On Alpha Generalized Star Preclosed Sets in Topological Spaces

C. Sekar¹ and J. Rajakumari²

¹Associate Professor (RTD), Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur, Tamilnadu, India ²Assistant Professor, Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur, Tamilnadu, India

ABSTRACT: In this paper, a new class of sets in topological spaces namely, alpha generalized star preclosed (briefly αg^*p -closed) set is introduced. This class falls strictly in between the classes of preclosed and g^*p -closed sets. Also we studied the characteristics and the relationship of this class of sets with the already existing class of closed sets. Further αg^*p -open set is imtroduced which is the complement of αg^*p -closed set and its properties are investigated.

Keywords: αg^*p -closed set, αg^*p -open set and αg^*p -nbhd.

I. INTRODUCTION

In 1970, Levine [6] introduced the concept of generalized closed set and discussed their properties, closed and open maps, compactness, normal and separation axioms. A.S.Mashor, M.E.Abd El-Monsef and E1-Deeb.S.N., [11] introduced preopen sets in topological spaces and investigated their properties. Later in 1998 H.Maki, T.Noiri [10] introduced a new type of generalized closed sets in topological spaces called gp-closed sets. The study on generalization of closed sets has lead to significant contribution to the theory of separation axioms, generalization of continuous and irresolute functions. H.Maki et.al. [8][9] generalized α -open sets in two ways and introduced generalized α -closed(briefly g\alpha-closed) sets and α -generalized closed(briefly α g-closed) sets in 1993 and 1994 respectively.

M.K.R.S.Veera kumar [20] introduced the concepts of generalized star preclosed sets and generalized star preopen sets in a topological space. In this paper we introduce and study a new type of closed set namely ' α g*p-closed sets' in topological spaces. The aim of this paper is to study of α g*p-closed sets thereby contributing new innovations and concepts in the field of topology through analytical as well as research works. The notion of α g*p-closed sets and its different characterizations are given in this paper.

Throughout this paper (X,τ) and (Y,σ) represents topological spaces on which no separation axioms are assumed, unless otherwise mentioned. For a subset A of X, the closure of A and interior of A will be denoted by cl(A) and int(A) respectively. The union of all preopen sets of X contained in A is called pre-interior of A and it is denoted by pint (A). The intersection of all preclosed sets of X containing A is called pre-closure of A and it is denoted by pcl (A).

Definition 2.1.

II. PRELIMINARIES

A subset A of a topological space (X, \Box) is called

- (i) preopen [11] if $A \subseteq int (cl(A))$ and preclosed if $cl(int(A)) \subseteq A$.
- (ii) semi-open [7] if $A \subseteq cl$ (int (A)) and semi-closed if int (cl (A)) $\subseteq A$.
- (iii) \Box -open [15] if $A \subseteq$ int (cl (int (A))) and \Box -closed if cl(int(cl(A))) $\subseteq A$.
- (iv) semi-preopen [1] (β -open) if A \subseteq cl(int(cl(A))) and semi-preclosed (β -closed set) if int (cl (int (A))) \subseteq A.
- (v) regular open [19] if A = int (cl(A)) and regular closed if A = cl (int (A)).

Definition 2.2.

A subset A of a topological space (X, \Box) is called

(i) generalized closed (briefly g-closed) [6] if $cl(A) \square \square U$ whenever $A \square \square U$ and U ispen in X.

(ii) semi-generalized closed (briefly sg-closed) [3] if $scl(A) \square \square U$ whenever $A \square \square U$ and Us semi-open in X. (iii) generalized semi-closed (briefly gs-closed) [2] if $scl(A) \square \square U$ whenever $A \square \square U$ and U is open in X.

(iii) generalized semi-closed (briefly gs-closed) [2] if sci(A) = 0 whenever A = 0 and 0 is open in X. (iv) generalized \Box -closed (briefly $g\Box$ -closed) [9] if \Box cl(A) $\Box = 0$ whenever $A \equiv 0$ and 0 is open in X.

- (v) generalized closed (briefly \Box gclosed) [8] if \Box cl(A) \Box \Box U whenever A \Box U and U is open in X.
- (vi) generalized preclosed (briefly gp-closed) [10] if $pcl(A) \subseteq U$ whenever $A \square U$ and U is open in X.

(vii) generalized semi-preclosed (briefly gsp-closed) [4] if $spcl(A) \square U$ whenever $A \square U$ and U is open in X.

- (viii)generalized pre regular closed (briefly gpr-closed)[5] if $pcl(A) \square U$ whenever $A \square U$ and U is regular open in X.
- (ix) regular generalized closed (briefly rg-closed) [16] if cl (A) ⊆ U whenever A □ U and U is regular open in X.
- (x) weakly generalized closed (briefly wg-closed)[13] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (xi) regular weakly generalized closed (briefly rwg-closed)[13] if cl(int(A))⊆U whenever A⊆U and U is regular open in X.
- (xii) strongly generalized closed (briefly g*-closed) [22] if $cl(A) \square U$ whenever $A \square U$ and U is g-open in X.
- (xiii) mildly generealized closed (briefly mildly g-closed) [17] if $cl(int(A)) \square \square U$ whenever $A \square \square U$ and U is gopen in X.
- (xiv) generalized star preclosed (briefly g*p-closed set) [20] if pcl (A) □ U whenever A □ □ U and U ig-open in X.

(xv) pre-semi closed set [21] if spcl (A) \Box U whenever A \Box \Box U and U is gopen in X.

The complements of the above mentioned closed sets are their respective open sets.

Definition 2.3.[14]

Let (X, τ) be a topological space, $A \square X$ and $x \in X$ then x is said to be a pre-limit point of A iff every preopen set containing x contains a point of A different from x.

Definition 2.4.[14]

Let (X, τ) be a topological space and $A \square X$. The set of all prelimit points of A is said to be the prederived set of A and is denoted by $D_p[A]$.

Definition 2.5.

Let (X, τ) be a topological space and let A,B be two non-void subsets of X. Then A and B are said to be pre-separated if $A \cap pcl(B)=pcl(A) \cap B=\phi$

III. ALPHA GENERALIZED STAR PRECLOSED SETS

In this section we introduce alpha generalized star preclosed set and investigate some of their properties. Definition 3.1. A subset A of a topological space (X, τ) is called alpha generalized star preclosed set (briefly $\Box g^*p$ -closed) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\Box g$ -open in X.

Theorem 3.2. Every preclosed set is $\Box g^*p$ -closed.

Proof. Let A be any preclosed set in X. Let U be any \Box g-open set containing A. Since A is a preclosed set, we have pcl(A) = A. Therefore $pcl(A) \subseteq U$. Hence A is \Box g*p-closed in X. The converse of above theorem need not be true as seen from the following example.

Example 3.3. Let $X = \{a,b,c,d\}$ be given the topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a,c\}, \{a,b,c\}\}$. Then $\{a,d\}$ is a $\Box g^*p$ -closed set but not preclosed in X.

Theorem 3.4. Every \Box -closed set is $\Box g^*p$ -closed.

Proof. The proof follows from the definitions and the fact that every \Box -closed set is preclosed. The converse of above theorem need not be true as seen from the following example.

Example 3.5. Let $X = \{a,b,c,d\}$ be given the topology $\tau = \{X, \phi, \{a,b\}\}$. Then $\{a\}$ is a $\Box g^*p$ -closed set but not \Box -closed in X.

Theorem 3.6. Every closed set is $\Box g^*p$ -closed.

Proof. The proof follows from the definitions and the fact that every closed set is preclosed. The converse of above theorem need not be true as seen from the following example.

Example 3.7. Let $X = \{a,b,c,d\}$ be given the topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$.

Then $\{c\}$ is a $\Box g^*p$ -closed set but not closed in X.

Corollary 3.8. Every regular closed set is $\Box g^*p$ -closed.

The converse of above corollary need not be true as seen from the following example.

Example 3.9. Let $X = \{a,b,c,d\}$ be given the topology $\tau = \{X, \phi, \{a\}, \{b,c\}, \{a,b,c\}\}$. Then $\{a,b,d\}$ is a $\Box g^*p$ -closed set but not regular closed in X.

Remark. g*p-closed sets are independent of semi-closed sets and semi-preclosed sets as seen from the following example

Example 3.10. Let $X = \{a,b,c,d\}$, $\tau = \{X,\phi,\{a\},\{b\},\{a,c\},\{a,b,c\}\}$. In this topological space (X, τ) , a subset $\{a,c\}$ is semi-closed and semi-preclosed but not $\Box g^*p$ -closed and $\{a,d\}$ is a $\Box g^*p$ -closed set but not semi-closed, semi-preclosed.

Theorem 3.11. Every $\Box g^*p$ -closed set is gp-closed. **Proof.** Let A be any $\Box g^*p$ -closed set in X. Let U be open set containing A. Since every open set is $\Box g$ -open, we have pcl(A) \subseteq U. Hence A is gp-closed. The converse of above theorem need not be true as seen from the following example.

Example 3.12. Let $X = \{a,b,c,d\}$ be given the topology $\tau = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$. Then $\{b,d\}$ is a gp-closed set but not $\Box g^*p$ -closed in X.

Theorem 3.13. Every $\Box g^*p$ -closed set is a gpr-closed set. **Proof.** The proof follows from the definitions and the fact that every regular open set is $\Box g$ -open. The converse of above theorem need not be true as seen from the following example.

Example 3.14. Let $X = \{a,b,c,d\}$ be given the topology $\tau = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$. Then $\{a\}$ is a gpr-closed set but not $\Box g^*p$ -closed in X.

Theorem 3.15. Every □g*p-closed set is gsp-closed.

Proof. The proof follows from the definitions and the fact that every open set is \Box g-open. The converse of above theorem need not be true as seen from the following example.

Example 3.16. Let $X = \{a,b,c,d\}$ be given the topology $\tau = \{X,\phi,\{a,b\}\}$. Then $\{a,b,c\}$ is a gsp-closed set but not $\Box g^*p$ -closed in X.

Theorem 3.17. Every \Box g*p-closed set is g*p-closed.

Proof. Let A be any $\Box g^*p$ -closed set in X. Let U be any g-open set containing A. Since every g-open set is $\Box g$ -open, we have pcl(A) \subseteq U. Hence A is g*p-closed. The converse of above theorem need not be true as seen from the following example.

Example 3.18. Let $X = \{a,b,c,d\}$ be given the topology $\tau = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$. Then $\{a,b,d\}$ is a g*p-closed set but not \Box g*p-closed in X.

Theorem 3.21. Every \Box g*p-closed set is mildly generalized closed. **Proof.** Let A be any \Box g*p-closed set in X. Let U be any g-open set containing A. Since every g-open set is \Box g-open and cl(int(A) \subseteq pcl(A), we have cl(int(A)) \subseteq U. Hence A is mildly generalized closed. The converse of above theorem need not be true as seen from the following example.

Example 3.22. Let $X = \{a,b,c,d\}$ be given the topology $\tau = \{X,\phi,\{a\},\{b\},\{a,b\},\{b,c\},\{a,b,c\}\}$. Then $\{b,d\}$ is mildly generalized closed set but not $\Box g^*p$ -closed in X.

Theorem 3.23. Every $\Box g^*p$ -closed set is weakly generalized(wg) closed. **Proof.** Let A be any $\Box g^*p$ -closed set in X. Let U be any open set containing A. Since every open set is $\Box g$ -open and cl(int(A) \subseteq pcl(A), we have cl(int(A)) \subseteq U. Hence A is wg-closed. The converse of above theorem need not be true as seen from the following example.

Example 3.24. Let $X = \{a,b,c,d\}$ be given the topology $\tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}$. Then $\{a,c\}$ is a weakly generalized closed set but not $\Box g^*p$ -closed in X.

Theorem 3.25. Every $\Box g^*p$ -closed set is regular weakly generalized(rwg) closed. **Proof.** Let A be any $\Box g^*p$ -closed set in X. Let U be any regular open set containing A. Since every regular open set is $\Box g$ -open and cl(int(A) \subseteq pcl(A), we have cl(int(A)) \subseteq U. Hence A is rwg-closed set. The converse of above theorem need not be true as seen from the following example.

Example 3.26. Let $X = \{a,b,c,d\}$ be given the topology $\tau = \{X,\phi,\{a\},\{b\},\{d\},\{a,b\},\{a,d\},\{b,d\},\{a,b,d\}\}$. Then $\{a\}$ is rwg-closed but not $\Box g^*p$ -closed.

Theorem 3.27. Every $\Box g^*p$ -closed set is pre-semi closed.

Proof. Let A be any $\Box g^*p$ -closed set in X. Let U be any g-open set containing A. Since every g-open set is $\Box g$ -open and every preclosed set is semi-preclosed, we have $spcl(A) \subseteq pcl(A) \subseteq U$. Hence A is pre-semi closed. The converse of above theorem need not be true as seen from the following example.

Example 3.28. Let $X = \{a,b,c,d\}$ be given the topology $\tau = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$. Then $\{a\}$ is a pre-semi closed set but not $\Box g^*p$ -closed in X.

Remark. The following examples show that $\Box g^*p$ -closed sets are independent of g-closed, g^* -closed, sg-closed, gc-closed, $\Box g$ -closed.

Example 3.31 Let $X = \{a,b,c,d\}$. $\tau = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$. The set $\{a,d\}$ is g-closed and g*-closed but not \Box g*p-closed. The set $\{c\}$ is \Box g*p-closed but not g-closed and g*-closed.

Example 3.32.Let $X = \{a,b,c,d\}$, $\tau = \{\phi,\{a,b\},X\}$. The sets $\{a\},\{b\}$ are $\Box g^*p$ -closed but not sg-closed, gs-closed, \Box gclosed and $g\Box$ -closed.

Example 3.33. Let $X = \{a,b,c,d\}$, $\tau = \{\phi,\{a\},\{b\},\{a,b\},X\}$. The set $\{a\}$ is sg-closed and gs-closed but not \Box g*p-closed.

Example 3.34. Let $X = \{a,b,c,d\}$, $\tau = \{\phi,\{a\},\{b\},\{a,b\},\{b,c\},\{a,b,c\},X\}$. The set $\{b,d\}$ is \Box g-closed but not \Box g*p-closed.

From the above discussions we have the following implications:

IV. CHARACTERISTICS OF g*p-CLOSED AND g*p-OPEN SETS

Theorem 4.1. Let A be a $\Box g^*p$ -closed set in (X, τ) . Then i) pcl (A) \ A does not contain any non-empty $\Box g$ -closed set. **ii**) If B is a subset of X such that $A \subseteq B \subseteq pcl(A)$ then B is also $\Box g^*p$ -closed in (X,τ) . **Proof. i**) Let F be a $\Box g$ -closed set contained in pcl (A) \ A. Since X\ F is an $\Box \Box g$ -open set with $A \subseteq X \setminus F$ and A is $\Box g^*p$ -closed, pcl (A) $\subseteq X \setminus F$. Which implies $F \subseteq (X \setminus pcl(A)) \cap (pcl(A) \setminus A) \subseteq (X \setminus pcl(A)) \cap pcl(A) = \phi$

Therefore $F = \phi$.

ii)Let U be an \Box g-open set of (X, τ) such that $B \subseteq U$. Since $A \subseteq U$ and A is $\Box g^*p$ -closed, $pcl(A) \subseteq U$. Since $B \subseteq pcl(A)$, we have $pcl(B) \subseteq pcl(pcl(A)) = pcl(A)$. Thus $pcl(B) \subseteq U$. Hence B is a $\Box g^*p$ -closed set of (X, τ) .

Corollary 4.2. Let A be a $\Box g^*p$ -closed set in (X, τ) . Then pcl $(A) \setminus A$ does not contain any non-empty \Box -closed set.

Remark 4.3. Union of two $\Box g^*p$ -closed sets need not be $\Box g^*p$ -closed.

Example 4.4. Let $X = \{a,b,c,d\}$ with $\tau = \{X,\phi,\{a,b\}\}$. The sets $\{a\}$ and $\{b\}$ are $\Box g^*p$ -closed sets but their union $\{a,b\}$ is not a $\Box g^*p$ -closed set.

Theorem 4.5. The intersection of two $\Box g^*p$ -closed subsets of X is also $\Box g^*p$ -closed. **Proof.** Let A and B be any two $\Box g^*p$ -closed subsets of X. Then pcl (A) \subseteq U, pcl (B) \subseteq U whenever A \subseteq U and B \subseteq U, U is $\Box g$ -open. Let U be an $\Box g$ -open set in X such that A \cap B \subseteq U. Now, pcl (A \cap B) \subseteq pcl (A) \cap pcl (B) \subseteq U, U is $\Box g$ -open in X. Hence A \cap B is a $\Box g^*p$ -closed set.

Theorem 4.6. For an element $x \in X$, then the set X-{x} is a $\Box g^*p$ -closed set (or) $\Box g$ -open set. **Proof.** Let $x \in X$. Suppose that $X \setminus \{x\}$ is not $\Box g$ -open. Then X is the only $\Box g$ -open set containing $X \setminus \{x\}$. This implies $pcl(X \setminus \{x\}) \subseteq X$. Hence $X \setminus \{x\}$ is $\Box g^*p$ -closed in X.

Theorem 4.7. If A is both \Box -open and $\Box g^*p$ -closed in X, then A is preclosed. **Proof.** Suppose A is \Box -open and $\Box g^*p$ - closed in X. As every \Box -open set is \Box gopen and $A \subseteq A$, $pcl(A) \subseteq A$. But Always $A \subseteq pcl(A)$. Therefore A = pcl(A). Hence A is preclosed.

Corollary 4.8. If A is both \Box gopen and $\Box g^*p$ -closed in X, then A is preclosed. **Corollary 4.9.** Let A be a $\Box g$ -open set and $\Box g^*p$ -closed set in X.Suppose that F is preclosed in X.Then A \cap F is $\Box g^*p$ -closed in X. **Proof.**

By corollary 4.8, A is preclosed. So $A \cap F$ is preclosed and hence $A \cap F$ is an $\Box g^*p$ -closed in X.

Theorem 4.10. Let A be a $\Box g^*p$ -closed set in (X, τ) . Then A is preclosed iff pcl $(A) \setminus A$ is $\Box g$ -closed. **Proof.** Suppose A is preclosed in X. Then pcl(A) = A and so pcl $(A) \setminus A = \phi$ which is \Box gclosed in X. Conversely, Suppose pcl $(A) \setminus A$ is \Box gclosed in X. Since A is $\Box g^*p$ -closed, pcl $(A) \setminus A$ does not contain any non-empty $\Box g$ -closed set in X. That is pcl $(A) \setminus A = \phi$. Hence A is preclosed.

Theorem 4.11. If A is both open and gp-closed in X, then A is $\Box g^*p$ -closed in X. **Proof.** Suppose A is open and gp-closed in X. We prove that A is $\Box g^*p$ -closed set in X. Let U be any \Box gopen set in X such that $A \subseteq U$. Since A is open and gp-closed, we have $pcl(A) \subseteq A \subseteq U$. Hence A is $\Box g^*p$ -closed in X.

Theorem 4.12. If A is both open and \Box g-closed in X, then A is \Box g*p-closed in X. **Proof.**Let A \subseteq U and U be \Box g-open in X. Now A \subseteq A. By hypothesis \Box cl(A) \subseteq A. Since every \Box -closed set is preclosed, pcl(A) $\subseteq \Box$ cl(A). Thus pcl(A) \subseteq A \subseteq U. Hence A is \Box g*p-closed in X.

Definition 4.13. Let $B \subseteq A \subseteq X$. Then we say that B is $\Box g^*p$ -closed relative to A if $pcl_A(B) \subseteq U$ where $B \subseteq U$ and U is $\Box g$ -open in A.

Theorem 4.14. Let $B \subseteq A \subseteq X$ and Suppose that B is $\Box g^*p$ -closed in X. Then B is $\Box g^*p$ -closed relative to A. **Proof.**Given that $B \subseteq A \subseteq X$ and B is $\Box g^*p$ -closed in X. Let us assume that $B \subseteq A \cap V$, where V is $\Box g$ -open in X. Since B is $\Box g^*p$ -closed set, $B \subseteq V$ implies pcl (B) $\subseteq V$. It follows that $pcl_A(B) = pcl (B) \cap A \subseteq V \cap A$. Therefore B is $\Box g^*p$ -closed relative to A.

Theorem 4.15. Let A and B be $\Box g^*p$ -closed sets such that $D(A) \subset D_p(A)$ and $D(B) \subset D_p(B)$ then $A \cup B$ is $\Box g^*p$ -closed. **Proof.** Let U be an $\Box g$ -open set such that $A \cup B \subseteq U$. Then $pcl(A) \subseteq U$ and $pcl(B) \subseteq U$ However, for any set E, $D_p(E) \subset D(E)$. Therefore cl(A) = pcl(A) and cl(B) = pcl(B) and this shows $cl(A \cup B) = cl(A) = pcl(A) \cup pcl(B)$ That is $pcl(A \cup B) \subseteq U$. Hence $A \cup B$ is $\Box g^*p$ -closed.

Definition 4.16. A subset A of a topological space (X, τ) is called $\Box g^*p$ -open set if and only if $X \setminus A$ is $\Box g^*p$ -closed in X. We denote the family of all $\Box g^*p$ -open sets in X by $\Box g^*p$ O(X).

Theorem 4.17. If pint (A) \subseteq B \subseteq A and if A is \Box g*p-open in X, then B is \Box g*p-open in X. **Proof.** Suppose that pint (A) \subseteq B \subseteq A and A is \Box g*p-open in X. Then X \ A \subseteq X \ B \subseteq pcl (X \ A). Since X \ A is \Box g*p-closed in X, we have X \ B is \Box g*p-closed in X. Hence B is \Box g*p-open in X.

Theorem 4.18. If A and B are $\Box g^*p$ -open sets in X, then $A \cup B$ is $\Box g^*p$ -open in X. **Proof.** Assume that A and B are $\Box g^*p$ -open sets in X. Then $X \setminus A$ and $X \setminus B$ are $\Box g^*p$ -closed sets. By theorem 4.1, $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$ is $\Box g^*p$ -closed in X. Therefore $A \cup B \Box g^*p$ -open in X.

Remark 4.19. The intersection of two $\Box g^*p$ -open sets in X is generally not $\Box g^*p$ -open in X.

Example 4.20.Let $X = \{a,b,c,d\}$ with $\tau = \{X,\phi,\{a,b\}\}$. The set $\{a,c\}$ and $\{b,c\}$ are $\Box g^*p$ -open sets but their intersection $\{c\}$ is not $\Box g^*p$ -open set.

Theorem 4.21. A set A is $\Box g^*p$ -open iff $F \subset pint(A)$ whenever F is $\Box g$ -closed and $F \subset A$. **Proof. Necessity.**Let A be $\Box g^*p$ -open set and suppose $F \subset A$ where F is $\Box g$ -closed. By definition, X \ A is $\Box g^*p$ -closed. Also X \ A is contained in the $\Box g$ -open set X \ F. This implies $pcl(X \setminus A) \subset X \setminus F$. Now $pcl(X \setminus A) = X \setminus pint(A)$. Hence X \ $pint(A) \subset X \setminus F$. That is $F \subset pint(A)$

Suffiency. If F is \Box g-closed set with $F \subset pint(A)$ where $F \subset A$, it follows that $X \setminus A \subset X \setminus F$ and $X \setminus pint(A) \subset X \setminus F$. That is $pcl(X \setminus A) \subset X \setminus F$. Hence $X \setminus A$ is \Box g*p-closed and A becomes \Box g*p-open.

Theorem 4.22. If A and B are pre-separated \Box g*p-open sets then A \cup B is \Box g*p-open. **Proof.** By definition, pcl(A \cap B)=A \cap pcl(B)= ϕ If F is a \Box g-closed set such that F \subset A \cup B then F \cap pcl(A) \subset pcl(A) \cap (A \cup B) \subset A $\cup \phi$ =A. Similarly, F \cap pcl(B) \subset B. Hence by 4.21, F \cap pcl(A) \subset pint(A) and F \cap pcl(B) \subset pint(B) Now, F = F \cap (A \cup B) = (F \cap A) \cup (F \cap B) \subset (F \cap pcl(A)) \cup (F \cap pcl(B)) \subset pint(A) \cup pint(B) \subset pint(A \cup B)

Hence $A \cup B$ is $\Box g^*p$ -open.

□ □ □ **g***p-NEIGHBOURHOODS

In this section we introduce $\Box g^*p$ -neighbourhoods in topological spaces by using the notions of $\Box g^*p$ -open sets and study some of their properties.

Definition 5.1. Let x be a point in a topological space X and let $x \in X$. A subset N of X is said to be a $\Box g^*p$ -nbhd of x iff there exists an $\Box g^*p$ -open set G such that $x \in G \subset N$.

Definition 5.2. A subset N of Space X is called a $\Box g^*p$ -nbhd of A \subset X iff there exists an $\Box g^*p$ -open set G such that A \subset G \subset N.

Theorem 5.3. Every nbhd N of $x \in X$ is a $\Box g^*p$ -nbhd of X. **Proof.** Let N be a nbhd of point $x \in X$. To prove that N is a $\Box g^*p$ -nbhd of x. By definition of nbhd, there exists an open set G such that $x \in G \subset N$. Hence N is a $\Box g^*p$ -nbhd of x.

Remark. In general, a $\Box g^*p$ -nbhd of $x \in X$ need not be a nbhd of x in X as seen from the following example.

Example 5.4. Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. Then $\Box g^* p \cdot O(X) = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$.

The set {a,c,d} is $\Box g^*p$ -nbhd of point c, since the $\Box g^*p$ -open sets {a,c} is such that $c \in \{a,c\} \subset \{a,c,d\}$. However, the set {a,c,d} is not a nbhd of the point c, since no open set G exists such that $c \in G \subset \{a,c,d\}$.

Remark 5.6. The $\Box g^*p$ -nbhd N of $x \in X$ need not be a $\Box g^*p$ -open set in X.

Example 5.7. Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$.

Then $\Box g^*p$ -O(X) = {X, ϕ , {a}, {b}, {c}, {a,b}, {a,c}, {b,c}}. The set {a,d} is $\Box g^*p$ -nbhd of point a, since $a \in \{a\} \subset \{a,d\}$. But the set {a,d} is not $\Box g^*p$ -open.

Theorem 5.8. If a subset N of a space X is $\Box g^*p$ -open, then N is $\Box g^*p$ -nbhd of each of its points. **Proof.** Suppose N is $\Box g^*p$ -open. Let $x \in N$. We claim that N is $\Box g^*p$ -nbhd of x. For N is a $\Box g^*p$ -open set such that $x \in N \subset N$. Since x is an arbitrary point of N, it follows that N is a $\Box g^*p$ -nbhd of each of its points.

Theorem 5.9. Let X be a topological space. If F is $\Box g^*p$ -closed subset of X and $x \in F^c$. Then there exists a $\Box g^*p$ -nbhd N of x such that $N \cap F = \phi$

Proof. Let F be $\Box g^*p$ -closed subset of X and $x \in F^c$. Then F^c is a $\Box g^*p$ -open set in X. By theorem 5.8, F^c contains a $\Box g^*p$ -nbhd of each of its points. Hence there exists a $\Box g^*p$ -nbhd N of x such that $N \subset F^c$. (i.e.) $N \cap F = \phi$.

Definition 5.10. Let x be a point in a topological space X. The set of all $\Box g^*p$ -nbhd of x is called the $\Box g^*p$ -nbhd system at x, and is denoted by $\Box g^*p$ -N(x).

Theorem 5.11. Let N be a $\Box g^*p$ -nbhd of a topological space X and each $x \in X$, Let $\Box g^*p$ -N(X, τ) be the collection of all $\Box g^*p$ -nbhd of x. Then we have the following results. (i) For every $x \in X$, $\Box g^*p$ -N(x) $\neq \phi$.

(ii) $N \in \Box g^*p$ - $N(x) \Rightarrow x \in N$.

(iii) $N \in \Box g^*p$ -N(x), $M \supset N \Rightarrow M \in \Box g^*p$ -N(x).

(iv) $N \in \Box g^*p$ -N(x), $M \in \Box g^*p$ -N(x) \Rightarrow N $\cup M \in \Box g^*p$ -N(x).

(v) $N \in \Box g^*p-N(x) \Rightarrow$ there exists $M \in \Box g^*p-N(x)$ such that $M \subseteq N$ and $M \in \Box g^*p-N(y)$ for every $y \in M$. **Proof.** (i) Since X is $\Box g^*p$ -open, it is a $\Box g^*p$ -nbhd of every $x \in X$. Hence there exists at least one $\Box g^*p$ -nbhd (namely-X) for each $x \in X$. Therefore $\Box g^*p-N(x) \neq \phi$ for every $x \in X$.

(ii) If $N \in \Box g^*p$ -N(x), then N is a $\Box g^*p$ -nbhd of x. By definition of $\Box g^*p$ -nbhd, $x \in N$.

(iii) Let $N \in \Box g^*p$ -N(x) and $M \supset N$. Then there is a $\Box g^*p$ -open set G such that $x \in G \subset N$. Since $N \subset M$, $x \in G \subset M$ and so M is $\Box g^*p$ -nbhd of x. Hence $M \in \Box g^*p$ -N(x).

(iv) Let $N \in \Box g^* - N(x)$, $M \in \Box g^* p$ -N(x). Then by definition of $\Box g^* p$ -nbhd, there exists $\Box g^* p$ -open sets G_1 and G_2 such that $x \in G_1 \subset N$ and $x \in G_2 \subset M$. Hence $x \in G_1 \cup G_2 \subset N \cup M$ ------ (1). Since $G_1 \cup G_2$ is a $\Box g^* p$ -open set,(being the union of two $\Box g^* p$ -open sets), it follows from (1) that $N \cup M$ is a $\Box g^* p$ -nbhd of x. Hence $N \cup M \in \Box g^* p$ -N(x).

(v) Let $N \in \Box g^*p$ -N(x), Then there is a $\Box g^*p$ -open set M such that $x \in M \subset N$. Since M is $\Box g^*p$ -open, it is $\Box g^*p$ -nbhd of each of its points. Therefore $M \in \Box g^*p$ -N(y) for every $y \in M$.

V. CONCLUSION

The $\Box g^*p$ -closed set can be used to derive continuity, closed map, open map and homeomorphism, closure and interior and new separation axioms.

REFERENCES

- [1]. D.Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1)(1986), 24-32.
- [2]. S.P. Arya and T. Nour, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21(8)(1990),717-719.
- [3]. P. Bhattacharya and B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987),375-382.
- [4]. J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 16(1995), 35-48.
- [5]. Y. Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3)(1997), 351-360.
- [6]. N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.

[7]. N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963),

- 36-41.
 [8]. H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized □-closed sets and □-eneralized closed sets, Mem.
- Fac. Sci. Kochi Univ. Ser.A.Math., 15(1994), 51-63.
- [9]. H. Maki, R. Devi and K. Balachandran, Generalized □-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
 [10]. H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T1/2 space, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 17(1996), 33-42.
- [11]. A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On pre-continuous and weak pre-continuous mapings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [12]. A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, \Box -continuous and \Box -open mappings., Acta Math. Hung., 41(3-4)(1983), 213-218.

- [13]. N.Nagaveni , Studies on Generalizations of Homeomorphisms in Topological spaces, Ph.D.thesis, Bharathiar University, Coimbatore, (1999).
- [14]. G.B.Navalagi, Pre-neighbourhoods, The Mathematics Education, Vol.XXXII,No.4,Dec.(1998),201-206.
- [15]. O.Njastad, On some classes of nearly open sets, Pacific J.Math., 15(1965), 961-970.
- [16]. N.Palaniappan and K.C.Rao, Regular generalized closed sets, Kyungpook Math.J., 33(2)(1993), 211-219.
- [17]. J.K.Park and J.H.Park, Mildly generalized closed sets almost normal and mildly normal spaces Chaos Solutions and Fractals 20(2004),1103-1111.
- [18]. A.Pushpalatha, Studies on Generalizations of Mappings in Topological spaces, Ph.D.thesis,Bharathiar University,Coimbatore,(2000).
- [19]. M.Stone Application of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc., 41(1937) 374-481.
- [20]. M.K.R.S. Veera kumar, g*-preclosed sets, Indian J.Math., 44(2) (2002), 51-60.
- [21]. M.K.R.S. Veera kumar, Pre-semi-closed sets, Acta ciencia Indica (Maths) Meerut XXVIII(M)(1) 2002, 165-181.
- [22]. M.K.R.S. Veera kumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. (Math)21(2000), 1-19.
- [23]. S.Willard, General Topology.Addison Wesley, (1970).