

Continuous And Irresolute Functions Via Star Generalised Closed Sets

S. Pious Missier¹, Reena. C^2

¹Associate Professor, P.G. And Research Department Of Mathematics, V.O.Chidambaram College, Thoothukudi,India. ²Department Of Mathematics St.Mary's College,Thoothukudi,India.

ABSTRACT: In this paper, we introduce a new class of continuous functions called semi* δ -continuous function and semi* δ -irresolute functions in topological spaces by utilizing semi* δ -open sets and to investigate their properties.

Keywords and phrases: semi* δ -open set, semi* δ -closed set, semi* δ -continuous, semi* δ -irresolute function. Mathematics Subject Classifications: 54C05

I. INTRDUCTION

In 1963, Levine[3] introduced the concept of semi-continuity in topological spaces. In 1968 N.V.Velicko introduced the concept of δ -open sets in topological spaces. T.Noiri[8] introduced the concept of δ -continuous functions in 1980.In 2014 Raja Mohammad Latif[15] investigate the properties of δ -continuous functions and δ -irresolute functions. S.Pasunkili Pandian[10] defined semi*pre- continuous and semi*pre-irresolute functions and investigated their properties. S.Pious Missier and A.Robert[12,16] introduced the concept of semi*-continuous and semi* α -continuous functions in 2014.Quite recently ,the authors[13] introduced some new concepts, namely semi* δ -open sets, semi* δ - closed sets. The aim of this paper is to introduce new class of functions called semi* δ -continuous, semi* δ -irresolute functions and investigated their properties.

II. PRELIMINARIES

Throughout this paper (X, τ), (Y, σ) and (Z, η) represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned.

Definition 2.1: A subset A of a space X is

(i) generalized closed (briefly g-closed) [4] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X. (ii)generalized open (briefly g-open) [4] if X\A is g-closed in X.

Definition 2.2: If A is a subset of X,

(i) the generalized closure of A is defined as the intersection of all g-closed sets in X containing A and is denoted by $Cl^*(A)$.

(ii) the generalized interior of A is defined as the union of all g-open subsets of A and is denoted by Int*(A).

Definition 2.3: Let (X, τ) be a topological space. A subset A of the space X is said to be

1. Semi-open [3] if $A \subseteq Cl(Int(A))$ and semi*-open[12] if $A \subseteq Cl^*(Int(A))$.

2. Preopen [5] if $A \subseteq Int(Cl(A))$ and pre*open[14] if $A \subseteq Int*(Cl(A))$.

3. Semi-preopen [7] if $A \subseteq Cl(Int(Cl(A)))$ and semi*-preopen[10] if $A \subseteq Cl^*(pInt(A))$).

4. α -open [6] if A \subseteq Int(Cl(Int(A))) and α *-open [11] if A \subseteq Int*(Cl(Int*(A))).

5. Regular-open[13] if A=Int(Cl(A)) and δ -open[8] if A= δ Int(A)

6. semi α -open[9] if A \subseteq Cl(α Int(A)) and semi* α -open[16] if A \subseteq Cl*(α Int(A))).

7. δ -semi-open [2] if A \subseteq Cl(δ Int(A)) and semi* δ -open[13] A \subseteq Cl*(δ Int(A)).

The complements of the above mentioned sets are called their respective closed sets.

Definition 2.4: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be

- **1.** g-continuous [1] if $f^{-1}(V)$ is g-open in (X, τ) for every open set V in (Y, σ) .
- **2.** Semi-continuous [3] if $f^{-1}(V)$ is semi-open in (X, τ) for every open set V in (Y, σ) .

3. Semi*-continuous [12] if $f^{-1}(V)$ is semi*-open in (X, τ) for every open set V in (Y, σ) .

4. Pre-continuous [5] if $f^{-1}(V)$ is pre-open in (X, τ) for every open set V in (Y, σ) .

5. Pre*-continuous [14] if $f^{-1}(V)$ is pre*-open in (X, τ) for every open set V in (Y, σ) .

6. α - continuous [6] if $f^{-1}(V)$ is α -open in (X, τ) for every open set V in (Y, σ) .

7. α^* - continuous [11] if $f^{-1}(V)$ is α^* -open in (X, τ) for every open set V in (Y, σ) .

8. Semi-pre-continuous[7] if $f^{-1}(V)$ is semi-preopen in (X, τ) for every open set V in (Y, σ) . 9. Semi*pre-continuous[14] if $f^{-1}(V)$ is semi*-preopen in (X, τ) for every open set V in (Y, σ) . 10. Semi α -continuous [9] if $f^{-1}(V)$ is semi- α -open in (X, τ) for every open set V in (Y, σ) .

11.Semi* α -continuous [16] if $f^{-1}(V)$ is semi*- α -open in (X, τ) for every open set V in (Y, σ) .

12. δ -continuous [8] if $f^{-1}(V)$ is δ -open in (X, τ) for every open set V in (Y, σ) .

13. δ -semi-continuous [2] if $f^{-1}(V)$ is δ -semi-open in (X, τ) for every open set V in (Y, σ) .

Definition 2.5: A topological space (X, τ) is said to be $T_{\frac{1}{2}}$ if every g-closed set in X is closed.

Theorem 2.6: [13] Every δ -open set is semi* δ -open.

Theorem 2.7: [13] In any topological space,

(i) Every semi* δ -open set is δ -semi-open.

(ii) Every semi $*\delta$ -open set is semi - open.

(iii) Every semi* δ -open set is semi* - open.

(iv) Every semi $*\delta$ -open set is semi*-preopen.

(v) Every semi*δ-open set is semi-preopen.

(vi) Every semi* δ -open set is semi* α -open

(vii) Every semi $\ast\delta$ -open set is semi α -open.

Remark 2.8: [17] Similar results for semi* δ -closed sets are also true.

Theorem 2.9: [13] For a subset A of a topological space (X, τ) the following statements are equivalent: (i) A is semi $\ast\delta$ -open. (ii) $A \subseteq Cl^*(\delta Int(A))$.

(iii) $Cl^*(\delta Int(A))=Cl^*(A)$.

Theorem 2.10: [17] For a subset A of a topological space (X, τ) , the following statements are equivalent: (i) A is semi* δ -closed. (ii) Int*(δ Cl(A)) \subseteq A. (iii) $Int^{*}(\delta Cl(A))=Int^{*}(A)$.

III. SEMI*δ -CONTINUOUS FUNCTIONS

Definition 3.1: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be **semi*** \Box -**continuous** if $f^{-1}(V)$ is semi* δ -open in (X, τ) τ) for every open set V in (Y, σ).

Theorem 3.2: Every δ -continuous is semi* δ -continuous.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be δ - continuous. Let V be open in (Y, σ) . Then $f^{-1}(V)$ is δ -open in (X, τ) . Hence by Theorem 2.6, $f^{-1}(V)$ is semi* δ -open in (X, τ) . Therefore f is semi* δ -continuous.

The converse of the above theorem need not be true as it is seen from the following example.

Example 3.3: Let $X = \{a, b, c, d\}$, $Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, \{a, b\}$ Y}. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = c; f(b) = a; f(c) = d; f(d) = b. Then f is semi* δ -continuous but not δ continuous. Since for the open set V = {a, b} in (Y, σ), $f^{-1}(V) = \{b, d\}$ is semi* δ -open but not δ -open in (X, τ). **Theorem 3.4:** Every semi* δ -continuous is δ -semi-continuous.

Proof: By Theorem 2.7(i), every semi δ -open set is δ -semi-open, the proof follows. The converse of the above theorem need not be true as it is seen from the following example.

Example 3.5: Let $X = \{a, b, c, d\}$, $Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b; f(b) = f(c) = a; f(d) = c. Then f is δ -semi-continuous but not semi* δ -continuous. Since for the open set $V = \{a\}$ in (Y, σ) , $f^{-1}(V) = \{b, c\}$ is δ -semi-open but not semi* δ -open in (X, τ) . τ).

Theorem 3.6: Every semi $\ast\delta$ -continuous is semi-continuous.

Proof: By Theorem 2.7(ii), every semi δ -open set is semi-open, the proof follows. The converse of the above theorem need not be true as it is seen from the following example.

Example 3.7: Let X= {a, b, c, d}, Y= {a, b, c, d}, $\tau = \{\phi, \{a\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a, b, c\}, Y\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b; f(b) = a; f(c) = d; f(d) = c. Then f is semi-continuous but not semi* δ -continuous. Since for the open set $V = \{a, b, c\}$ in (Y, σ) , $f^{-1}(V) = \{a, b, d\}$ is semi-open but not semi* δ -open in (X, τ) .

Theorem 3.8: Every semi*δ-continuous is semi*-continuous.

Proof: By Theorem 2.7(iii), every semi* δ -open set is semi*-open, the proof follows. The converse of the above theorem need not be true as it is seen from the following example.

Example 3.9: Let $X = \{a, b, c, d\}$, $Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{a, b\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a, b, c\}, Y\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b; f(b) = a; f(c) = d; f(d) = c. Then f is semi*-continuous but not semi* δ -continuous. Since for the open set $V = \{a, b, c\}$ in (Y, σ) , $f^{-1}(V) = \{a, b, d\}$ is semi*-open but not semi* δ -open in (X, τ) .

Theorem 3.10: Every semi*δ-continuous is semi*pre-continuous.

Proof: By Theorem 2.7(iv), every semi* δ -open set is semi*pre-open, the proof follows. The converse of the above theorem need not be true as it is seen from the following example.

Example 3.11: Let X= {a, b, c, d}, Y= {a, b, c, d}, $\tau = \{\phi, \{a\}, \{b, c, d\}, X\}$ and $\sigma = \{\phi, \{a, b\}, \{a, b, c\}, Y\}$. Define f: (X, τ) \rightarrow (Y, σ) by f(a) = b; f(b) = d; f(c) = a; f(d) = c. Then f is semi*pre-continuous but not semi* δ -continuous. Since for the open set V = {a, b} in(Y, σ), $f^{-1}(V) = \{a, c\}$ is semi*pre-open but not semi* δ -open in (X, τ).

Theorem 3.12: Every semi*δ-continuous is semi-pre-continuous.

Proof: By Theorem 2.7(v), every semi* δ -open set is semi-pre-open, the proof follows. The converse of the above theorem need not be true as it is seen from the following example.

Example 3.13: Let X= {a, b, c, d}, Y= {a, b, c}, $\tau = \{\phi, \{a, b\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, Y\}$. Define f: (X, τ) \rightarrow (Y, σ) by f(a) = b; f(b) = f(c) = a; f(d) = c. Then f is semi-pre-continuous but not semi* δ -continuous. Since for the open set V = {a} in(Y, σ), $f^{-1}(V) = \{b, c\}$ is semi-pre-open but not semi* δ -open in (X, τ).

Theorem 3.14: Every semi* δ -continuous is semi* α -continuous.

Proof: By Theorem 2.7(vi), every semi* δ -open set is semi* α -open, the proof follows. The converse of the above theorem need not be true as it is seen from the following example.

Example 3.15: Let X= {a, b, c, d}, Y= {a, b, c}, $\tau = \{\phi, \{a\}, \{a, b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{b\}, \{a, b\}, Y\}$. Define f: (X, τ) \rightarrow (Y, σ) by f(a) = f(c) = b; f(b) = a; f(d) = c. Then f is semi* α -continuous but not semi* δ -continuous. Since for the open set V = {b} in(Y, σ), $f^{-1}(V) = \{a, c\}$ is semi* α -open but not semi* δ -open in (X, τ).

Theorem 3.16: Every semi* δ -continuous is semi α -continuous.

Proof: By Theorem 2.7(vii), every semi* δ -open set is semi α -open, the proof follows. The converse of the above theorem need not be true as it is seen from the following example.

Example 3.17: Let X= {a, b, c}, Y= {a, b, c}, $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{c\}, Y\}$. Define f: (X, τ) \rightarrow (Y, σ) by f(a) = f(b) = c; f(c) = a. Then f is semi α -continuous but not semi \ast -continuous. Since for the open set V = {c} in(Y, σ), $f^{-1}(V) = \{a, b\}$ is semi α -open but not semi \ast -open in (X, τ).

Remark 3.18: The concept of semi* δ -continuity and continuity are independent as shown in the following example.

Example 3.19:

1. Let X = {a, b, c}, Y = {a, b, c}, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Define f: (X, $\tau) \rightarrow (Y, \sigma)$ by f(a) = b; f(b) = f(c) = a. Then f is semi* δ -continuous but not continuous. Observe that for the open set V = {a} in (Y, σ), $f^{-1}(V) = \{b, c\}$ is semi* δ -open but not open in (X, τ).

2. Let $X = \{a, b, c\}$, $Y = \{a, b, c\}$, $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b; f(b) = a; f(c) = c. Then f is continuous but not semi* δ -continuous. It is clear that for the open set $V = \{a, b\}$ in (Y, σ) , $f^{-1}(V) = \{a, b\}$ is open but not semi* δ -open in (X, τ) .

Remark 3.20: The concept of semi*δ-continuity and g-continuity are independent as shown in the following example.

Example 3.21:

1. Let $X = \{a, b, c, d\}$, $Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, Y\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b; f(b) = a; f(c) = d; f(d) = c. Then f is semi $\ast \delta$ -continuous but not g-continuous. Observe that for the open set $V = \{a, b, c\}$ in (Y, σ) , $f^{-1}(V) = \{a, b, d\}$ is semi $\ast \delta$ -open but not g-open in (X, τ) .

2. Let X = {a, b, c, d}, Y={a, b, c, d}, $\tau = \{\phi, \{a\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b, c\}, Y\}$. Define f: (X, τ) \rightarrow (Y, σ) by f(a) = f(d) = b; f(b) = c; f(c) = a . Then f is g-continuous but not semi* δ -continuous. It is clear that for the open set V = {a} in (Y, σ), $f^{-1}(V) = \{c\}$ is g-open but not semi* δ -open in (X, τ).

Remark 3.22: The concept of semi* δ -continuity and α -continuity are independent as shown in the following example.

Example 3.23:

1. Let $X = \{a, b, c, d\}$, $Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, \{a, b, c\}, Y\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b; f(b) = a; f(c) = d; f(d) = c. Then f is semi* δ -continuous but not α -continuous. Observe that for the open set $V = \{a, b, c\}$ in (Y, σ) , $f^{-1}(V) = \{a, b, d\}$ is semi* δ -open but not α -open in (X, τ) .

2. Let X = {a, b, c, d}, Y = {a, b, c, d}, $\tau = \{\phi, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a, b\}, \{a, b, c\}, Y\}$. Define f: (X, τ) \rightarrow (Y, σ) by f(a) = f(c) = b; f(b) = a; f(d) = c. Then f is α -continuous but not semi* δ -continuous. It is clear that for the open set V = {a, b} in (Y, σ), $f^{-1}(V) = \{a, b, c\}$ is α -open but not semi* δ -open in (X, τ).

Remark 3.24: The concept of semi* δ -continuity and pre-continuity are independent as shown in the following example.

Example 3.25:

1. Let $X = \{a, b, c\}$, $Y = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, Y\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = c; f(b) = a; f(c) = b. Then f is semi* δ -continuous but not pre-continuous. Observe that for the open set $V = \{a, b\}$ in (Y, σ) , $f^{-1}(V) = \{b, c\}$ is semi* δ -open but not pre-open in (X, τ) .

2. Let $X = \{a, b, c, d\}$, $Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{a, b, c\}, Y\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = c; f(b) = d; f(c) = b; f(d) = a. Then f is pre-continuous but not semi* δ -continuous. It is clear that for the open set $V = \{a, b, c\}$ in (Y, σ) , $f^{-1}(V) = \{a, c, d\}$ is pre-open but not semi* δ -open in (X, τ) .

Remark 3.26: The concept of semi* δ -continuity and α *-continuity are independent as shown in the following example.

Example 3.27:

1. Let $X = \{a, b, c, d\}$, $Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, \{a, b, c\}, Y\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = c; f(b) = a; f(c) = d; f(d) = b. Then f is semi* δ -continuous but not α *-continuous. Observe that for the open set $V = \{a, b\}$ in (Y, σ) , $f^{-1}(V) = \{b, d\}$ is semi* δ -open but not α *-open in (X, τ) .

2. Let $X = \{a, b, c, d\}$, $Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a, b\} \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c, d\}, Y\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = c; f(b) = d; f(c) = a; f(d) = b. Then f is α^* -continuous but not semi* δ -continuous. It is clear that for the open set $V = \{b, c, d\}$ in (Y, σ) , $f^{-1}(V) = \{a, b, d\}$ is α^* -open but not semi* δ -open in (X, τ) .

Remark 3.28: The concept of semi* δ -continuity and pre*-continuity are independent as shown in the following example.

Example 3.29:

1. Let X = {a, b, c}, Y = {a, b, c}, $\tau = \{ \phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{ \phi, \{a, b\}, Y\}$. Define f: (X, τ) \rightarrow (Y, σ) by f(a) = b; f(b) = c; f(c) = a. Then f is semi* δ -continuous but not pre*-continuous. Observe that for the open set V = {a, b} in (Y, σ), $f^{-1}(V) = \{a, c\}$ is semi* δ -open but not pre*-open in (X, τ).

2. Let $X = \{a, b, c, d\}$, $Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, Y\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b; f(b) = d; f(c) = a; f(d) = c. Then f is pre*-continuous but not semi* δ -continuous. It is clear that for the open set $V = \{a, b, c\}$ in (Y, σ) , $f^{-1}(V) = \{a, c, d\}$ is pre*-open but not semi* δ -open in (X, τ) .

From the above the discussions we have the following diagram:

Theorem 3.30: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is semi* δ -continuous if and only if $f^{-1}(U)$ is semi* δ -closed in (X, τ) for every closed set U in (Y, σ) .

Proof. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be semi* δ -continuous and U be a closed set in (Y, σ) . Then $V=Y \setminus U$ is open in Y. Then $f^{-1}(V)$ is semi* δ -open in X. Therefore

 $f^{-1}(U) = f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is semi* δ -closed.

Converse: Let V be an open set in Y. Then U=Y\V is closed in Y. By assumption, $f^{-1}(U)$ is semi* δ -closed in X. Hence $f^{-1}(V)=f^{-1}(Y\setminus U)=X\setminus f^{-1}(U)$ is semi* δ -open in X. Therefore f is semi* δ -continuous.

Remark 3.31: The composition of two semi* δ -continuous functions need not be semi* δ -continuous and this can be shown by the following example.

Example 3.32: Let $X = Y = Z = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}, \sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, Y\}$ and $\eta = \{\phi, \{a\}, \{a, b, c\}, Z\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a)=b; f(b)=a; f(c)=d; f(d)=c and define g: $(Y, \sigma) \rightarrow (Z, \eta)$ by g(a)=g(d)=a; g(b)=c and g(c)=b. Then f and g are semi* δ -continuous but $g \circ f$ is not semi* δ -continuous. Since $\{a\}$ is open in (Z, η) but $(g \circ f)^{-1}(\{a\}) = f^{-1}(\{a\})) = f^{-1}(\{a, d\}) = \{b, c\}$ which is not semi* δ -open in (X, τ) .

Theorem 3.33: Let (X, τ) and (Z, η) be topological spaces and (Y, σ) be a space in which every semi* δ -open set is open, then the composition $g \circ f : (X, \tau) \to (Z, \eta)$ of semi* δ -continuous functions $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ is semi* δ -continuous.

Proof: Let G be any open set of (Z, η) . Since g is semi* δ -continuous g^{-1} (G) is semi* δ -open in (Y, σ) . Then by assumption, $g^{-1}(G)$ is open in (Y, σ) . Hence $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is semi* δ -open in (X, τ) . Thus $g \circ f$ is semi* δ -continuous.

Theorem 3.34: Let (X, τ) and (Z, η) be topological spaces and (Y, σ) be $T_{1/2}$ -space then the composition $g \circ f$:

 $(X, \tau) \rightarrow (Z, \eta)$ of semi* δ -continuous $f : (X, \tau) \rightarrow (Y, \sigma)$ and g-continuous function $g : (Y, \sigma) \rightarrow (Z, \eta)$ is semi* δ -continuous.

Proof: Let G be any closed set of (Z, η) . Since g is g-continuous g^{-1} (G) is g-closed in (Y, σ) . Also since (Y, σ) is $T_{1/2}$ -space, $g^{-1}(G)$ is closed in (Y, σ) .

Hence $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is semi* δ -closed in (X, τ) . Thus $g \circ f$ is semi* δ -continuous.

Theorem 3.35: If $f : (X, \tau) \to (Y, \sigma)$ is semi* δ -continuous and $g : (Y, \sigma) \to (Z, \eta)$ is continuous. Then their composition $g \circ f : (X, \tau) \to (Z, \eta)$ is semi* δ -continuous.

Proof: Let G be open in (Z, η) . Thus $g^{-1}(G)$ is open in (Y, σ) . Since f is semi* δ -continuous $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is semi* δ -open in (X, τ) . Thus $g \circ f$ is semi* δ -continuous.

Theorem 3.36: Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then the following statements are equivalent:

(i) The function f is semi* δ -continuous.

(ii) $f^{-1}(F)$ is semi* δ -closed in X for every closed set F in Y.

(iii) $f(s^*\delta Cl(A)) \subseteq Cl(f(A))$ for every subset A of X.

(iv)s* δ Cl(f⁻¹(B))⊆ f⁻¹(Cl(B)) for every subset B of Y.

 $(v)f^{-1}(Int(B)) \subseteq s^* \delta Int(f^{-1}(B))$ for every subset B of Y.

(vi)Int*(α Cl(f⁻¹(F)))=Int*(f⁻¹(F)) for every closed set F in Y.

 $(vii)Cl^*(\alpha Int(f^{-1}(V)))=Cl^*(f^{-1}(V))$ for every open set V in Y.

Proof: (i) \Leftrightarrow (ii): This follows from theorem 3.30.

(ii)=(iii): Let $A \subseteq X$. Let F be a closed set containing f(A). Then by (ii), f⁻¹(F) is a semi* δ -closed set containing A. This implies that $s^{\delta}Cl(A)\subseteq f^{1}(F)$ and hence $f(s^{\delta}\delta Cl(A))\subseteq F$.

Therefore $f(s^*\delta Cl(A)) \subseteq Cl(f(A))$.

(iii) \Rightarrow (iv): Let B \subseteq Y and let A = f⁻¹(B). By assumption, f(s* δ Cl(A)) \subseteq Cl(f(A)) \subseteq Cl(B). This implies that s* δ Cl(A) \subseteq f⁻¹(Cl(B)). Therefore s* δ Cl(f⁻¹(B)) \subseteq f⁻¹(Cl(B)).

 $(iv) \Leftrightarrow (v)$: The equivalence of (iv) and (v) can be proved by taking the complements.

 $(vi) \Leftrightarrow (ii)$: Follows from Theorem 2.10.

 $(vii) \Leftrightarrow (i)$: Follows from Theorem 2.9.

IV. SEMI* -- IRRESOLUTE FUNCTIONS

Definition 4.1: A function $f: X \rightarrow Y$ is said to be semi* \Box -irresolute if $f^{-1}(V)$ is semi* δ -open in X for every semi* δ -open set V in Y.

Theorem 4.2: If $f : (X, \tau) \to (Y, \sigma)$ is semi* δ -irresolute and g: $(Y, \sigma) \to (Z, \eta)$ is semi* δ -continuous then g \circ f : $(X, \tau) \to (Z, \eta)$ is semi* δ -continuous.

Proof: Let G be any open set of (Z, η) . Since g is semi* δ -continuous $g^{-1}(G)$ is semi* δ - open in (Y,σ) . Since f is semi* δ -irresolute $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is semi* δ -open in (X, τ) . Thus $(g \circ f)$ is semi* δ -continuous.

Theorem 4.3: If $f : (X, \tau) \to (Y, \sigma)$ is semi* δ -irresolute and g: $(Y, \sigma) \to (Z, \eta)$ is semi* δ -irresolute then $g \circ f : (X, \tau) \to (Z, \eta)$ is semi* δ -irresolute.

Proof: Let G be semi* δ -open in (Z, η) . Since g is semi* δ -irresolute, $g^{-1}(G)$ is semi* δ -open in (Y, σ) . Since f is semi* δ -irresolute f⁻¹(g⁻¹(G)) = (g \circ f)⁻¹(G) is semi* δ -open in (X, τ). Thus (g o f) is semi* δ -irresolute.

Theorem 4.4: Let X be a topological space and Y be a space in which every semi* δ -open set is open. If f : (X, $\tau \rightarrow (Y, \sigma)$ is a semi* δ -continuous map, then f is semi* δ -irresolute.

Proof: Let G be semi* δ -open set in (Y, σ). Then by assumption, G is open in (Y, σ). Since f is semi* δ continuous, $f^{-1}(G)$ is semi* δ -open in (X, τ) . Thus f is semi* δ -irresolute.

Theorem 4.5: Let $f: X \rightarrow Y$ be a function. Then the following are equivalent:

(i) f is semi* δ -irresolute.

(ii) $f^{-1}(F)$ is semi* δ -closed in X for every semi* δ -closed set F in Y.

(iii) $f(s*\delta Cl(A)) \subseteq s*\delta Cl(f(A))$ for every subset A of X.

 $(iv)s^*\delta Cl(f^1(B)) \subseteq f^1(s^*\delta Cl(B))$ for every subset B of Y.

(v)f⁻¹(s* δ Int(B)) \subseteq s* δ Int(f⁻¹(B)) for every subset B of Y. (vi) Int*(δ Cl(f⁻¹(F)))=Int*(f⁻¹(F)) for every semi* δ -closed set F in Y.

(vii)Cl*(δ Int(f⁻¹(V)))=Cl*(f⁻¹(V)) for every semi* δ -open set V in Y.

Proof:

(i) \Rightarrow (ii): Let F be a semi* δ -closed set in Y. Then V=Y\F is semi* δ -open in Y. Then f⁻¹(V) is semi* δ -open in X. There-fore $f^{-1}(F)=f^{-1}(Y\setminus V)=X\setminus f^{-1}(V)$ is semi* δ -closed.

(ii) \Rightarrow (i): Let V be a semi* δ -open set in Y. Then F=Y\V is semi* δ -closed. By (iii), f⁻¹(F) is semi* δ -closed. Hence

 $f^{-1}(V) = f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$ is semi* δ -open in X.

(ii) \Rightarrow (iii): Let A \subseteq X. Let F be a semi* δ -closed set containing f(A). Then by (ii), f⁻¹(F) is a semi* δ -closed set containing A. This implies that $s^{\delta}Cl(A) \subseteq f^{1}(F)$ and hence $f(s^{\delta}Cl(A)) \subseteq F$. Therefore $f(s^{\delta}Cl(A)) \subseteq s^{\delta}Cl(f(A))$. (iii) \Rightarrow (iv): Let B \subseteq Y and let A= f⁻¹(B). By assumption, f(s* δ Cl(A)) \subseteq s* δ Cl(f(A)) \subseteq s* δ Cl(B). This implies that $s*\delta Cl(A) \subseteq f^{-1}(s*\delta Cl(B))$. Hence

 $s^{*}\delta Cl(f^{-1}(B)) \subseteq f^{-1}(s^{*}\delta Cl(B)).$

 $(iv) \Leftrightarrow (v)$: The equivalence of (iv) and (v) can be proved by taking the complements.

(vi) \Leftrightarrow (ii): Follows from Theorem 2.10.

(vii) \Leftrightarrow (i):Follows from Theorem 2.9.

ACKNOWLEDGMENT

The first author is thankful to University Grants Commission, New Delhi, for sponsoring this work under grants of Major Research Project-MRP-MAJOR-MATH -2013-30929. F.No. 43-433/2014(SR) Dt. 11.09.2015.

REFERENCES

- K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, [1]. Mem. Fac.Sci.Kochi Univ.Ser.A Math., 12(1991), 5-13.
- B.Y. Lee, M.J. Son and J.H. Park, δ- semiopen sets and its applications, Far East J.Math. Sci., [2]. 3(5)(2001),745 -759.
- Levine, N., Semi-open sets and Semi-continuity in topo-logical spaces, Amer. Math.Monthly, 70(1) [3]. (1963), 36-41.
- [4]. Levine, N., Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo, 19(2) (1970), 89-96.
- Mashhour, A.S., Abd El-Monsef, M.E. and El-Deeb, S.N., On Precontinuous and Weak precontinuous [5]. mappings, Proc. Math. Phys. Soc. Egypt 53(1982), 47-53.
- A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb., α -continuous and α -open mappings, Acta Math [6]. Hung, 41(3-4)(1983), 213-218.
- G. B. Navalagi, Semi-Precontinuous functions and properties of Generalized Semi-Preclosed sets in [7]. Topological Spaces, IJMMS 29:2 (2002) 85-98.
- T. Noiri, On δ-continuous function, J. Korean Math. Soc., 16 (1980), 161-166. [8].
- Othman, H. A., New types of α -continuous mapping, Master Degree Thesis, Al-Mustansiriya [9]. University, IRAQ (2004).
- [10]. Pasunkili Pandian, S., A Study on Semi Star-Preopen Sets in Topological Spaces, Ph.D Thesis, Manonmaniam Sundaranar University, Tirunelveli, India, 2013.
- [11]. S. Pious Missier, P. Anbarasi Rodrigo, On α* Continuous Functions, OUTREACH Volume VII, 2014,

[13]. S. Pious Missier et. al., Functions Associated with Semi*-Open Sets, International Journal of Modern Sciences and Engineering Technology, Volume 1, Issue 2, 2014.

^{[12]. 148 – 154.}

- [14]. Pious Missier .S and Reena.C, On Semi*δ-Open Sets in Topological Spaces, IOSR Journal of Mathematics (Sep – Oct.2016), 01-06.
- [15]. A. Punitha Tharania & T. Selvi , On Pre*- Continuous And M-Pre*Continuous Mappings, International Journal Of Mathematical Archive- 3 (11), Nov. 2012.
- [16]. Raja Mohammad Latif , Characterizations Of Delta-Open Sets And Mappings in Topological Spaces ,
- [17]. May 12, 2014.
- [18]. A. Robert S. Pious Missier, Semi-Star-Alpha-Open Sets and Associated Functions, International Journal of Computer Applications, Volume 104 No 16, October 2014.
- [19]. Pious Missier .S and Reena.C, Between δ-Closed Sets and δ-Semi-Closed Sets, International Journal of Mathematical Archive-7(11), 2016, 60-67