
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-657-660 ISSN: 2249-6645

 www.ijmer.com 657 | Page

G. Shafirulla*1, M. Subbareddy #2
Department of Electronics and Communication, Vaagdevi institute of Technology & Science, Proddutur, A.P.

Department of Electronics and Communication, Vaagdevi institute of Technology & Science, Proddutur, A.P

Abstract: It is important to develop a high-performance

FFT processor to meet the requirements of real time and

low cost in many different systems. So a radix-2

pipelined FFT processor based on Field Programmable

Gate Array (FPGA) for Wireless Local Area Networks

(WLAN) is Proposed. Unlike being stored in the

traditional ROM, the twiddle factors in our pipelined

FFT processor can be accessed directly. A novel simple

address mapping scheme is also proposed. The FFT

processor has two pipelines, one is in the execution of

complex multiplication of the butterfly unit, and the

other is between the RAM modules, which read input

data, store temporary variables of butterfly unit and

output the final results. Finally, the pipelined 64-point

FFT processor can be completely implemented within

only 67 clock cycles.

Keywords- FFT; FPGA; address mapping

I. INTRODUCTION

Fast Fourier Transform (FFT) processor is widely used

in different applications, such as WLAN, image process,

spectrum measurements, radar and multimedia

communication services [1]. However, the FFT algorithm is

a demanding task and it must be precisely designed to get an

efficient implementation. If the FFT processor is made
flexible and fast enough, a portable device equipped with

wireless transmission system is feasible. Therefore, an

efficient FFT processor is required for real-time operations

[2] and designing a fast FFT processor is a matter of great

significance.

 In the past twenty years, FPGA has developed rapidly

and gradually become universal. Compared with design flow

of traditional ASIC, designs based on FPGA have the

advantages of flexibility and high performance price ratio.

Many researchers have studied on pipelined FFT based on

FPGA [3], [4], [5]. For instance, in [3], they proposed an
approach to design an FFT processor for wireless

applications, but his design has too many clock cycles and

isn’t fast enough. In comparison to their designs, we propose

a simple and feasible pipelined implementation of a 32-bit

64-point FFT processor based on FPGA for WLAN.

This paper is organized as follows. In the next section,

we introduce a basic radix-2 FFT algorithm to briefly

discuss which decimation is better to the system, a three-

multiplication method, and a novel address mapping scheme

which reduces delay and increases the speed of the system.

In section III, the pipelined FFT architecture is proposed and

each unit is also illustrated. Section IV is the implementation
of the 64-point FFT processor based on FPGA, and

hardware resources are explicitly listed out. The last section

gives the conclusion.

II. FFT ALGORITHM AND ADDRESS

MAPPING SCHEME

A. Radix-2 FFT Algorithm

The FFT algorithm can compute the Discrete Fourier

Transform (DFT) effectively. Given a sequence {x(n)} of N

complex numbers, we can compute its DFT, another

sequence {X(k)} of N complex numbers, according to the

following formula [6]

X K = x(n)N−1
n=0 WN

nk ,K=0,1,..N-1 (1)

And according to the different way to decimate, it can be

divided into two types, DIF (Decimation in Frequency) and

DIT (Decimation in Time). The DIF algorithm is easier to

design than DIT. And considering the finite word length

effect, DIF has much more advantages than DIT, such as

reducing the additive noise, which is introduced by the

multiplication when it is implemented with the fixed point

[7] and reducing the complexity of the whole system.
Consequently, we use the DIF algorithm to design radix-2

FFT module and most of current FFT processors are also

based on this algorithm [8].

B. Three-multiplication Method
It’s undeniable that complex multiplication is the

dominant factor affecting the speed and the throughput of

FFT processor. Computing a complex multiplication

requires four real multipliers and two real adders. As we all
know, the hardware area of a real multiplier is larger than

that of a real adder in FPGA. So we should do ours best to

convert the complex multiplication into addition and

subtraction to optimize the whole performance as high as

possible. Having taken into account all operands are 32-bit

complex numbers, the difference of two inputs Xm (i) and

Xm (j) can be expressed by Z1= x1+jy1 and the twiddle factor

WN
nk =exp(

2n

N
͈π) can be expressed by Z2= x2+jy2. So the

product of them can be also expressed by z x jy .

That’s to say, the 16-bit real part x of the product is

equivalent to x1 x2-y1y2and the 16-bit imaginary part y is

equivalent to x1 y2-x2y1 Therefore, we can transform the

product z easily as the following equations

x=x1(x2+y2)- y2(x1+y1) (2)

y=x1(x2+y2)- x2(x1-y1) (3)

Obviously, using this factorization scheme, the system

has some advantages [9]. The number of real multiplications

Design of high speed FFT Processor Based on FPGA

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-657-660 ISSN: 2249-6645

 www.ijmer.com 658 | Page

is reduced from four to three. And addition has less

consumption than multiplication. So the system power

consumption is also reduced. In this study, we can save

sixteen embedded multiplier 9-bit elements in FPGA. As for

this 64-point FFT processor, the numerical values of

x2+y2, x1-y1, x1+y1, x2 and y2 can be gotten before they

participate in the real multiplication.

C. The Novel Address Mapping Scheme

In this paper, the block size of our system is 64 points.

Having considered the properties of radix-2 64-point FFT, it

needs to read 8 operands from memories at a time so as to

achieve a high-speed FFT. As we all know, parallel

accessing data is crucial to a system [10]. Thus, these 8

operands in our design are located in different row or

column of memory blocks and this arrangement ensures that

8 conflict-free memory accesses can be performed in

parallel. Initially, we use 8 32-bit dual-port memories to
store 64 operands in sequence. And then a new linear shift

conflict-free address mapping scheme is adopted to change

the addresses of operands. The primary two-dimensional

addresses of operands will be mapped to new ones. For

instance, we assume that the original two-dimensional

coordinate is (a, b), in which a and b represent the address of

the data in one memory and the number of the 8 memories,

respectively. Then, we obtain a new conflict-free address

(A, B) by means of the following equations

 A=b, (4)

 B=(a+b)%8. (5)

In our design, it can be ensured that no memory location
is read from or written to at the same time, and this new

mapping scheme is feasible, effective and simple.

III. THE PIPELINED FFT PROCESSOR

ARCHITECTURE
For high throughput systems, pipelined architecture is a

good choice, and it is also an ideal method to implement

high-speed long-size FFT owing to its regular structure

And simple control. The performance of pipelined FFT

processor can be improved by optimizing the structure and

saving hardware resources. The block diagram of our

proposed FFT processor is illustrated in Fig.1. It consists of

four essential units. Control unit, the kernel of the FFT

processor, harmonizes the whole system. Butterfly unit

(BU), which has three-stage pipelined structure, carries out

the complex multiplication. Two dual-port RAMs are used

to store and output data. And AGU, the abbreviation

 Figure 1. The pipelined FFT architecture.

of address generator unit, produces 8 3-bit read addresses
and write addresses.

A. Control Unit

Control unit, which generates all control signals for the

whole system, is responsible for operation control of the

processor. A 48-bit signal w_con controls the whole FFT

processor. And this signal w_con generates two parameters,

write_en and read_en, to control AGU. It also generates sel1

and sel2 signals to select data from two RAMs, each of

which is made up of 8 32-bit registers. The BU and the

remaining parts are controlled by w_con as well. This
control unit harmonizes all steps of the FFT processor based

on a 7-bit counter.

B. The DIF Butterfly Unit

For FFT algorithm, the central component is the BU that

calculates the sum and difference of two input data, and

plays an extremely important role in computing the product

of the difference and twiddle factors. We only use 11 factors

w64
0 , w64

1 , w64
2 , w64

3 , w64
4 , w64

5 , w64
6 , w64

7 , w64
8 , w64

16

, w64
24 to express all 32 factors that we need in this FFT

processor owing to the fact that the twiddle factor wN
nk can

be separated into two components. For instance, w64
28 can be

derived from the product of w64
4 andw64

24 . Moreover, the

value of w64
0 is a constant 1, and for w64

16 only a negative

sign is needed to add to the real part of the relevant data, and

then to inverse the real part and imaginary part. So we can

eliminate these two factors, that’s to say, actually we just

need 9 twiddle factors. In addition, we use 16-bit fixed point

decimal to express these 9 twiddle factors. Although the

fixed point decimal arithmetic isn’t precise enough, it can

satisfy the requirements of general systems.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-657-660 ISSN: 2249-6645

 www.ijmer.com 659 | Page

 Figure 2. Block diagram of BU.

Due to the fact that the multiplication of twiddle factors

and corresponding data is very important, three-stage

pipeline structure is used for the complex multiplication to

obtain a high speed computation. The architecture of BU is

shown in Fig. 2.

 In the BU, both of the complex inputs are 32 bits,

including 16-bit real part and 16-bit imaginary part. The sum

of them needs to be scaled down by a factor of 2 to avoid

arithmetic overflow, and the same operation is applied to the

difference of them. On the other hand, the factor 0 W64 and
the first parameter con_s of the second Multiplexer are not

involved in the complex multiplier, and they can be used as

a constant 1, just as Fig.2 has depicted. Thus, the power

consumption of the complex multiplier can be reduced and

the hardware resources will be saved. There’re some points

to be emphasized. The difference and twiddle factors are

both 32 bits, so the result of the first complex multiplier will

be 64 bits. But because we adopt the fixed point decimal

computation, we should intercept it to a 32-bit parameter

f_mult as the input of the second complex multiplier.

 The most remarkable advantage in this unit is that we
Use 3 32-bit registers to realize the three-stage pipeline of

butterfly transform, using register1 to store the difference,

register2 to store the intercepted result of second stage

f_mult and register3 to store the final result cmul_b.

C. The RAM Unit

The RAM1 and RAM2 are made up of 8 32-bit

registers respectively. And data is always written to the

outside memories from RAM2, and it is always read to

RAM1 from the outside memories. Then let us introduce the

key algorithm used in this unit. Considering the properties of

64-point FFT, we can use the radix-2 DIF 8-point FFT as a
whole unit, so there

 Figure 3. The example of radix-2 8-point FFT.

are only two stages to accomplish the 64-point FFT. And

these two stages are identical to the six stages of the

standard radix-2 DIF 64-point FFT. System parallel reads 8

32-bit operands from outer memories to RAM1 at a time,

and we need only read sixteen times. An example of this

Algorithm is shown in Fig.3.

 The pipeline in RAM units is briefly discussed as

follows. Firstly, system reads 8 operands from outer

Memories and writes them to RAM1, and then the results

will be stored in RAM2 after they are computed.

Meanwhile, system reads the next 8 operands. Subsequently,

system will access operands from RAM1 or RAM2 to
compute these 16 operands. Furthermore, within a single

clock four butterfly computations will be executed

simultaneously. The final results of these 16 operands will

be all stored in RAM2, and then they are written to outer

memories. At the same time, another 8 operands will be

read. Accordingly, only 76 clock cycles are needed to

complete this radix-2 DIF 64-point FFT.

D. AGU

Compared with other units, AGU is also quite important.

It will create 8 read and 8 write addresses, which determine
the data access to outer memories.

In this FFT processor, we adopt the in-place computation

method so as to make it a more simplified and faster system.

That’s to say, we write the results into where they are read.

In contrast to the sequence of 64 input operands configured

by address mapping, the final output sequence of this FFT

processor are in bit-reversed order and need to be adjusted to

normal order. And we can Make these appropriate

adjustments before the FFT computation. So, although we

adjust the sequence of inputs or outputs, the performance of

our FFT processor won’t be degraded.

IV. HARDWARE RESOURCES
The functional simulation and timing simulation are

successfully made. The main hardware resources of this

design are given as follows. The device is the

EP2C70F896C6 of Cyclone II family. The total logic

elements are 562/68,416 (8%), the total pins are

563/622(91%) and the total embedded multiplier 9-bit

elements are 48/300(16%). Meanwhile, the clock frequency

is 31.69MHz. As in [3], they proposed a fixed-point l6-bit
64-point FFT processor with 92 clock cycles in total, but our

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.3, May-June 2012 pp-657-660 ISSN: 2249-6645

 www.ijmer.com 660 | Page

clock cycles is 67. And our FFT processor has a higher

speed and lower power consumption.

V. CONCLUSION
This paper proposes a novel radix-2 FFT processor based

on FPGA for WLAN, using Verilog HDL as hardware

description language and Quartus II as design and synthesis

tool. To achieve high-throughput, pipelined architectures

have been used in the butterfly unit and the dual-port RAM.

The dedicated parallel-pipelined FFT processor architecture

can process input data at high speed, and the whole system

performance can be greatly improved due to adopting a

novel simple address mapping scheme. For radix-two

system, this mapping scheme is better and simpler than most

of others. The design is implemented on a FPGA chip. And

this pipelined FFT completes a complex 64-point FFT

within 2.1μs. The hardware testing result explains that it can
meet the requirements of the WLAN.

REFERENCES
[1] J. A. C. Bingham, “Multicarrier modulation for data

transmission: an idea whose time has come,” IEEE

Communication Magazine, vol. 28, no. 5, pp. 5-14,

May 1990.

[2] J. Palicot and C. Roland, “FFT: A basic function for a
reconfigurable receiver,” 10th International

conference on Telecommunications, vol. 1, pp. 898-

902, March 2003.

[3] Min Jiang, Bing Yang, Yiling Fu, et al., “Design Of

FFT processor with Low Power complex multiplier

for OFDM-based high-speed wireless applications,”

International Symposium on Communications and

Information Technology, vol. 2, pp. 639-641, Oct.

2004.

[4] Kai Zhong, Hui He, and Guangxi Zhu, “An ultra-high

speed FFT processor,” International Symposium on
Signals, Circuits and Systems, vol. 1, pp. 37 -40, July

2003.

[5] Hongjiang He and Hui Guo, “The Realization of FFT

Algorithm based on FPGA Co-processor,” Second

International Symposium on Intelligent Information

Technology Application, vol. 3, pp. 239-243, Dec.

2008.

[6] J. G. Proakis and D. G. Manolakis, “Introduction to

Digital Signal Processing,” New York: Macmillan,

1988.

[7] R. B. Perlow and T. C. Denk, “Finite word length
design for VLSI FFT processors,” Conference Record

of the Thirty-Fifth Asilomar Conference on Signals,

Systems and Computers, vol. 2, pp. 1227– 1231, Nov.

2001.

[8] J. W. Cooky and J. W. Tukey, “An algorithm for the

machine calculation of complex Fourier series,”

Math. of Comp., vol. 19, No. 90, pp. 297-301, April

1965.

[9] S. Oraintara, Y. J. Chen, and T. Q. Nguyen, “Integer

fast Fourier transform,” IEEE Trans. Acoustics,

Speech, Signal Processing, vol. 50, No. 3, pp. 607-

618, March 2002.

[10] J. H. Takala, T. S. Jarvinen, and H. T. Sorokin, "A

Conflict-free parallel memory access scheme for FFT

processors," International Symposium on Circuits and
Systems, vol. 4, pp. 524-527, May 2003.

