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ABSTRACT 

Traditional machine learning algorithms assume that 

data are exact or precise. However, this assumption may 

not hold in some situations because of data uncertainty 

arising from measurement errors, data staleness, and 

repeated measurements etc., these kinds of uncertainty 

have to be handled cautiously, or else the mining results 

could be unreliable or even wrong. In this paper, we 

focus on classifying uncertain data by classification and 

prediction algorithm called setBase. This algorithm 

introduces new measures for generating, pruning and 

optimizing. Probability distribution function and 

uncertain data intervals are computed by this kind of 

algorithm .Based on these new measures, the optimal 

splitting attribute and splitting value can be identified 

and used for classification and prediction. Uncertainty in 

both numerical and categorical data can be processed by 

this measure. Our experimental results show that 

setBase has excellent performance even when data is 

highly uncertain. 

 

Keywords: classification, data uncertainty, prediction, 
setBase algorithm, traditional machines. 

1. INTRODUCTION 
     Traditional machine learning algorithms often assume 

that the data values are exact or precise. In many emerging 

applications, however, the data is inherently uncertain. 

Sampling errors and instrument errors are both sources of 

uncertainty and data are typically represented by probability 

distributions rather than by deterministic values. There are 

many learning algorithms used in the classification of 
deterministic data points, but few algorithms have been 

proposed for classification of distribution-based uncertain 

data objects. 

     Uncertain data is ubiquitous in many real world 

applications, such as environmental monitoring, sensor 

network, market analysis and medical diagnosis [1].A 

number of factors contributes to the uncertainty. It may be 

cause by imprecision measurements, network latencies, data 

staling and decision errors. Uncertainty can arise in 

categorical attributes and numerical attributes [1, 2].For 

example, in cancer diagnosis; it is often very difficult for the 
doctor to exactly classify a tumour to be benign or 

malignant due to the experiment precision limitation.  it 

would be better to represent by probability to be benign or 

malignant[2].Since data uncertainty  is ubiquitous we have 

to develop a data mining algorithms for uncertain datasets. 

     In this paper, we introduce a new selection based 

classification algorithm for data with uncertainty; in this 

process we have a number of desirable properties. Rule sets 

are relatively easy for people to understand[15],and rule  

 

learning systems outperform decision tree learners on many 

problems[16],[17].Rule sets have a natural and familiar first 

order version, namely prolong predicates, and techniques for 

learning propositional rule sets can often be extended to the 

first order case[18],[19]. However, when data contains 

uncertainty. For example, when some numerical data are 

instead of precise value, an interval with probability 

distribution function with that interval-these algorithms 
cannot   process the uncertainty properly. We prove through 

extensive experiments that the proposed classification can 

be efficiently generated and it can classify uncertain data 

with potentially higher accuracies than the other 

classification algorithms. Furthermore, the proposed 

classifier is more suitable for mining uncertain data than the 

other mining algorithms. 

     In this paper, we propose a new selection based 

algorithm for classifying and predicting both certain and 

uncertain data. We integrate the uncertain data model into 

the selection based mining algorithm. For generating rules, 

we introduce a new measure called probabilistic information 
gain. The field of uncertain data management process a 

number of unique challenges on several methods which the 

uncertain data are discussed in Bayesian. 

     We also extend the set pruning measure for handling data 

uncertainty , we perform experiments on real datasets with 

both uniform and Gaussian distribution, and the 

experimental results demonstrate that setBase algorithm 

perform well even on highly uncertain data. There are many 

learning algorithms used in the classification of distribution 

based uncertain data objects. 

     In the rest of this paper, we first give some related works 
in section 2. Then we introduce preliminaries in section 3 

.Our algorithmic framework is presented in section 4. 

Experimental studies on accuracy and performance are 

presented in section 5. The paper is discussed and concluded 

in sections 6. 

2. REVIEW OF RELATED RESEARCHES 
     In this section, we will introduce some related works 

about uncertain data mining, uncertain data classification, 

and more. A detailed survey of uncertain data mining 

techniques may be found in [5].In the case of uncertain data 

mining, studies include clustering[12,13,14], classification   

[ 2,3,6,11],frequent itemset  mining[4,7,8,9,10]. 

     At present, existing works about classification 
algorithms. Qin et al, proposed a rule based algorithm to 

cope with uncertain data [1], later, in [2], Qin et al. 

presented DTU, which based on decision tree algorithm, to 

deal with uncertain data by extending traditional 

measurements, such as information entropy and information 

gain. In [5], Tsang et al. extended classical decision tree 

UDT algorithm to handle uncertain data which is 

Classification of Uncertain Data Using Selection Algorithm 
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represented by probability density function (pdf).In [10],Bi 

et al. proposed Total Support Vector Classification 
(TSVC),a formulation of support vector classification to 

handle uncertain data. 

     Classification is a well studied area in data mining. There 

may be a numerous classification algorithms have been 

proposed in the literature, such as decision tree 

classifiers[20],rule-based classifiers[21],Bayesian 

classifiers[22],support vector machines(SVM)[23],artificial 

neural networks[24],Lazy learners, and ensemble 

methods[25]. Decision tree induction is the learning of a 

decision tree from class-labeled training tuples. 

     A Rule based classifier is a technique for classifying 

records using a collection of” if…then…”rules. Bayesian 
classifiers are statistical classifiers and are based on bayes 

theorem. SVM has its roots in statistical learning theory and 

has shown promising empirical results in many practical 

applications, from handwritten digit recognition to text 

categorization. 

     Uncertain data, also called symbolic data [36], has been 

studied for many years. Many works focus on clustering 

[37]. The key idea is that when computing the distance 

between two uncertain objects, the probability distributions 

of objects are used to calculate the expected distance. In 

[14], Cormode et al. show reductions to their corresponding 
weighted versions on data with uncertainties. In [33], Xia et 

al. introduce a new conceptual clustering algorithm for 

uncertain categorical data. 

     Classification is a well-studied area in data mining.       

Many methods have been proposed in the literature, such as 

decision tree [20], rule based classifications, Bayesian 

classifications [38] and so on. In spite of the numerous 

methods, building classification based on uncertain data 

remains a great challenge. There is early work performed on 

developing decision trees when data contains missing or 

noisy values [19]. Various strategies have been developed to 

predict or fill missing attribute values, for example, Dayanik 
presented feature interval learning algorithms which 

represent multi-concept descriptions in the form of disjoint 

feature intervals. However, the problem studied. 

     In this paper is different from before, instead of assuming 

part of the data has missing or noisy values, we allow the 

whole dataset to be uncertain, and the uncertainty is not 

shown as missing or erroneous values, but represented as 

uncertain intervals with probability distribution functions. 

     Recently, Tsang et al [6] and Qin et al [3] independently 

developed decision tree classifications for uncertain data. 

Both adopt the technique of fractional tuple for splitting 
tuples into subsets when the domain of its PDF spans across 

the cut point. Tsang et al [6] converted every numerical 

value into a set of sample points between the uncertain 

intervals [aj  , bj ] with the associated value f(x), effectively 

approximating every f(x) by a discrete distribution. Qin et 

al. Also proposed a rule-based classification [2]. The key 

problem in learning rules is to efficiently identify the 

optimal cut points from training data. For uncertain 

numerical data, an optimization mechanism is proposed to 

merge adjacent bins which have equal classifying class 

distribution. In our earlier work, we proposed a Bayesian 
classification method for uncertain on clustering of 

uncertain data. In [26], [27], the K means clustering 

algorithms are data. It will be compared with our new 

approach in this paper. 
     There have been studies extended so that the distance 

between objects are computed as the Expected Distance 

using a probability distribution function. For uncertain 

versions of k-means and k-median, Cormode et al [28] show 

reductions to their corresponding weighted versions on data 

with no uncertainties. The FDBSCAN and FOPTICS [29], 

[30] algorithms are based on DBSCAN and OPTICS, 

respectively. Instead of identifying regions with high 

density, these algorithms identify regions with high 

expected density, based on the pdfs of the objects. Aggarwal 

and Yu [31], [32] propose an extension of their micro-

clustering technique to uncertain data. [33] Introduces a new 
conceptual clustering algorithm for uncertain categorical 

data. There is also research on identifying frequent item set 

and association mining [34], [35] from uncertain datasets. 

The support of item sets and confidence of association rules 

are integrated with the existential probability of transactions 

and items. However, none of them address the issue of 

developing classification and predication algorithms for 

uncertain datasets. 

3. PRELIMINARIES 
     In this paper, we are mainly focus on the uncertain 

attributes and assume the class type is certain. In this 

section, we will discuss the uncertain model for both 

numerical and categorical attributes, which are the most 

common types of attributes encountered in data mining 

applications. Uncertain data has attracted more and more 

attention in the literature. 

 

3.1. NUMERICAL DATA UNCERTAINITY 

     In this model, we describe numerical data uncertainty, 

this shows that the value of a numerical attribute is 
uncertain, then the attribute is said to be a uncertain 

numerical attribute, that must be denoted by Ai(Un). 

Further, we use Aj(Un) is to denote the jth instance of 

Ai(Un).The concept of this model for uncertain numerical 

data has been introduced in [1].The value of Ai(Un) is 

represented as a range of interval and the probability 

distribution function(PDF)over this range. We notice that Ai 

(Un) is treated as a continuous random variable. This 

probability distribution function is denoted by f(x) can be 

related to an attribute if all instances have the same 

distribution function and that are related to each instances 

has different distributions. For every uncertain numerical 
attribute instance Ai, let sum i = (Aij .max+Aij .min)/2 and 

diffi+ = (Aij .max − Aij .min) _ (Aij .max − Aij .min)/36. 

     Definition 1:.An uncertain interval instance of Ai(Un),is 

denoted by Aij(Un),U ,is an interval |Aij(Un).l,Aij(Un).r| 

where Aij(Un).l,Aij(Un that is belongs to R, 

Aij(Un).r>=Aij(Un).l. Then this realizes that this model is 

an application dependent. 

 

3.2. CATEGORICAL DATA UNCERTAINITY 

     Under this uncertainty data model deals with categorical 

data, and these attributes that are allowed to take uncertain 
values. Then we call such attribute an uncertain categorical 

attributes that are denoted by Ai(Uc). Further, we use 

Aij(Uc) to denote the jth instance of Ai(Uc).The notion of 

the uncertain categorical attributes was proposed in [2]. 
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     When dealing with uncertain categorical attribute, we 

utilize the same model as studies in [1, 2 and 3] to represent 
uncertain categorical data. Under the uncertain categorical 

model, a dataset can have attributes that are allowed to take 

uncertain values [2]. And we call these attributes Uncertain 

Categorical Attributes, UCA. The concept of UCA was 

introduced in [1]. Let’s write Auci for the ith uncertain 

categorical attribute, and Vi = {vi1, vi2, · · ·, vi|Vi|} for its 

domain. As described in [2], for instance j , its attribute 

value of Auci can be represented by the probability 

distribution over Vi, and formalized as Pji = _pi1, pi2, · · · , 

piVi _, such that Pji(Auci = vik) = pik(1 ≤ k ≤ |Vi|),and 

_|Vi|k=1 pik = 1.0, which means Auci takes value of vik with 

probability pik. Certain attribute can be viewed as a special 
case of uncertain attribute. In this case, the attribute value of 

Auci for instance tj can only take one value, vik, from 

domain Vi, i.e. .Pji(Auci = vik) = 1.0(1 ≤ k ≤ |Vi|),  Pji(Auci 

= vih) = 0.0(1 ≤ h ≤ |Vi|, h _= k). 

     Aij (Uc) takes values from the categorical domain Dom 

with cardinality |Dom|=n. Within a regular relation, the 

value of an attribute A is a single value in Dom=1.In this 

case of an uncertain relation, we record the information by a 

probability distribution over Dom instead of a single value 

domains. 

 

4. ALGORITHMS AND APPLICATION 
     In this section, we deal with the algorithms and its 

applications. To build a set base classifier, we need to 

extract a set of rules that show the relationships between the 

attributes of a dataset and the class label. Each classification 

is in the form of RCondition) +>y. Here the condition is 

called the set base antecedent, which is a conjunction of, y is 

called the set base consequent and it is the class label ,it 

consists of multiple sets Rs ={R1,R2,…….Rn } 
     The Coverage of a rule is the number of instances that 

satisfy the antecedent of a rule. The Accuracy of a rule is 

the fraction of instances that satisfy both the antecedent and 

consequent of a rule, normalized by those satisfying the 

antecedent. Ideal rules should have both high coverage and 

high accuracy rates. 

     The setBase algorithm is shown in Algorithm 1. It uses 

the sequential covering approach to extract rules from the 

datasets. This algorithm extracts the rules one class at a time 

for a data set. Let (y1, y2. . . yn) be the ordered classes 

according to their frequencies, where y1 is the least frequent 

class and yn is the most frequent class. During the ith 
iteration, instances that belong to yi are labeled as positive 

examples, while those that belong to other classes are 

labeled as negative examples. 

     A rule is desirable if it covers most of the positive 

examples and none of the negative examples. Our setBase 

algorithm is based on the RIPPER algorithm [9], which was 

introduced by Cohen and considered to be one of the most 

commonly used rule-based algorithms in practice. 

Algorithm 1:  setBase (Dataset D, ClassSet C) 

Begin 

 RuleSet = ∅ ; //initial set of rules learned is empty 
 for Each Class ci ∈  C do 

 newRuleSet = uLearnOneRule (D, ci); 

 Remove tuples covered by newRuleSet from Dataset 

D; 

 RuleSet += newRuleSet; 

 End for; 

Return RuleSet; 
End 

     The uLearnOneRule () procedure is shown in Algorithm 

2; it is the key function of the setBase algorithm. It 

generates the bestrule for the current class, given the current 

set of uncertain training tuples. The uLearnOneRule () 

includes two phases: growing rules and pruning rules. We 

will explain the first phase, growing rules, in more detail, 

while the other pruning rules is similar to regular rule-based 

classifier, thus will not be elaborated. After generating a 

rule, all the positive and negative examples covered by the 

rule are eliminated. The rule is then added into the rule set 

as long as it does not violate the stopping condition, which 
is based on the minimum description length (DL) principle. 

setBase also performs additional optimization steps to 

determine whether some of the existing rules in the rule set 

can be replaced by better alternative rules. 

Algorithm 2 uLearnOneRule (Dataset D, Class ci) 

Begin 

Stop = false; 

RuleSet = ∅; 

 Repeat 

Split D into growData and pruneData; 

Rule = uGrow (growData); 
Prune Rules based on pruneData; 

Add Rules to RuleSet; 

Remove data covered by Rule from D; 

 Until Stop Condition is true 

Return (RuleSet); 

End 

           The process of growing rules, uGrow (), is shown in 

Algorithm3. The basic strategy is as follows: 

1. It starts with an initial rule : {}-> y, where the left hand 

side is an empty set and the right hand side contains the 

target class. The rule has poor quality because it covers all 
the examples in the training set. New conjuncts will 

subsequently be added to improve the rule’s quality. 

2. The probabilistic information gain is used as a measure to 

identify the best conjunct to be added into the rule 

antecedent. This algorithm selects the attribute and split 

point which has the highest probabilistic information gain 

and adds them as follows.  

Algorithm 3 uGrow (Instances growData) 

Begin 

CoverData = ∅; 

While (growData.size () > 0) ∧ (numUnusedAttributes >0) 

do 

Find the attribute Ai and the split point sp, which has 

the highest probabilistic information gain; 

Antecedent += RuleAntecedent (Ai, sp); 

for (each instance Ij ) do 

 if (covers(Ij )) then 

 Inst = splitUncertain (Ij, Ai, sp); 

coverData += inst; 

End if; 

 End for; 

 growData -= coverData; 
end while; 

End 

     Function splitUncertain () is shown in Algorithm 4. As 

the data is uncertain, a rule can partly cover an    instance. 
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For Example, for an instance with income     [100, 110], a 

rule “income > 105 =>        default Borrower =        No”    
only partly covers it. For an instance with tumor [Benign, 

0.8Malignant, 0.2], a rule “tumor = benign => Survive = 

yes” also partly covers it. Function splitUncertain () 

computes what proportion of the instances is covered by a 

selection based on the uncertain attribute interval and 

probabilistic distribution function. 

Algorithm 4 splitUncertain (Instance Ii, attribute Ai, 

splitPointsp) 

Begin 

 if the rule fully covers instance Ii then 

 return Ii; 

end if; 
 if (Ai is numerical or uncertain numerical) then 

if the rule partially covers instance Ii on the right side 

then 

Ii.w = Ii.w*_s f(x) dx/_maxmin f(x) dx; 

end if; 

 if the rule partially covers instance Ii on the left side 

then 

 Ii.w = Ii.w*_s f(x) dx/_maxmin f(x) dx; 

end if; 

end if; 

 if (Ai is categorical or uncertain categorical) then 

 Ii.w = Ii.w*att.value (sp).w*P (Ii, Rk); 

end if; 

return Ii; 

End 

 

4.1 SPLITING THE DATA 

     It is seen that when the rules are being generated from 

the training dataset, the goal is to determine the best split 

attribute and best split point. We use a measure called 

probabilistic information gain to identify the optimal split 

attribute and split point for uncertain training dataset. 

 

4.1.1. UNCERTAIN NUMERICAL ATTRIBUTES 

     The value of an uncertain numeric attribute is an interval 

with associated PDF. Each uncertain interval has a maximal 

value and a minimal value, which are called critical points. 

For each UNA, we can order all critical points of an 

uncertain numeric attributes in an ascending sort with 

duplicate elimination. The Class Distribution of each 

partition is called as Class Distribution Vector (CDV). 

Suppose there are N critical points after eliminating 

duplicates, then this UNA can be divided into N+ 1 

partition. Since the leftmost and rightmost partitions do not 
contain data instances at all, a split definitely will not occur 

within them. We need only consider the rest N-1 partitions. 

The Probabilistic Cardinality (PC) of the dataset over the 

partition Pa = [a, b) is the sum of the probability of each 

instances whose corresponding UCA equals Pa = [a, b).   

 

4.1.2. UNCERTAIN CATEGORICAL DATA 

     Uncertainty in categorical data is common place in many 

applications, including data cleaning, database integration, 

and biological annotation. In such domains, the correct 

value of an attribute is often unknown, but may be selected 
from a reasonable number of alternatives. Current database 

management systems do not provide a convenient means for 

representing or manipulating this type of uncertainty.  

     A rule related to an uncertain categorical attribute only 

covers its one value, which is called split point. An 
uncertain categorical attribute (UCA) is characterized by 

probability distribution over Domain. Datasets without 

uncertainty can be treated as a special case of date with 

uncertainty. When using a matrix to represent a categorical 

attribute of a dataset without uncertainty, there is at most 

one element per row to be 1.The probabilistic cardinality 

(PC) of the dataset over vk is the sum of the probability of 

each instances whose corresponding UCA equals vk. Based 

on the Class Distribution Vector (CDV) we can compute the 

probabilistic information gain if the categorical attribute is 

selected as the antecedent of the rule. 

 

4.1.3. PRUNING TECHNIQUES 

     After growing, the rule is immediately pruned by 

deleting any final sequence of conditions from the rule, and 

chooses the deletion that maximizes the function which is 

known as Pruning. There are two types of pruning namely 

Pre-Pruning and Post-Pruning. setBase employs a general-

to-specific strategy to grow a rule and the probabilistic 

information gain measure to choose the best conjunct to be 

added into the rule antecedent. The new rule is then pruned 

based on its performance on the validation set. The 

following metric is used for rule pruning.  
The probabilistic prune for a rule R is 

   ProbPrune(R, p, n) = {PC (p) −PC (n)} / {PC(p) + PC(n)} 

         Here PC (p) and PC(n) is the probabilistic cardinality 

of positive and negative instances covered by the rule. This 

metric is monotonically related to the rule’s accuracy on the 

validation set. If the metric improves after pruning, then the 

conjunct is removed. Like RIPPER, setBase starts with the 

most recently added conjunct when considering pruning. 

Conjuncts are pruned one at a time as long as this results in 

an improvement. 

 

4.1.4. .PREDICTION TECHNIQUES 
     Once the rules are learned from a dataset, they can be 

used for predicting class types of unseen data. Like a 

traditional rule classifier, each rule of setBase is in form of 

“IF conditions THEN Class=Ci”. Because each instance Ii 

can be covered by several rules, a vector can be generated 

for each instance and the vector is an Class Probability 

Vector (CPV). As an uncertain data instance can be partly 

covered by a rule, we denote the degree an instance I 

covered by a rule Rj. An uncertain instance may be covered 

or partially covered by more than one rule. We allow the test 

instance to trigger all relevant rules. W (Ii, Rk) to denote the 
weight of an instance Ii covered by different rules.  

     An uncertain instance may be covered    or    partially 

covered by more than one rule. We allow a test instance   to 

trigger all relevant rules. We use w (Ii, Rk) to denote the 

weight of an instance Ii covered by the kth rule Rk. The 

weight of an instance Ii covered by different rules is as 

follows (Ii, R1) = Ii.w ∗ P (Ii, R1)W (Ii, R2) = (Ii.w − w (Ii, 

R1)) ∗ P (Ii, R2)W (Ii, Rn) = (Ii.w −n−1k=1W (Ii, Rk)) ∗ P 

(Ii, Rn). 

     After we compute the CPV for instance Ii, the instance 
will be predicted to be of the class Cj, which has the largest 

probability in the class probability vector. This prediction is 

different from a traditional rule based classifier. When 

predicting the class type for an instance, a traditional rule 
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based classifier such as RIPPER usually predicts with the 

first rule in the rule set that covers the instance. As an 
uncertain data instance can be fully or partially covered by 

the multiple rules, the first rule in the rule set may not be the 

rule that covers it best. setBase will use all the relevant rules 

to compute the probability for the instance to be in each 

class and predict the instance to be the class with highest 

probability. 

5. EXPERIMENTAL RESULTS 
     In this section, we present the experimental results of the 

proposed setBase algorithm. We studied the setBase 
classifier accuracy and classifier construction time over 

multiple datasets. Probability vectors which are converted 

by uncertain categorical attributes. For example, a 

categorical attribute Ai may have k possible values vj, 1 ≤ j 

≤ k.  

     For an instance Ij, we convert its value Aij into a 

probability vector P =(pj1, pj2, ..., pji, ..., pjk), while pjl is 

the probability of Aucij to be equal to vl, that is, P( Aucij = 

vl) = pjl. For example, when we introduce 10% uncertainty, 

this attribute will take the original value with 90% 

probability, and 10% probability to take any of the other 

values. Suppose in the original accurate dataset Aij = v1, 
then we will assign pj1 = 90%, and assign pjl (2 ≤ l ≤ k) to 

ensure_ki=2 pjl = 10%. Similarly, we denote this dataset 

with 10% uncertainty in categorical data by U10. 

     To make numerical attributes uncertain, we convert each 

numerical value to an uncertain interval. For each numerical 

attribute, we scan all of its value and get this maximum 

Xmax and minimum value Xmin, respectively.  

 

5.1. ACCURACY 

     In this Fig.1, we use ten-fold cross validation. Data is 

split into 10 approximately equal partitions; each one is used 
in turn for testing while the rest is used for training, that is, 

9/10 of data is used for training and 1/10 for testing. The 

whole procedure is repeated 10 times, and the overall 

accuracy rate is countered as the average of accuracy rates 

on each partition. 2 indicate after the prediction. 

 

 

 

Fig.1. prediction of accuracy 
 

 
 

Fig.2. after prediction 
 

5.2. COMPUTATION TIME 

     Table.1 depicts the absolute run time in seconds when all 

instances of a dataset are used to build the rule set. It is 

shown that it generally takes longer to construct a classifier 

as the uncertainty in data increases. The reason is explained 

in two ways of expansions. First, for uncertain data, more 

candidate splitting points are available and require more 

comparisons. Second, uncertain data can be partly covered 

by rules, resulting in record splitting, weight and 

probabilistic cardinalities computation. Furthermore, it is 
shown that it takes longer to generate classifier from 

uncertain data with Gaussian PDF than with uniform PDF.  

  

 

TABLE.1 Computation Time Calculation 

 

 

 

 

 
 

 

 

DIST

RIBU

TION

S 

CLASSIFIER CONSTRUCTION TIME 

DATAS

ET 
U0 U5 U10 U15 U20 

Unifo

rm 

SONAR 0.12 0.52 0.49 0.73 0.75 

GLASS 0.1 0.12 0.18 0.13 0.16 

DIABE

TES 
0.13 

0.47 0.49 0.58 
0.59 

Guas

sian 

SONAR 0.12 1.1 1.73 2.0 2.62 

GLASS 0.1 0.6 0.78 0.99 1.12 

DIABE

TES 
0.13 

2.85 4.75 5.63 
5.04 
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6. CONCLUSION  
     Data Uncertainty is prevalent in many real world 

applications. Uncertain data often occurs in modern 

applications, including sensor databases, special-temporal 

databases, and medical or biology information systems. In 

this paper ,we propose a new selection based algorithm for 

classifying and predicting uncertain datasets. We propose 

new approaches for deriving optimal rules out of highly 

uncertain data, pruning and optimizing rules ,and class 

prediction for uncertain data, In this paper ,the proposed 

algorithm follows new paradigm of directly mining the 
uncertain datasets. 

 Our future work include developing uncertain data 

mining techniques for various applications, including 

sequential pattern mining, association mining, spatial data 

mining and web mining, where data can be commonly 

uncertain. 
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