly different at 5% level from that of the MPSW and BB methods (indicating that both 

KSA1 and KSA2 algorithms are faster than both MPSW and BB) for all the problem sizes considered (3 ≤ n ≤ 100) (Tables 

6 and 7). The mean time taken by the MPSW is significantly different (faster) at 5% level from that of BB for 30 ≤ n ≤ 100 

(Table 7). 
 

Table 1 Mean value of total flow time by problem sizes and solution methods 

 

Problem        Mean of total flow time 

Size  BB  KSA1     KSA2     MPSW 

 

3x1         253.74   256.26  256.26  254.82 

4x1         427.28       442.56  441.62  432.64 

5x1        554.80      577.54  577.30  565.62 

6x1        797.26     820.16  818.70  808.78 

 7x1        1111.14    1141.80  1141.80  1127.82 
8x1        1346.04      1384.12  1382.54  1362.36 

9x1        1680.66     1739.62  1738.72  1719.68 

10x1        1896.40      1950.98  1950.44  1923.84 

11x1        2386.36     2465.50  2465.06  2438.84 

15x1       4410.72      4509.24  4499.04  4469.64 

20x1       7131.98    7271.92  7257.78  7211.66 

25x1      11187.72     11369.34 11356.02     11287.74 

30x1        16368.00      16575.20 16558.06 16443.70 

40x1  28197.16 28567.22 28478.46 28351.68 

50x1          43266.72   43655.86 43582.84 43416.34 

65x1                 72809.42 73495.42 73454.82  73034.20 

70x1          84441.62 85177.96 85101.02 84700.80 
80x1   111198.14 112156.78 112015.98 111490.72 

90x1          141296.58 142302.42 142289.34     141617.98 

100x1   172975.04 174152.22 174176.76 173297.92 

 

Sample size=50 
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Table 2  Test of means (probability values) of total flow time for   3  n    100  problems 

Solution Methods 

Solution Methods BB  KSA1  KSA2  MPSW 

BB   -  >0.5x  >0.50x  >0.50x 

KSA1   >0.50x  -  >0.50x  >0.50x 

KSA2   >0.50x  >0.50x  -  >0.50x 

MPSW   >0.50x  >0.50x  >0.50x  - 

Note  x indicate non significant result at 5% level; Sample size = 50 

- indicate not necessary 

 

 
 

Figure 1 Approximation Ratios (KSA1/BB, KSA2/BB and MPSW/BB) by problem sizes . 
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Figure 2 Comparison of the execution time (seconds) taken by four solution methods and problem sizes 

 

 
 

Figure 3 Comparison of the execution time (seconds) taken by three solution methods and problem sizes 
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5. CONCLUSIONS 
We have explored the scheduling problem of minimizing the sum of flowtime (total flowtime) on a single machine with 

release dates. Two approximation algorithms (KSA1 and KSA2) were proposed for solving the problem. The two algorithms 

were compared with the MPSW algorithm selected from the literature. In order to further measure the performance of the 

three solution methods (KSA1, KSA2 and MPSW), they were compared with the Branch and Bound (BB) method. 

 

Performance evaluations were based on both effectiveness (closeness of the value of the composite objective function to the 

optimal) and efficiency (how fast solution can be obtained i.e. a measure of execution speed). Experimental results, based on 

effectiveness, show that the MPSW algorithm outperformed both KSA1 and KSA2 algorithms as well as performed closest 
to the BB for all the problem sizes considered. Based on effectiveness, the KSA2 algorithm outperformed the KSA1 

algorithm in many of the problem sizes while it performed as good as KSA1 in some of the problem sizes considered (3 and 

7 jobs). However, with respect to efficiency, the KSA2 and KSA1 algorithms outperformed the MPSW algorithm for all the 

problem sizes considered. Also, the KSA2 was found to be as efficient as the KSA1 (i.e. none was consistently faster than 

the other).  

 

Therefore, based on effectiveness, the MPSW algorithm is recommended for the scheduling problem of minimizing the total 

flowtime on a single machine with release dates while, based on efficiency, the KSA2 algorithm is recommended for the 

scheduling problem of minimizing the total flowtime on a single machine with release dates. 
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