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ABSTRACT
Vehicle brakes can generate different kinds of 
noises. Eliminating brake noise is a very big 
challenging issue in the automotive industry.  
Brakes generally develop large and sustained 
friction-induced oscillations, referred to brake 
squeal.  This brake squeal is considered a serious 
operational braking problem in passenger cars 
and commercial vehicles.  This paper involves an 
approach to discover the main causes of drum 
squeal occurrence using finite element methods 
(FEM).  A modal analysis of a prestressed 
structure will be performed to predict the onset of 
drum brake instability.  The brake system model 
is based on the model information extracted from 
finite element models for individual brake 
components.  An unsymmetric stiffness matrix 
(MATRIX27) is a result of a friction coupling 
between the brake lining and drum which may 
lead to complex eigenfrequencies.  This finite 
element method (FEM) using ANSYS was used to 
predict the mode shape and natural frequency of 
the brake system after appropriate verification of 
FEM.  The results showed that changing the 
contact stiffness of the drum-lining interface play 
an important role in the occurrence of the squeal.  
Moreover, decreasing the lining coefficient of 
friction lead to decreasing the occurrence of the 
squeal.  It showed also that both the frequency 
separation between two systems modes due to 
static coupling and their associated mode shapes 
play an important role in mode merging. It was 
noted that squeals are most likely to occur when 
the eigenvectors and eigenvalues of the brake 
drum and shoes are close to the coupled vibration
frequency to confirm that the coupling between 
different modes was necessary to form instabilities.

The results confirmed that the eigenvectors of the 
leading and trailing brake shoes are independent 
from each other with the same natural frequency.  

Keywords - Drum, shoe, lining, coupling, natural 

frequency, instability, modal analysis and finite 
element. 

I. INTRODUCTION

Brake squeal noise is considered a serious braking 
problem in passenger cars and commercial vehicles.  
This brake squeal noise has been researched and 
studied for decades and has not been fully solved yet 
for either drum or disc brakes.  However, the 
squealed brake is more efficient than the non-
squealed one.  In particular, buses brake noise is a 
very serious due to that it is a major source of 
environmental noise pollution in big cities.  Drum 
brake squeal noise is a complex vibration problem 
that has coupled vibrations, the sources of which are 
extremely difficult to be discovered [1].  The nature 
of the noise that is not repeatable at a given braking 
condition makes it very difficult to investigate the 
noise on either the real vehicle or dynamometer in 
terms of correlating the factors influencing the noise 
such as pressure, speed, and temperature.  

Over the years, drum and disc brake noise have been 
given various names in an attempt to provide some 
definitions of the sound emitted such as grind, grunt, 
moan, groan, squeak, squeal and wire brush [2].  In 
general, brake noise has been divided into three 
categories, in relation to the frequency of noise 
occurrence.  The three categories presented are low 
frequency noise, low-frequency squeal, and high-
frequency squeal.  Low-frequency noise of drum and 
disc brake is typically occurs in the frequency range 
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between 100 and 1000 Hz. Typical noises that reside 
in this category are grunt, groan, grind, and moan.  
This type of noise is caused by friction material 
excitation at the drum or rotor and lining interface.  
Low-frequency squeal is generally classified as a 
noise having a narrow frequency bandwidth in the 
frequency range above 1000 Hz, but below the first 
in-plane mode of the brake.  The failure mode for this 
category of squeal can be associated with frictional 
excitation coupled with a phenomenon referred to as 
‘‘modal locking’’ of brake corner components.  
Modal locking is the coupling of two or more modes 
of various structures producing optimum conditions 
for brake squeal [2].

High-frequency brake squeal is defined as a noise, 
which is produced by friction induced excitation 
imparted by coupled resonances (closed spaced 
modes) of the rotor or drums itself as well as other 
brake components.  It is typically classified as squeal 
noise occurring at frequencies above 5 kHz.  Since it 
is a range of frequency, which affects a region of 
high sensitivity in the human ear.  High-frequency 
brake squeal is considered the most annoying type of 
brake noise.  Brake squeal is a concern in the 
automotive industry that has challenged many 
researchers and engineers for years.  Considerable 
analytical, numerical and experimental efforts have 
been spent on this subject, and much physical insight 
ha s been gained on how disc and drum brakes may 
generate squeal, although all the mechanisms have 
not been completely understood [3].

In recent years, the focus on brake squeal problems 
has shifted from fundamental theoretical research to 
more practical and problem-solving oriented efforts.  
Instead of a simple schematic model, the brake 
system model tends to include more brake 
components, and the effects of design parameters on 
the stability can be investigated.  A linear system 
model was created based on the modal information of 
the brake components, and a complex eigenvalue 
analysis was performed to solve the Equations of 
motion [4].  Guan et al. [5] constructed a coupled 
linear model including all brake components and 
identified the substructure modes, which have great 
influence on the system stability.  Chowdhary et al. 
[6] developed an assumed modes model for squeal 
prediction of a disc brake, and found that this 

parathion between the frequencies is an important 
factor in determining the onset of flutter-type 
instability.  Ouyang et al. [7] considered the effects of 
disc rotation, and the friction-induced vibration of the 
brake was treated as a moving load problem.  With 
the improvement of numerical techniques, Hamabe et 
al. [8] and Nack [9] directly conducted a complex 
eigenvalue analysis with a finite element (FE) model 
of a brake system including the friction force.  
However, a nonlinear contact analysis was performed
to determine the pressure distribution at the friction 
interface followed by system linearization and a 
complex modal analysis, using FE analysis [10].  
Thus, in their study, the contact stiffness was 
dependent on local contact pressure.

The finite element method has been applied to the 
investigation of brake noise [11, 12], through the 
emphasis has been upon the investigation of drum 
brake noise.  It can provide predictions of the 
vibration modes of brake components, but coupling 
between the brake shoe and drum for a full brake 
assembly model has not been fully developed.  
Kusano et al. [11] carried out experimental and finite 
element analysis to analyze the vehicle drum brake 
noise, using a half-brake model.  Modal models 
representing the dynamic characteristics of the 
components were described with a limited number of 
degrees-of-freedom, then nodes on the rotor and pads 
were coupled through springs of the same stiffness, 
which were applied over the whole contact area, or 
normal, and friction forces were applied on the disc 
without modeling pads [18].  Full three-dimensional 
models of disc brake were used to predict the natural 
frequencies of the brake components [12, 13, 14], 
which were then connected with springs of the same 
stiffness.  The effect of the coupling between the 
shoe and drum was discussed by Ghesquire and 
Castel [13, 14].  However, the absence of the friction 
force has so far been a limitation of finite element 
simulations of vibration while braking.  Introducing 
friction force to the finite element model makes the 
stiffness matrix asymmetric.  Resulting in a non-
conservative system for which eigensolutions are 
only available in some commercially available finite 
element analysis programs.  

A frictional counter-coupled model can illustrate the 
principle of drum brake vibration while squealing, as 
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a kind of self-excited vibration [15-16].  The squeal 
vibration of drum results from not some nonlinear 
factors such as negative slope of friction coefficient, 
i.e. a negative damping effect, but also the interaction 
between the complex mode and frictional force from 
sliding drum [17].  If a constant friction coefficient 
were large enough, the Equations of motion would 
have eigenvalues with positive real components, 
which indicates the vibration having a tendency of 
unlimited increase.  It can also be proved by this 
frictional counter coupled model [15] that 
progressive wave is another characteristic of the 
squeal vibration of drum.  Up till now, most of 
researches in the area of brake squeal depend mainly 
on the 2-dimensinal technique and the 3-dimensional 
technique is still very limited in solving the squeal 
problems.  The main difficulty in 3-dimensional 
analysis of brake vibration that the movements of 
shoes are too complicated to be simulated in the 3-
dimensional solution by Finite element.  However, 
the mechanisms of squeal have not been understood 
completely yet, so that it is not easy to establish an 
accurate finite element model of drum brake squeal, 
especially in determining some boundary conditions.  

The work presented here based on the conclusions in 
presented papers, aims to investigate the drum brake 
squeal noise by finite element analysis (FEA).  A
three dimensional elasticity dynamics model of drum 
brake is set up, by which the drum vibration while 
squealing can be investigated more accurately than 2-
D model.  A pressure-dependent model for the 
coupling between the brake drum and the shoe and 
lining assembly is described and used in the modal 
analysis of the brake assembly.  Predicted vibration 
modes and frequencies are compared with 
experimental data for a drum brake noise propensity 
evaluation.  The modal analysis of the brake 
assembly by FEA, using the friction interface model 
proposed, is found more useful for evaluation of 
drum brake designs for noise propensity.  

II. VALIDATION OF DRUM BRAKE MODEL

An experimental modal testing is performed on the 
individual drum brake components to evaluate the 
vibration characteristics and validate the FE model.  
So, an impulse excitation using an impact hammer is 
used to obtain natural frequencies and the associated 
mode shape of the brake components as shown in 

Fig. 1.  Then, finite element models (FEM) for the 
brake drum and lining separately are generated as 
shown in Fig. 2.  Each finite element model is 
validated by performing the modal testing on the real 
brake component for the free-free condition followed 
by modal analysis of the FE model.  Free boundary 
conditions are used in this case because it is the 
easiest way to simulate experimentally.     

Fig. 1 Modal testing for the free-free brake drum.

As it is well known that, the drum brake assembly 
consists of five main parts; the drum and the two 
shoes and linings.  The model is created directly 
using the ANSYS package (FEM).  Fig. 2 indicates 
the meshed drum, shoe, and lining after appropriate 
simplification to the original parts.  A solid45 
element has been chosen from the package (ANSYS) 
library to model the 3-D solid structure that has 8-
nodes with three degree of freedom per each node.  
The drum consists of 11774 brick elements with 
18123 nodes, however, the shoe consists of 1260 
brick elements with 2666 nodes, and lining contains 
2700 brick elements with 2886 nodes.  Each lining 
covers an angle equal to 120º of the drum ring that 
has an internal diameter of 340 mm as shown in Fig. 
3.  However, the shoe and shoe rib cover an angle 
equal to 140º of drum ring that has specifications as 
shown in Table 1.  

     

             Drum                           Lining and shoe

Fig. 2 FEM for the free-free brake drum and lining 
separately.
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In the modal testing shown in Fig. 1, eight 
accelerometers are mounted along the drum that is hit 
by an impulse hummer.  The tested signal is then fed 
from the accelerometers to a dynamic signal analyzer 
and finally to the computer for further analysis.  The 
natural frequencies and modes of the drum and lining 
were collected in two cases.  The first case was a 
free-free drum and free-free lining however, the 
second case was the coupled drum-lining with a 
hydraulic pressure.  The collected data has been 
analyzed in both cases and then the finite element 
model is being adjusted to control the difference 
between the experimental results and theoretical 
results.  These natural frequencies data have been 
collected in Table 1 for comparison.  

Each free-free component's FE model is refined and 
adjusted to make the error as less as possible with 
experimental modal analysis results [4, 19, 20, 21, 
and 22].  The accurate simulation of the component 
models as well as the statically coupled model is 
important for studying the squeal characteristics 
either experimentally or analytically by FEM.  The 
brake system's propensity to squeal is very sensitive 
to the geometry of the system and the material 
properties.  The natural frequencies and mass-
normalized mode shapes for each component are 
extracted from the modal analysis of the FE models.  
These modal characteristics of the components are 
used to replace the FE models to form the coupled 
system, and the total degrees of freedom are greatly 
reduced.  The accuracy of the modal representations 
of the components and the convergence of the 
stability analysis results should be checked by 
ANSYS program.  

The boundary conditions have been applied to the 
drum and shoe, and apply the appropriate solving to 
the model.  Many trials were made to adjust the 
meshing elements for the drum and shoe with the 
appropriate number of elements.  The lowest 
difference between the experimental work, and 
predicted FE model has been achieved in models 
shown in Fig. 2.  These collected data showed a 
maximum difference of ± 3 % between the 
experimental and FEM results for the drum and ± 2.5 
% for the shoe with lining as clear in Table 2.  This 
difference in both cases seems to be acceptable to 
carry on with these models.

III. COUPLING THE DRUM-LINING FRICTION 

INTERFACE

As it previously said, the drum brake assembly 
system consists of five main parts, which are the 
drum and, leading shoe and trailing shoe.  There is a 

small gap between the drum and the two shoes during 
the rotation of the wheel.  However, this gap becomes 
zero at the full contact between the drum and the 
shoes.  The coupling between the brake shoe and 
lining assembly and the brake drum is made by the 
contact between them when the brake is actuated and 
friction force between the lining and drum is 
generated as shown in Fig. 3.  The coupling can be 
regarded as a “contact stiffness” modeled by springs 
connecting the brake shoe assembly and the brake 
drum [11].  

However, the model proposed here expects that the 
contact force between the brake lining and brake 
drum will determine the degree of coupling, and thus 
the contact spring stiffness.  This means that the 
contact stiffness over the whole contact area is 
dependent not only on the brake force applied, but 
also on the friction interface pressure distribution.  
The contact stiffness will therefore vary around the 
contact surface, being higher as the local contact 
pressure increases.  The coupling between the lining 
and drum can be represented by springs whose 
stiffnesses represent the local interface contact 
pressure and the brake shoe can thus be modeled as 
being coupled to the drum via two springs, one 
representing the contact stiffness Kcontact  and one 
representing the brake lining dynamic stiffness 
Klining [1].  These two springs can then be combined 
to give a single “coupling” spring whose stiffness is:

liningcontact

liningcontact
coupling KK

KK
K




         (1)

Fig. 3 FEM for the coupled drum brake system
assembly.



International Journal of Modern Engineering Research (IJMER)
www.ijmer.com           Vol.2, Issue.1, pp-179-199, Jan-Feb 2012             ISSN: 2249-6645

                    www.ijmer.com                            183 | P a g e

Table 1 Original brake drum and lining properties and dimensions.

Drum dimensions and properties Lining and shoe dimensions and properties

Outer drum diameter, 360 mm
Inner drum diameter, 340 mm
Inner drum cap diameter, 160 mm 
Outer drum cap diameter, 340 mm
Height of drum cap, 10 mm
Diameter of holes centerline, 220 mm
Height of drum, 150 mm
Holes diameter (6), 10 mm
Inner diameter of upper ring, 360 mm
Outer diameter of upper ring, 360 mm
Height of upper ring, 15 mm
Density of drum, 7350 3/ mkg

Young’s modulus of drum, 1200 2/ mGN
Poisson ratio of drum, 0.27

Thickness of lining, 12 mm
Width of lining, 120 mm
Thickness of shoe, 4 mm
Width of shoe, 120 mm
Thickness of shoe rib, 4 mm
Height of shoe rib, 20 mm
Lining arc, 120º
Shoe and rib arc, 140º
Hole diameter, 10 mm
Density of lining, 1350 3/ mkg

Young’s modulus of lining, 200 2/ mMN
Poisson ratio of lining, 0.23
Density of shoe, 7800 3/ mkg

Young’s modulus of shoe,  2000 2/ mGN
Poisson ratio of shoe, 0.27

Table 2 Natural frequencies for the modal testing and FE model for free-free brake drum and lining.
Component 
name

FE No. of nodes 
and elements

Mode 
number

Modal testing 
(kHz).

FE model 
(kHz).

Difference 

Drum 11774 
elements and 
18123 nodes

1 1483 1503 1.3 %
2 1488 1508 1.3 %
3 2087 2068 -1  %
4 2140 2200 3  %
5 2302 2332 1.3 %
6 2340 2345 0.2 %
7 2917 2906 -0.4 %
8 3087 3097 0.3 %
9 3129 3109 -0.6 %
10 3203 3253 1.6

Lining Lining 2700 
elements and 
2886 nodes
+
Shoe  1260 
elements and 
2666 nodes

1 1179 1200 2  %
2 1213 1240 2.5 %
3 1667 1684 1  %
4 1843 1820 -1.2 %
5 2226 2210 -0.7 %
6 2233 2253 -0.9 %
7 2605 2600 -0.2 %
8 2679 2677 0
9 2861 2886 1  %
10 3109 3100 -0.3 %
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IV. MODELING OF DRUM BRAKE ASSEMBLY.

The steps of creating a linear drum brake assembly 
model contain three main steps as shown in Fig.4, 
which are:

 Pre-processor.
 Solution.
 Post-processors.

These three steps include constructing FE models for 
brake components by ANSYS CAD tools as 
mentioned previously.  A modal analysis technique 
will be performed to extract the modal eigenvalues 
and eigenvectors.  

Studying the effects of different parameters such as 
contact and lining stiffnesses and friction forces on 
the occurrence of squeal incorporating the effects of 
boundary conditions to form a coupled model.

Fig. 3 shows the finite element model for the coupled 
drum brake system assembly that contain the main 
five components which are drum, two shoes and two 
linings (leading and trailing), participate in the 
vibrational response of a drum brake system [20-21].  
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Figure 4 Parametric modeling and modal analysis flowchart.
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The attached linings to the shoes will be in contact 
with the drum during braking to produce the friction 
forces. These leading and trailing shoes can be 
moved in different direction opposed to each other 
through hydraulic cylinders that contain two pistons 
to assist the shoes in the braking action.  It is well-
known that the friction-induced vibration is generated 
by the stiffness and friction coupling between the 
drum and the shoes through the shoe lining. A 
simplified coupled model that includes the drum, the 
shoes, and the shoe lining has been modelled to 
incorporate the effect of different boundary 
conditions on the occurrence of squeal as clear in Fig.
5. 

Finite Element models of the drum and the shoe with 
lining separately are built-up by ANSYS package 
using 3-dimensional brick elements called SOLID45 
[24] is clearly shown in Fig. 2.  However, the finite 
element model of the coupled drum brake is shown in 
Fig. 3.  The drum is clamped in the bolt holes (6 
holes) positions while the shoe model uses free 
boundary conditions. The shoe lining is modeled as 
an integral part of the FE model of the shoe to 
include the inertial and stiffness influences of the 
shoe lining on modal characteristics (eigenvalues and 
eigenvectors) of the shoe.

Fig. 5 Schematic diagram of the drum brake 
assembly showing piston pressure and contact 
stiffness representation.

The Equations of motion of the uncoupled system 
including the drum and the identical shoes can be 
written as [1, 20, 21 and 23]: 

      02  qq          (2)

Where  2 is a diagonal matrix of the extracted 

natural frequencies of the components, and {q} is an 
N-vector of generalized coordinates. However, the 

number of degrees of freedom of the system, N, is 
equal to the total number of extracted component 
modes, [20].

In considering the coupling between the drum and the 
shoe through the contact lining, the contact interface 
between the drum and shoe is discretized into a mesh 
of 2-dimensional contact elements as shown in Fig. 5.  
The lining material is then modelled as a spring 
located at the contact elements as mentioned 
previously.  The Equation of motion of the coupled 
system can be written as follows [20-21]; 

              02  qCBAq     (3)

Where, [A] and [C] are stiffness contribution due to 
the lining and shoe supports respectively and [B] 
arises from friction coupling between the shoes and 
drum which is assemmetric.  In the absence of lining 
coupling i.e., [A] and µ equal to zero, the eigenvalues 
are purely imaginary that is being the natural 
frequencies of the drum components and the shoes 
coupled through the hydraulic cylinder stiffness and 
backing plate stiffness.  The solution of the Equation 
3 gives the eigenvalues of:

ii jωσS           (4)

However; in the presence of the lining stiffness 
coupling but without friction coupling, the 
eigenvalues are again purely imaginary and 
correspond to the natural frequencies of an engaged 
brake system which is not rotating.  This is referred 
to what is called statically coupled system.  

In the presence of the lining stiffness coupling but 
with friction coupling and the [B] is non-symmetric.  
When all of the eigenvalue are purely imaginary, 
these correspond to the natural frequencies of an 
engaged and rotating system.  If any of the 
eigenvalues is complex, it will appear in the form of 
complex conjugate pairs, one with positive real part 
and the other with negative real part.  The existence 
of complex roots with positive real parts indicates the 
presence of mode merging or what is called coupled 
mode, instability, which causes the brake to squeal.  
The value of friction coefficient that demarcates 
stable and unstable oscillations will be referred as a 

critical value of friction coefficient cr .  The 

imaginary part of the eigenvalues with a doublet root 
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at this cr is the squeal frequency and the 

corresponding mode of the complex structure is the 
mode shape at this squeal frequency, [20-21].

V. COMPLEX EIGENVALUE ANALYSIS.

The complex eigenvalue analysis technique that is 
available in ANSYS package is used to determine the 
stability of drum brake assembly.  The real and 
imaginary parts of the complex eigenvalues are 
responsible for the degree of instability (unstable 
frequencies and unstable modes) of the drum brake 
assembly and are thought to imply the likelihood of 
squeal occurrence.  The importance of this method 
lies in the asymmetric stiffness matrix that is derived 
from the contact stiffness and the friction coefficient 
at the drum-lining interface [14].  In order to perform 
the complex eigenvalue analysis using ANSYS, four 
main steps are required [15].  They are given as 
follows: 

1. Nonlinear static analysis for applying drum brake-
line pressure.
2. Nonlinear static analysis to impose rotational 
velocity on the drum.
3. Normal mode analysis to extract natural frequency 
of undamped system.
4. Complex eigenvalue analysis that incorporates the 
effect of friction coupling.

In this analysis, the complex eigenvalues using 
ANSYS are solved using the unsymmetric method.  
The Equation of motion of any vibrating system is:

          FuKuCuM            (5)

Where M, C and K are mass, damping and stiffness 
matrices, respectively, and u is the generalized 
displacement vector.  For friction induced vibration, 
it is assumed that the forcing function F is mainly 
contributed to by the variable friction force at the 
drum-lining interface.  The friction interface is 
modelled as an array of friction springs as shown in 
Fig. 5.  With this simplified interface model, the 
force vector becomes linear:

  uKF f          (6) 

Where  fK is the friction stiffness matrix.  A 

homogeneous Equation is the obtained by combining 

Equations 5 and 6 and by moving the friction term to 
the left hand side as follows: 

          0 uKKuCuM f          (7) 

Equation 7 is now the Equation of motion for a free 
vibration system with a pseudo forcing function in 
the stiffness term.  The friction stiffness acts as the 
co-called “direct current” spring [23] that causes the 
stiffness matrix to be asymmetric. 

The unsymmetric method, which also uses the full 
[K] and [M] matrices, is meant for problems where 
the stiffness and mass matrices are unsymmetric.  It 
uses Lanczos algorithm, Theory Manual [24] that 
calculate complex eigenvalues and eigenvectors for 
any system.  Matrix27 represented an arbitrary 
element whose geometry was undefined but whose 
elastic kinematics response could be specified by 
stiffness, damping, or mass coefficients.  This 
element matrix27 was assumed to relate two nodes, 
each with six degrees of freedom per node: 
translations in the nodal x, y, and z directions and 
rotations about the nodal x, y, and z-axes as shown in 
Fig. 5.  The stiffness, damping, or mass matrix 
constants were input as real constants.  All matrices 
generated by this element were 12 by 12.  The 
degrees of freedom were ordered as UX, UY, UZ, 
and ROTX, ROTY, ROTZ for node 1 followed by 
the same for node 2 on the leading shoe and also for
node 3 and node 4 on the trailing shoe.  If one node 
was not used, so all rows and columns related to this 
node would be defaulted to zero.  

For most brake design, including this study, there 
was no viscous damping present.  According to the 
geometric instability, variable frictional forces, due to 
variable normal forces, caused brake squeal to occur 
[4].  The matrix Equation 5 in the absence of viscous 
damping and including the frictional forces can be 
rewritten to be in the form of:

       fF    UK    UM          (8)

To allow variable normal forces at the drum-lining 
interface, adjacent nodes on the drum and lining 
interface were connected together with stiff spring as 
shown in Figure 5.  Since squeal typically occurred at 
low applying pressures, a constant contact pressure 
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was assumed between both lining material surface 
and the drum surface [4 and 26].  As the connected 
nodes moved towards or away from each other, the 
magnitude of the normal force increased or decreased
according to moving direction.  So, the resulting 
variable frictional forces were written in terms of 
relative displacement between the mating surfaces as 
in Equation 6.  The matrix, which related the 
frictional forces to nodal displacement called the 

frictional stiffness matrix  fK or the friction matrix.  

To obtain a homogeneous Equation, the forces were 
moved from the right side of Equation 8 to the left 
side of the same Equation to be in the form of;

      0    UKK    UM f                         (9)

The complementary solution to the homogeneous, 
second order, matrix differential Equation 9 is in the 
form of: 

    steU        (10)

Where
s is the eigenvalue.
{} is the eigenvector.

And by substitution in Equation 9 So;

       0KKSM f
2          (11)

The eigenvalue and possibly the eigenvectors of 
Equation 11 were complex numbers.  Complex 
numbers contained two parts; real and imaginary 
parts.  For this drum brake system, the eigenvalues 
always occurred in complex conjugate pairs.  For 
certain mode, the eigenvalue was:

ii jωσS         (12)

where iσ    is the real part and represented the 

natural frequency of the system. However; iω is the 

imaginary part and represented the instability of the 
system.

A positive damping coefficient causes the amplitude 
of oscillations to increase with time. Therefore the 
system is not stable when the damping coefficient is 
positive.  By examining the real part of the system 
eigenvalues the modes that are unstable and likely to 
produce squeal are revealed.  In another definition of 
the damping ratio, which is defined as /σ2 . 

If the damping ratio is negative, the system becomes 
unstable, and if the damping ratio is positive, the
system becomes stable.

The first unsymmetric MATRIX27 that has been generated between node 1 and node 2, will be performed as a real 
constant between the drum and the leading shoe as shown in Fig. 5.
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However, the second unsymmetric MATRIX27 that has been generated between node 3 nd node 4, will be 
performed as a real constant between the drum and the trailing shoe as clear in Fig. 5.

VI. PREDICTED RESULTS OF THE FINITE 

ELEMENT AND DISCUSSIONS.

The results herein represent the described FEM of 
drum brake system as shown in Fig. 3 that its 
dimensions and properties are given in Table 1 and 
be validated as discussed previously.  A total number 
of 100 modes were extracted through ANSYS by 
coupling of the drum brake items in the frequency 
range 1-15 kHz (squeal range).  These modes include 
different modes of the drum and the two shoes 
separately as shown in Figs 6, 7, 8 and 9.  These 
modes include six rigid body modes for each shoe, 
modes up to the natural frequency of 7366 Hz for the 
shoes, and non-rigid body modes up to frequency of 
14859 Hz for the drum.  However, for the coupled 
modes, it gives frequencies up to 5094 Hz.  Figs 6 
and 7 show a sample of selected drum modes and 
displacement contour equivalent at each mode.

The first mode occurred at 1482 Hz with 4 nodal 
lines as shown clearly in Fig. 6-a and five nodal lines 
at frequency 2302 Hz as clear in Fig. 6-b.  A mix of 
6, 7, 8 and 9 nodal lines appear clearly in Fig. 6-c, d, 
e and f that have been reached in FEM free-free drum.

Fig. 7 shows the displacement contour occurred at 
modes 1, 5, 12, 36, 54 and 64 respectively showing 
the maximum and minimum displacement that 
occurred on the drum ring or drum cap due to the in-
plane vibrational mode. 

Fig. 8 shows some selected shoe modes; which is a 
combination between the bending mode and twisting 
mode of the shoe.  The modal analysis of the free-
free shoe mode includes six non-rigid body modes 
for each shoe up to natural frequency of 7366 Hz.  It 
showed a mixed of longitudinal bending mode and 
lateral bending mode as clear in the 1st mode and 11th

mode at frequencies of 1179 and 3516 Hz 
respectively however; a combination of lateral and 
longitudinal twisting mode that occurred at 6th and 
19th modes at frequencies of 2233 and 4383 Hz 
respectively.  Fig. 9 shows some selected 
displacement contour at modes 1, 2, 6 and 38 
showing a maximum and minimum displacement that 
occurred due to modal analysis of the free-free shoe 
of the drum brake. 
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a) 1st mode at 1482 Hz.    b) 5th mode at 2302 Hz.

    

c) 12th mode at 3308 Hz.    d) 36th mode at 5969 Hz.

    

e) 54th mode 5240 Hz. f) 64th mode at 9741 Hz.

Fig. 6 Sample of selected drum natural frequencies 
and mode shapes.

A total number of 100 modes were extracted through 
ANSYS by coupling of the drum brake items in the 
frequency range 1-15 kHz (squeal range) as 
mentioned previously.  These modes include different 
modes of the drum and the two shoes separately and 
combined as shown in Fig. 10.  These modes include 
rigid body and non-rigid body mode for both drum 
and two shoes up to frequencies of 5094 Hz.  Fig. 10
shows a mix of mode nodal lines for the coupled 
drum brake ranging from 0 to 8 lines which is very 
clear at modes 5, 11, 14, 33, 37, 61 and 96 
respectively.  Coupled modes 1 and 2 do not indicate 
any nodal lines or circumferential circles on the drum 
ring surface however; it showed a shoe bending mode 
type at frequencies 1154 and 1218 Hz.  

    

a) Disp. contour at 1st mode. b) Disp. contour at 5th mode.             

     

c) Disp. contour at 12th mode.   d) Disp. contour at 36th mode.

    

e) Disp. contour at 54th mode.      f) Disp. contour at 64th mode.

Fig. 7 Displacement contour for selected drum 
modes.

It showed also the in-plane vibration mode which is 
clear at the drum hub.  The natural frequencies 
occurred at each component of the drum brake 
system at 0.42 coefficient friction.  It is very clear 
that the drum modes occur below 5100 Hz.  A 
number of two nodal lines appear in some modes 
such as 11th and 12th mode as shown in Fig. 10-d and 
10-e.  However; 3 nodal lines appear in the 33rd mode 
and 4 nodal lines in the 5th mode as examples of these 
lines of modes.  The number of nodal lines increases 
with the increase of natural frequency to be 5 nodal 
lines as shown in 14th mode and 6 nodal lines in the 
37th mode.  A number of 7 nodal lines appear very 
rare as shown in Fig. 10-i at 61st mode and the 8 
nodal lines appears once in the 96th mode as also 
shown in Fig. 10-j.
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Fig. 8 Sample of selected shoe natural frequencies
and mode shapes.

The  predicted  eigenvalues of  the drum brake  
system  at different drum rotating  speeds  of 0, 10, 
20 and 30 rad/sec, whose frequencies are within the 
measurable  frequency  range , are presented  in 
Table 3 at moderate friction coefficient of 0.42.  The 
predicted unstable frequencies for the coupled drum 
brake system are 1154, 1218, 1315, 1458 and 1748 
Hz which are the first five natural frequencies.

   

a) Disp. contour at 1st mode.      b) Disp. contour at 2nd mode.

  

c) Disp. contour at 6th mode.  d) Disp. contour at 38th mode. 

Fig. 9 Displacement contour for selected shoe modes.

Fig. 11 shows some selected displacement contour 
for the coupled drum brake system at modes 14, 17, 
31, 36, 61and 96 showing a maximum and minimum 
displacement that occurred due to modal analysis of 
the coupled system.  This figure indicates the 
vibrating parts of the coupled drum brake such as 17th

mode that shows the vibrating trailing shoe.  Modes 
31st and 61st show the vibrating drum hub (drum cap); 
however the last 3 modes which are 14, 36 and 96 
show the vibrating drum ring.

Fig. 12-a and 12-b show the real part that represents 
the instabilities of the system when it is positive 
values or stabilities of the system when it is negative 
values, against the imaginary part which represents 
the natural frequencies of the system in the squeal 
range at 10 and 30 rad/sec of drum rotation.  It is 
realized that as the rotation increase the system seems 
to be more stable than at a low speeds as clear from 
figures.  It is also realized that the maximum natural 
frequency of the drum is 5094 Hz occurs at mode 
100.  However, the maximum natural frequency of 
the leading shoe is 4940 Hz occurs at mode 91 and 
the natural frequency of the trailing shoes is 4715 Hz 
occurs at mode 82 of the coupled drum brake system.  
The phase angle of this mode is 2º, which equal to 

phase angle = 







Part

Part

.Re

.Im
tan 1 [24].  When the 
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two real parts are the same with different signs, it 
means that they have a phase difference of 180º.  It 
can be clear that the squealing frequency for the 
leading and trailing occur alternatively between each 
other.  It is very apparent in Figs. 10-a & 10-b that 
the coupled system is slow below 5 kHz. 

a) 1st mode at 1154 Hz.       b) 2nd mode at 1218 Hz.               

    
c) 5th mode at 1458 Hz.    d) 11th mode at 1984 Hz.

     

    
e) 12th mode at 1984 Hz.    f) 14th mode at 2222 Hz. 

    
               
g) 33rd mode at 2963 Hz.    h) 37th mode at 3087 Hz.
                    

     
i) 61st mode at 4027 Hz.     j) 96th mode at 5046 Hz.        

Fig. 10 Sample of selected coupled mode frequencies
and modes shapes.

One of the main objectives of this study is to 
understand the effect of mode merging on the 
occurrence of brake squeal noise, which is not 
dependant on the kind of the used brake.  The 
eigenvalue analysis of the drum coupling shown in 
Equation 3  gives a complex mode that contain two 
parts, the first part is the real part (instability) and the 
other part is the imaginary part (natural frequency) as 
mentioned earlier.  The solution of this Equation 
achieved by substitution with the drum, lining and 
shoe properties shown in Table 1.  Fig.13 shows the 
variation of the natural frequencies with changing the 
coefficient of friction in the range (0- 0.8) at the 
leading and trailing contact stiffness’s.  It is known 
that the eigenvalues and eigenvectors change when 
friction coefficient varies.  At the critical value of 

friction coefficient cr , a pair of modes merge, i.e., 

their frequencies and mode shapes become identical.  
This merging condition describes the onset of squeal 
very clearly [25], as seen in Fig. 13. 

  
a) Disp. contour at 14th mode.    b) Disp. contour at 17th mode.

   
c) Disp. contour at 31st mode.    d) Disp. contour at 36th mode.            

  
e) Disp. contour at 61st mode.       f) Disp. contour at 96th  mode.

Fig. 11 Displacement contour for selected coupled 
modes.



International Journal of Modern Engineering Research (IJMER)
www.ijmer.com           Vol.2, Issue.1, pp-179-199, Jan-Feb 2012             ISSN: 2249-6645

                    www.ijmer.com                            192 | P a g e

The mode-merging instability due to leading-drum 
coupling occurs four times during this coupling in the 
frequency range 1-15 kHz at friction coefficients of 
(0-0.8) and leading contact stiffness of 200 MN/m as 
shown in Fig. 13-a.  The first mode merging occurs 
between modes 1 & 2 at µ= 0.22 with a torsional 
mode shape and this friction coefficient called critical 

friction coefficient cr .  

It is realized that when µ is bigger than cr , the 

corresponding eigenvalues become complex, its 
imaginary parts (squeal frequency) near 1218 Hz.  
The second mode merging occurs between modes 12 

and 13 near 58.0cr , with a bending mode 

shapes and a natural frequency near to 2400 Hz.  The 
third mode merging occurs between 55th and 56th

modes near 61.0cr , with a bending mode shapes 

and a natural frequency near to 4100 Hz.  The last 
mode merging occurs between 94th and 95th modes at 

34.0cr with a combination of torsional and 

bending mode shape and a natural frequency close to 
5094 Hz. 

However, The mode-merging instability due to 
trailing-drum coupling occurs also four times during 
this coupling in the frequency range 1-15 kHz at 
friction coefficients (0-0.8) and trailing contact 
stiffness of 150 MN/m as shown in Fig.13-b.  The 
first mode merging occurs between modes 1 and 2 at 
µ = 0.41 with a torsional mode shape and this friction 

coefficient called critical friction coefficient cr .  

The corresponding eigenvalues at this merging 
become complex, its imaginary parts (squeal 
frequency) near 1225 Hz.  The second mode merging 

occurs between modes 12 and 13 near 15.0cr , 

with a bending mode shapes and a natural frequency 
near to 2500 Hz.  The third mode merging occurs 

between 55th and 56th modes near 42.0cr , with a 

bending mode shapes and a natural frequency near to 
4150 Hz.  The last mode merging occurs between 

94th and 95th modes at 71.0cr with a 

combination of torsional and bending mode shape 
and a natural frequency close to 5310 Hz.

It is found that squeal frequencies are often close to 
natural frequencies of one or more of the components 
or near some natural frequencies of the statically 
coupled system.  Since both the frequencies and 
mode shapes change as the brake is engaged, and 
further change as the friction is included, it may be 
difficult to identify which component modes lead to 
squeal. Moreover, there are many more component 
modes in a drum brake system, and it is difficult to 
explain why squeal occurs only at a few frequencies.  

It is also found that the modes with the least 
separation due to static coupling tend to merge and 
become complex for higher values of friction 
coefficient and that agrees with the fact that usually 
the neighbouring modes with close frequencies 
arising due to components symmetry tend to merge, 
[26].  It can be expected that the shapes of a pair of 
modes also play an important role in mode merging 
besides the closeness of their frequencies.  For each 
statically coupled mode for the system at µ = 0, the
mode shapes of the two shoes are either identical to 
each other or differ by a phase angle of 180° as 
shown clearly in Figs. 10-a and 10-b.

Table 3 The first five predicted eigenvalues (Hz) of the coupled drum brake.

rad/sec   1S 2S 3S 4S 5S

0
10
20
30

-25±1154
-18±1154
2±1154

-20±1154

15±1218
-17±1218
5±1218

-16±1218

-05±1315
1.4±1315
-16±1315
-5±1315

0.1±1458
7±1458

-11±1458
0.5±1458

-12±1748
1.3±1748
-22±1748
2±1748
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a) Rotation speed of 10 rad/sec.

b) Rotation speed of 30 rad/sec.

Fig. 12 Real part against Imaginary part of 
coupled drum brake system at 10 and 30 

The mode shapes of the shoes show a strong 
resemblance to those of the corresponding drum side 
wall where the two are in contact through the lining.  
The statically coupled modes can be divided into two 
groups: the first group which the two shoes move in 
the opposite radial direction (one moves outwards 
while the other moves inwards) however; the second 
group which the two shoes move in the same radial 
direction.  All the modes in the same group will be 
termed "compatible", while the modes from different 
groups will be termed "incompatible" [20].  
Compatible modes are more similar than 
incompatible modes at it µ = 0 and can quite possibly 
become identical when µ is increased.  Incompatible 
modes such as mode 40 and mode 55 are never seen 
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a) Rotation speed of 10 rad/sec.

0 rad/sec.

Real part against Imaginary part of the 
and 30 rad/sec.

The mode shapes of the shoes show a strong 
resemblance to those of the corresponding drum side 
wall where the two are in contact through the lining.  
The statically coupled modes can be divided into two 
groups: the first group which the two shoes move in 
the opposite radial direction (one moves outwards 
while the other moves inwards) however; the second 
group which the two shoes move in the same radial 
direction.  All the modes in the same group will be 
ermed "compatible", while the modes from different 

groups will be termed "incompatible" [20].  
Compatible modes are more similar than 
incompatible modes at it µ = 0 and can quite possibly 
become identical when µ is increased.  Incompatible 

de 40 and mode 55 are never seen 

to combine to a merging state even though their 
frequency separation is quite small at µ = 0.

a) at leading contact stiffness of 20

b) at trailing contact stiffness of 15

Fig. 13 Natural frequency of the system against the 
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to combine to a merging state even though their 
frequency separation is quite small at µ = 0.

a) at leading contact stiffness of 200 MN/m.

b) at trailing contact stiffness of 150 MN/m.

Natural frequency of the system against the 
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The system can be coupled dynamically by 
introducing the matrices [B] and [C] shown in 
Equation 3.  These two matrices introduce friction 
into the system.  With the coupled system defined, it 
is possible to perform stability analyses to determine 
the conditions on system parameters that lead the 
brake system into squeal.  A standard method of 
presenting stability is to plot the imaginary 
components of the eigenvalues (the natural 
frequencies) as a function of the coefficient of 
friction at the interface as shown in Figs.13-a, b.  
When a coupled system becomes unstable, it appears 
that the strain in the lining is minimized for the 
unstable modal pair of the drum and shoe. This 
allows for the greatest energy transfer between the 
shoe and drum.  When the modes are nearly identical 
the friction force is applying the maximum force 
possible onto the opposite member.  This results in 
the modal coupling, due to the curved shape of the 
shoes, being at its maximum value.  At the same 
time, the frictional moment being produced is also at 
its maximum, thus resulting in a self-excited unstable 
system.

In terms of noise index (NI), an automotive drum 
brake system may possess many unstable vibration 
modes in the audible frequency range.  However, not 
all of them result in squeal.  Vibrational modes 
slightly unstable in the theoretical sense may never 
become unstable in reality due to dissipative damping 
in a real drum brake system.  To compare the squeal 
propensity among unstable vibrational modes, the 
magnitude of the instability has been traditionally 
employed as a noise index.  However, because the 
instability measurement associated with the high 
frequency modes are often greater than those of low 
frequency modes, using the magnitude of the 
instability as a noise index often implies high 
frequency squeal is more likely to occur than low 
frequency squeal.  In this study, the noise index was 
defined as Yuan [28] for each vibration mode;

Noise Index = 
%100

22


 jj

j



 (j=1,2,…)  (13)

Where, j is the instability of the system (real part) 

and j is the natural frequency of the system 

(imaginary part).  

The greater the noise index the more likely the 
corresponding mode was considered to cause audible 
squeal noise.  It is realized in Figs. 14-a and 14-b that 
the maximum noise index was 5.4%, which was at 
frequency 2457 Hz occurred at rotating velocity of 10 
rad/sec.  However; themaximum noise index of 3.5% 
occurred at frequency of 3352 Hz at 30 rad/sec.  The 
highest noise indexes were found at the maximum 
instabilities to confirm that the audible squeal noise 
could occur at the maximum instabilities as also 
indicated by Yuan [28]. 

a) Noise index at rotating velocity of 10 rad/sec.
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b) Noise index at rotating velocity of 30 rad/sec.

Fig. 14 the noise Index against the frequency of the 
coupled drum brake system.
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VII. CONCLUSION

The main conclusion from this work can be 
summarized as follows:

 Brake squeal is a phenomenon of self-excited 
friction induced vibrations resulting from mode 
coupling.  The eigenvalues and eigenvectors of a 
coupled drum brake system are able to provide 
relevant information about the modes involved in 
brake squeal.

 The modal behaviors components can be 
extracted from FEM representation of the drum 
brake system analysis. FE analysis makes it easy 
to capture geometry complexities of the 
components and incorporate the results of contact 
analysis in the system model. 

 When the separation between the two modes due 
to static coupling is small and their mode shapes 
are compatible, the two modes can merge when 
the friction is introduced and increased.  The 
instabilities come from the compatible modes 
when they are identical.  So, the mode shapes of 
brake components most likely are measured with 
experimental methods has a great on mode 
merging.  The understanding of the important role 
of mode shapes is expected to be of great help for 
the prediction of the occurrence of squeal.

 The stability boundaries are sensitive to changes 
in parameters such as contact stiffness. 

 The changes in separations partially reveal the 
effects of the parameters on system stability and 
can provide an explanation to some squeal 
reduction techniques due to the correlation 

between cr values and the separations of the 

statically coupled frequencies.

 When there is more than one mode with positive 
real parts of their eigenvalues, the one with the 
largest real part for the current set of system 
parameters will be the mode which drives the 
squeal response. The value of the coefficient of 
friction at which the dominant mode's eigenvalues 
merge and become unstable is called the critical 
value of the coefficient of friction.

 The greater the noise index (NI) the more likely 
the corresponding mode was considered to cause 
audible squeal noise.
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