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Abstract 
Design of an optimal controller requires optimization of 

multiple performance measures that are often 

noncommensurable and competing with each other. Design of 

such a controller is indeed a multi-objective optimization 

problem. Being a population based approach; Genetic 

Algorithm (GA) is well suited to solve multi-objective 

optimization problems. This paper investigates the application 

of GA-based multi-objective optimization technique for the 

design of a Thyristor Controlled Series Compensator (TCSC)-

based supplementary damping controller. The design objective 

is to improve the power system stability with minimum control 

effort. The proposed technique is applied to generate Pareto set 

of global optimal solutions to the given multi-objective 

optimization problem. Further, a fuzzy-based membership 

value assignment method is employed to choose the best 

compromise solution from the obtained Pareto solution set. 

Simulation results are presented to show the effectiveness and 

robustness of the proposed approach.  

Keywords-multi-objective optimization, genetic algorithm, 

pareto solution set, thyristor controlled series compensator, power 

system stability 

I.  INTRODUCTION 
Real world problems often have multiple conflicting 

objectives competing with each other. For example, while 

designing a control system, we would usually like to have a 

high-performance controller, but we also want to achieve 

desired performance with little control efforts (cost). 

Optimization of multiple performance measures which are 

noncommensurable and competing with each other is in 

reality a multi-objective optimization problem. In multi-

objective optimization problems generally there is no single 

solution that is the best when measured on all objectives. 

Hence several trade-off solutions (called the Pareto optimal 

set) are usually preferred [1]. Control systems optimization 

problems involving the optimization of multiple objective 

functions require high computational time and effort [2, 3]. 

As conventional techniques are difficult to apply, modern 

population based heuristic optimization techniques are 

preferred to obtain Pareto optimal set [4].  

 Recent development of power electronics introduces the 

use of Flexible AC Transmission Systems (FACTS) 

controllers in power systems [5]. Thyristor Controlled 

Series Compensator (TCSC) is one of the important 

members of FACTS family that is increasingly applied with 

long transmission lines by the utilities in modern power  

 

systems [6-11]. The majority of the control methodologies 

presented in literature employ single objective optimization 

technique to get the desired performance. This paper 

proposes to use a multi-objective optimization technique for 

the optimal TCSC-based controller design. 

 There are two general approaches to multiple objective 

optimizations. One approach to solve multi-objective 

optimization problems is by combining the multiple 

objectives into a scalar cost function, ultimately making the 

problem single-objective prior to optimization. However, in 

practice, it can be very difficult to precisely and accurately 

select these weights as small perturbations in the weights 

can lead to very different solutions. Further, if the final 

solution found cannot be accepted as a good compromise, 

new runs of the optimiser on modified objective function 

using different weights may be needed, until a suitable 

solution is found. These methods also have the disadvantage 

of requiring new runs of the optimizer every time the 

preferences or weights of the objectives in the multi-

objective function change [4]. The second general approach 

is to determine an entire Pareto optimal solution set or a 

representative subset. Pareto optimal solution sets are often 

preferred to single solutions because they can be practical 

when considering real-life problems, since the final solution 

of the decision maker is always a trade-off between crucial 

parameters [12]. 

 In this paper, the design problem of a TCSC is 

formulated as a multi-objective optimization problem. 

Genetic Algorithm- based multi-objective optimization 

method is adapted for generating Pareto solutions in 

designing a TCSC-based controller. The design objective is 

to get maximum damping (performance) with minimum 

control effort (cost). Further a fuzzy based membership 

function value assignment method is employed to choose 

the best compromise solution from the obtained Pareto set. 

Simulation results are presented under various loading 

conditions and disturbances to show the effectiveness and 

robustness of the proposed approach.  

II. MODELING THE POWER SYSTEM WITH TCSC 
The single-machine infinite-bus (SMIB) power system 

installed with a TCSC, shown in Figure 1 is considered in 
this study.  In the Figure, XT and XL represent the reactance 
of the transformer and the transmission line respectively; VT 
and VB are the generator terminal and infinite bus voltage 
respectively. 
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In the design of electromechanical mode damping 
stabilizer, a linearized incremental model around an 
operating point is usually employed. The Phillips-Heffron 
model of the power system with FACTS devices is obtained 
by linearizing nonlinear equations of the power system 
around an operating condition [12]. 
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Figure 1.  Single machine infinite bus power system with TCSC 
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Figure 2.  Modified Phillips-Heffron model of SMIB with TCSC 

The linearized expressions are as follows [10]: 
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  ePqee PKEPKPK ,', 21  
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                  (1) 

The notations in equation (1) for the variables and 
parameters described are standard and defined in the 
nomenclature. For more details, the readers are suggested to 
refer [1, 12]. The Phillips-Heffron model of the SMIB 
system with TCSC is obtained using the linearized equations. 
The corresponding block diagram model is shown in Figure 
2. 

III. PROBLEM FORMULATION 
A. TCSC Controller Structure 

The commonly used lead–lag structure is chosen in this 
study as a TCSC controller. The structure of the TCSC 
controller is shown in Figure 3. It consists of a gain block 
with gain KT, a signal washout block and two-stage phase 
compensation block. The phase compensation block provides 
the appropriate phase-lead characteristics to compensate for 
the phase lag between input and the output signals. The 
signal washout block serves as a high-pass filter, with the 
time constant TWT, high enough to allow signals associated 
with oscillations in input signal to pass unchanged. Without 
it steady changes in input would modify the output. From the 
viewpoint of the washout function, the value of TWT is not 
critical and may be in the range of 1 to 20 seconds [13]. 
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Figure 3.  Structure of  TCSC-based Controller 

B. Objective Function 

It is worth mentioning that the proposed controller is 

designed to damp power system oscillations with minimum 

control effort following a disturbance. The tuning of lead-lag 

controller is done, by optimizing the error signal and the 

control signal values simultaneously. The objective is 

formulated as the minimization of function F given by:  

 21 , FFF            (2) 

Where,    
1

0

2
1 )(

t

dtteF  and  
1

0

2
2 )(

t

dttuF    

In the above equations, „e‟ is the error signal i.e. changes in 

the speed deviation and „u‟ is the TCSC control out put i.e. 

changes in the conduction angle of the TCSC controller and 

t1 is the time range of the simulation.  For the objective 

function calculation, the time-domain simulation of the 

power system model is carried out for the simulation period. 

IV. MULTI-OBJECTIVE OPTIMIZATION 
A Multi-objective Optimization Problem (MOP) differs 

from a single-objective optimization problem because it 

contains several objectives that require optimization.  In case 

of single objective optimization problems, the best single 

design solution is the goal. But for multi-objective problems, 

with several and possibly conflicting objectives, there is 

usually no single optimal solution. Therefore, the decision 

maker is required to select a solution from a finite set by 
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making compromises. A suitable solution should provide for 

acceptable performance over all objectives [14-15]. 
A general formulation of a MOP consists of a number of 

objectives with a number of inequality and equality 
constraints. Mathematically, the problem can be written as 
[16]: 

minimize/maximize fi(x)  for i =1, 2,…,n.       (3) 

Subject to constraints: 

gj (x) ≤ 0 j = 1, 2, …, J 

hk (x) ≤ 0 k = 1, 2,…, K 

where 

fi(x) = { f1(x),…fn(x)} 

n = number of objectives or criteria to be optimized 

x = {x1, …, xp} is a vector of decision variables 

p = number of decision variables 

 
There are two approaches to solve the MOP. One 

approach is the classical weighted-sum approach where the 
objective function is formulated as a weighted sum of the 
objectives. But the problem lies in the correct selection of the 
weights or utility functions to characterise the decision-
makers preferences. In order to solve this problem, the 
second approach called Pareto-optimal solution can be 
adapted. The MOPs usually have no unique or perfect 
solution, but a set of non-dominated, alternative solutions, 
known as the Pareto-optimal set. Assuming a minimisation 
problem, dominance is defined as follows: 

 
A vector u=(u1,….,un) is said to dominate v=( v1,…..,vn) 

if and only if u is partially less than v ( u p< v),   

  i ε{1,…,n}, ui  vi     i ε{1,…,n;  ui < vi         (4) 

A solution xu ε U  is said to be Pareto-optimal if and only 
if there is no xv ε U for which v = f(xv) = (v1,…,vn) 
dominates u = f(xu) = ( u1,…,un). 

The ability to handle complex problems, involving 
features such as discontinuities, multimodality, disjoint 
feasible spaces and noisy function evaluations reinforces the 
potential effectiveness of GA in optimization problems. 
Although, the conventional GA is also suited for some kinds 
of multi-objective optimization problems, it is still difficult 
to solve those multi-objective optimization problems in 
which the individual objective functions are in the conflict 
condition. 

Being a population based approach; GA is well suited to 
solve MOPs. A generic single-objective GA can be easily 
modified to find a set of multiple non-dominated solutions in 
a single run. The ability of GA to simultaneously search 
different regions of a solution space makes it possible to find 
a diverse set of solutions for difficult problems with non-
convex, discontinuous, and multi-modal solutions spaces. 
The crossover operator of GA exploits structures of good 

solutions with respect to different objectives to create new 
non-dominated solutions in unexplored parts of the Pareto 
front. In addition, most multi-objective approach does not 
require the user to prioritise, scale, or weigh objectives. In 
this paper, real-coded genetic algorithm (RCGA) 
optimization technique has been used to solve the given 
MOP problem. A brief overview of RCGA has been 
provided in the next section. 

V. REAL CODED GENETIC ALGORITHM 
Recently, Genetic Algorithm (GA) appeared as a 

promising evolutionary technique for handling the 
optimization problems [17]. GA has been popular in 
academia and the industry mainly because of its 
intuitiveness, ease of implementation, and the ability to 
effectively solve highly nonlinear, mixed integer 
optimisation problems that are typical of complex 
engineering systems. It has been reported in the literature 
that Real-Coded Genetic Algorithm (RCGA) is more 
efficient in terms of CPU time and offers higher precision 
with more consistent results. Implementation of GA requires 
the determination of six fundamental issues: chromosome 
representation, selection function, the genetic operators, 
initialization, termination and evaluation function. Brief 
descriptions about these issues are provided in the following 
sections. 

A. Chromosome representation   
Chromosome representation scheme determines how the 

problem is structured in the GA and also determines the 
genetic operators that are used. Each individual or 
chromosome is made up of a sequence of genes. Various 
types of representations of an individual or chromosome are: 
binary digits, floating point numbers, integers, real values, 
matrices, etc. Generally natural representations are more 
efficient and produce better solutions. Real-coded 
representation is more efficient in terms of CPU time and 
offers higher precision with more consistent results. 

B. Selection function   
To produce successive generations, selection of 

individuals plays a very significant role in a genetic 
algorithm. The selection function determines which of the 
individuals will survive and move on to the next generation. 
A probabilistic selection is performed based upon the 
individual‟s fitness such that the superior individuals have 
more chance of being selected. There are several schemes for 
the selection process: roulette wheel selection and its 
extensions, scaling techniques, tournament, normal 
geometric, elitist models and ranking methods. 

The selection approach assigns a probability of selection 
Pj to each individuals based on its fitness value. In the 
present study, normalized geometric selection function has 
been used. In normalized geometric ranking, the probability 
of selecting an individual Pi is defined as: 

  1' 1

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r
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Where,  

q = probability of selecting the best individual 

r  = rank of the individual (with best equals 1) 

P = population size 

C. Genetic Operators 
The basic search mechanism of the GA is provided by 

the genetic operators. There are two basic types of operators: 
crossover and mutation. These operators are used to produce 
new solutions based on existing solutions in the population. 
Crossover takes two individuals to be parents and produces 
two new individuals while mutation alters one individual to 
produce a single new solution. The following genetic 
operators are usually employed: simple crossover, arithmetic 
crossover and heuristic crossover as crossover operator and 
uniform mutation, non-uniform mutation, multi-non-uniform 
mutation, boundary mutation as mutation operator. 
Arithmetic crossover and non-uniform mutation are 
employed in the present study as genetic operators. 
Crossover generates a random number r  from a uniform 
distribution from 1 to m and creates two new individuals by 
using equations: 







 


otherwisey

riifx
x

i

i

i

,
'

         (7) 







 


otherwisex

riify
y

i

i

i

,
'

         (8) 

Arithmetic crossover produces two complimentary linear 
combinations of the parents, where r = U (0, 1): 
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Non-uniform mutation randomly selects one variable j 

and sets it equal to a non-uniform random number. 
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Where, 

b

G

G
rGf ))1(()(

max

2            (12) 

r1, r2 = uniform random nos. between 0 to 1. 

G = current generation. 

Gmax = maximum no. of generations. 

b = shape parameter.  

D. Initialization, termination and evaluation function 
An initial population is needed to start the genetic 

algorithm procedure.  The initial population can be randomly 
generated or can be taken from other methods. GA moves 
from generation to generation until a stopping criterion is 
met. The stopping criterion could be maximum number of 
generations, population convergence criteria, lack of 
improvement in the best solution over a specified number of 
generations or target value for the objective function. 
Evaluation functions or objective functions of many forms 
can be used in a GA so that the function can map the 
population into a partially ordered set.  
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Figure 4.  Pareto optimal solution surface 

VI. RESULTS AND DISCUSSIONS 
The objective function given by equation (2) is evaluated 

by simulating the system dynamic model considering a 10 % 
step increase in mechanical power input (∆Pm ) at t = 1.0 sec. 
For the implementation of RCGA normal geometric 
selection is employed which is a ranking selection function 
based on the normalized geometric distribution.  Arithmetic 
crossover takes two parents and performs an interpolation 
along the line formed by the two parents. Non uniform 
mutation changes one of the parameters of the parent based 
on a non-uniform probability distribution. This Gaussian 
distribution starts wide, and narrows to a point distribution as 
the current generation approaches the maximum generation. 
Using the above approach the final Pareto solution surface is 
obtained as shown in Figure 4 where the Pareto solutions are 
shown with the marker „o‟. 

A. Best Compromise Solution 
In the present paper, a Fuzzy-based approach is applied 

to select the best compromise solution from the obtained 
Pareto set.  The j-th objective function of a solution in a 
Pareto set fj is represented by a membership function 

j defined as [18]: 
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Where 
max

jf  and 
min

jf are the maximum and minimum 

values of the j-th objective function, respectively. 

For each solution i, the membership function 
i  is 

calculated as:  
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Where, n is the number of objectives functions and m is the 

number of solutions. The solution having the maximum 

value of 
i is the best compromise solution.  

Using the above approach the best compromise solution is 

obtained as: 
 

KT =38.278, T1T =0.5632s, T2T =0.2646s,               

T3T =0.1013 s and T4T =0.1549 s. 

B. Simultion Results 
In order to verify the effectiveness of the proposed 

approach, the performance of the proposed TCSC controller 
is tested for different loading conditions. The mechanical 
power input to the generator is increased by 5 % at t =1.0 sec 
at nominal loading condition (Pe=0.9 pu). The system 
response for the above contingency is shown in Figures 5 
and 6. For comparison, Figures 5 and 6 show the response 
when the best compromise solution is used (shown in the 
Figures in solid lines) and also when the other two solutions 
from the Pareto set are used (shown in dotted and dashed 
lines). It can be seen from Figures 5 and 6 that when both the  
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Figure 5.  System error response for disturbance in Pm 
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Figure 6.  System control output response for disturbance in Pm 
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Figure 7.  System error response for disturbance in Vref 
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Figure 8.  System control output response for disturbance in Vref 

 

error and control out put is considered, the proposed best 
compromise is the best choice. 

To test the robustness of the proposed controller the 
loading condition is changed to light loading condition 
(Pe=0.4 pu) and a 5 % step increase in reference voltage is 
considered at t = 1.0 sec. The system responses for the 
above cases are shown in Figures 7-8. It can be seen from 
these Figures that proposed controller is robust and works 
effectively under various operating conditions and 
disturbances. Also it can be seen that when both the 
objectives are considered the proposed approach gives a 
better response. 

 
 
 
 



International Journal of Modern Engineering Research (IJMER) 

   www.ijmer.com                Vol.2, Issue.1, Jan-Feb 2012 pp-572-577              ISSN: 2249-6645 

    www.ijmer.com 577 | P a g e  

VII. CONCLUSIONS 
In this study optimal design of a TCSC-based controller 

is presented and discussed. The design objective is to 
improve the stability of a power system with minimum 
control effort. A real-coded genetic algorithm based solution 
technique is applied to generate a Pareto set of global 
optimal solutions to the given multi-objective optimization 
problem. Further, a fuzzy-based membership value 
assignment method is employed to choose the best 
compromise solution from the obtained Pareto solution set. 
Simulation results are presented at various loading 
conditions and disturbances to show the effectiveness and 
robustness of the proposed approach.  

The proposed method is valuable for the design of the 
interactive decision making. The decision makers can choose 
from the solutions in the Pareto-optimal set to find out the 
best solution according to the requirement and needs as the 
desired parameters of their controllers. The results show that 
evolutionary algorithms are effective tools for handling 
multi-objective optimization where multiple Pareto-optimal 
solutions can be found in one simulation run.  

APPENDIX 
Static System data: All data are in pu unless specified 

otherwise. 

Generator:  

M = 9.26 s., D = 0, 973.0dX , 55.0qX , 

19.0' dX , 76.7' doT , f = 60, 05.1TV , 

TTL XX  = 0.997, Excitor: 50AK , 05.0AT s 

TCSC Controller: 2169.00 TCSCX , 
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