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I. INTRODUCTION 
Magnetic fluids are suspensions of small magnetic particles in a liquid carrier. Under normal 

conditions, the material behaves like a viscous fluid. When it is exposed to a magnetic field, the particles inside 

align and it responds to the field, exhibiting magnetized behaviour. There are a number of uses for magnetic 

fluids, ranging from medicine to industrial manufacturing. It is, therefore, a two-phase system consisting of solid 

and liquid phases. The net effect of the particles suspended in the fluid is an extra dragging force acting on the 

system. This is due to relative velocity between the solid and fluid particles. In recent years, there has been 

considerable interest in the study of magnetic fluids. Saffman [1] proposed the equations of the flow of 

suspension of non-magnetic particles. These equations were modified by Wagh [2] to describe the flow of 

magnetic fluid, by including the magnetic body force HM0 . Wagh and Jawandhia [3]  have studied the 

transport of vorticity in a magnetic fluid. Transport and sedimentation of suspended particles in inertial 

pressure-driven flow has been considered by Yan and Koplik [4]. 

In all the above studies, the fluid was considered as Newtonian, but many industrially important fluids 

(molten plastics, polymers, pulps and foods) exhibit a non-Newtonian fluid behaviour. Many common materials 

(paints and plastics) and more exotic ones (silicic magma, saturated soils, and the Earth’s lithosphere) behave as 

viscoelastic fluids. With the growing importance of non-Newtonian materials in various manufacturing and 

processing industries, considerable effort has been directed towards understanding their flow. Widely used 

theoretical models (models A and B, respectively) for certain classes of viscoelastic fluids have been proposed 

by Oldroyd [5]. Vest and Arpaci [6] have studied the stability of a horizontal layer of Maxwell’s viscoelastic 

fluid heated from below. The thermal instability of Maxwellian viscoelastic fluid in the presence of a uniform 

rotation has been considered by Bhatia and Steiner [7], where rotation is found to have a destabilizing effect. 

This is in contrast to the thermal instability of a Newtonian fluid where rotation has a stabilizing effect. In 

another study, Bhatia and Steiner [8] have studied the problem of thermal instability of a viscoelastic fluid in 

hydromagnetics and have found that the magnetic field has the stabilizing influence on Maxwell fluid just as in 

the case of Newtonian fluid.    

The medium has been considered to be non-porous in all the above studies. In recent years, the 

investigations of flow of fluids through porous media have become an important topic due to the recovery of 

crude oil from the pores of reservoir rocks. A great number of applications in geophysics may be found in the 

books by Phillips [9], Ingham and Pop [10], and Nield and Bejan [11]. When the fluid slowly permeates through 

the pores of a macroscopically homogeneous and isotropic porous medium, the gross effect is represented by 

Darcy’s law according to which the usual viscous term in the equations of fluid motion is replaced by the 

resistance term q
k


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, where    is the fluid viscosity, 1k  is the medium permeability and q
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Darcian (filter) velocity of the fluid. Lapwood [12] has studied the stability of convective flow in 

hydrodynamics in a porous medium using Rayleigh’s procedure. The Rayleigh instability of a thermal boundary 

layer in flow through porous medium has been considered by Wooding [13]. The physical properties of comets, 

meteorities and interplanetary dust strongly suggest the importance of porosity in astrophysical context 

(McDonnel [14]). Sharma and Sharma [15] have considered the thermal instability of a rotating Maxwell fluid 

through porous medium and found that, for stationary convection, the rotation has stabilizing effect whereas the 

permeability of the medium has both stabilizing as well as destabilizing effect, depending on the magnitude of 

rotation. Khare and Sahai [16] have considered the effect of rotation on the convection in porous medium in a 

horizontal fluid layer which was viscous, incompressible and of variable density. Sharma and Kumar [17] have 

considered the Hall effect on thermosolutal instability in a Maxwellian viscoelastic fluid in porous medium. The 

thermal instability of a rotating Maxwellian viscoelastic fluid permeated with suspended particles in porous 

medium has been studied by Kumar [18]. Kumar and Singh [19] have studied the stability of superposed 

Maxwellian viscoelastic fluids through porous media in hydromagnetics. In another study, Kumar [20] has 

studied the thermal instability of Maxwellian heterogeneous viscoelastic fluid layer through porous medium. 

Kumar [21] has also studied the slow, immiscible, Maxwellian viscoelastic liquid-liquid displacement in a 

permeable medium. 

Keeping in mind the importance of non-Newtonian fluids in modern technology and industries and 

owing to the importance of porous medium in chemical engineering and geophysics, the present paper attempts 

to study the transport of vorticity in magnetic Maxwellian viscoelastic fluid-particle mixtures in porous medium. 

 

II. BASIC ASSUMPTIONS AND MAGNETIC BODY FORCE 
Particles of magnetic material are much larger than the size of the molecules of carrier liquid. 

Accordingly, considering the limit of a microscopic volume element in which a fluid can be assumed to be a 

continuous medium and the magnetic particles must be treated as discrete entities. Now, if one considers a cell 

of magnetic fluid containing a larger number of magnetic particles, then one must consider the micro-rotation of 

the cell in addition to its translations as a point mass. Thus, one has to assign average velocity dv


 and the 

average angular velocity 


 of the cell. But, here as an approximation, we neglect the effect of micro-rotation.  

 

We shall also make the following assumptions: 

(i) Most of the ferrofluids are relatively poor conductors and hence free current density J


is negligible and, 

hence BJ


 is assumed to be insignificant. 

(ii) The magnetic field is assumed to be curl free ( i.e. 0H 


). 

(iii) In many practical situations liquid compressibility is not important. Hence contribution due to magnetic 

friction can be neglected. The remaining force of the magnetic field is referred to as the magnetization 

force. 

(iv) All time-dependent magnetization effects in the fluid such as hysteresis are assumed to be negligible and 

the magnetization M


is assumed to be collinear with H


. 

 

From electromagnetic theory, the force per unit volume in MKS units on a piece of magnetized 

material of magnetization M


 (i.e. dipole moment per unit volume) in the field of magnetic intensity H


 is 

 HM


.0 , where 0  is the free space permeability.  

Here we note that 
z

a

y

a

x

a
a














 321.


 and 

z
a

y
a

x
aa














 321.


, where  

kajaiaa ˆˆˆ
321 


 . 

 

Using assumption (iv), we get 
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Thus, the magnetic body force assumes the form (Rosensweig [22]) 

                           0 .mf M H 


                                                                                                        (3) 

III. DERIVATION OF EQUATIONS GOVERNING TRANSPORT OF VORTICITY IN 

MAGNETIC VISCOELASTIC MAXWELLIAN FLUID 
Wagh (1991) modified the Saffman's equations for flow of suspension to describe the flow of magnetic 

fluid by including the body force HM0 acting on the suspended magnetic particles. Let 

, , , , , , , ,ij ij ij ij i i
de p v x and

dt
    denote respectively the total stress tensor, the shear stress tensor, 

the rate-of-strain tensor, the viscosity, the stress relaxation time, the isotropic pressure, the Kroneckor delta, the 

velocity vector, the position vector and the convective derivative. Then the Maxwellian fluid is described by the 

constitutive relations 
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Now the equations expressing the flow of suspended magnetic particles and the flow of Maxwellian 

viscoelastic fluid in which magnetic particles are suspended in porous medium are therefore written as 
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where        , , , , , , 0, 0, ; , , , , ,dP v u v w g g v l r s m N x t  
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 denote, respectively, the pressure less  

 

the hydrostatic pressure, density, viscosity, velocity of the pure fluid, gravity force; velocity, mass and 

number density of the particles;    ,6,,,  Kzyxx  being the particle radius, is the Stokes' drag 

coefficient and mN  is the mass of particles per unit volume. Here   is the medium porosity and is defined as 

volumetotal

voidstheofvolume
  ,  .10    For very fluffy foam materials,   is nearly one and in bed of 

packed spheres in the range 0.25-0.50. 

               

In the equations of motion for the fluid, the presence of suspended particles adds an extra force term, 

proportional to the velocity difference between suspended particles and fluid. Since the force exerted by the 

fluid on the suspended particles is equal and opposite to that exerted by the particles on the fluid, there must be 

an extra force term, equal in magnitude but opposite in sign, in the equations of motion for the suspended 

particles.   

Making use of the Lagrange’s vector identities 
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equations (5) and (6) become 
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where 
dv

 
 and 

1 v 
 

are solid vorticity and fluid vorticity. 

 

Taking the curl of these equations and recalling that the curl of a gradient is identically equal to zero, we obtain 
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By making use of the vector identities 
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equations (10) and (11) become 
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where  is the kinematic viscosity and  



 .
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tDt

D 


 is the convective derivative. 

In equation (14), 

      .HMHMHM                                                                                      (16) 

 

Since the curl of the gradient is zero, the last term in equation (16) is zero. Also since  
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By making use of (17), equation (16) becomes 
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The first term on the right hand side of this equation is clearly zero, hence we get 
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Putting this in equation (14), we get 
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Here (15) and (20) are the equations governing the transport of vorticity in magnetic Maxwellian 

viscoelastic fluid-particle mixtures in porous medium. 
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             In equation (20), the first term in the right hand side HT
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M
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vorticity due to thermo-kinetic processes. The last term  .1 




KN
 gives the change in solid vorticity on 

account of exchange of vorticity between the liquid and solid in porous medium. 

           From equations (15) and (20), it follows that the transport of solid vorticity 


 is coupled with the 

transport of fluid vorticity 1


 in porous medium. 

           From equation (20), we see that if solid vorticity 


 is zero, then the fluid vorticity 1
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 is not zero, but it 

is given by 
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This implies that due to thermo-kinetic process, fluid vorticity may exist in the absence of solid vorticity 

in porous medium. Equation (21) also shows that fluid vorticity decreases in the presence of porosity. In the 

absence of porous medium  1  
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This is in conformity with Wagh and Jawandhia (1996) result. 

            

From equation (14), we find that if 1


 is zero, then 


 is also zero. This implies that when fluid  

vorticity is zero, then solid vorticity is necessarily zero. 

             In the absence of suspended magnetic particles, N is zero and magnetization M is also zero, so equation 

(20) is identically satisfied and equation (15) reduces to  
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This equation is vorticity transport equation in porous medium. The last term on the right hand 

side of equation (23) represents the rate at which 1


 varies for a given particle, when the vortex lines move 

with the fluid, the strengths of the vortices remaining constant and the rate of change of vorticity which varies 

for a given particle due to stress relaxation time. The first term represents the rate of dissipation of vorticity 

through friction (resistance).  

 

IV. TWO-DIMENSIONAL CASE 
Here we consider the two-dimensional case: 

Let        ˆ ˆ ˆ ˆ, , , , ,
x yd d d x yv v x y i v x y j v v x y i v x y j   

 
  ,                                        (24) 

where components , ,
x yd d x yv v and v v  are functions of tandyx, , then 

kk zz
ˆ,ˆ

11 


 .                                                                                                                (25) 

 

In two-dimensional case, equation (21) becomes 
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Similarly, equation (15) becomes 
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Because it can be easily verified that  

   1. 0 . 0.dv and v     
  

                                                                                               (28) 

             The first term on the right hand side of equation (27) is the change of fluid vorticity due to internal 

friction (resistance), the second term is the change in fluid vorticity on account of exchange of vorticity between 

solid and liquid and the third term is the rate of change in fluid vorticity on account of exchange of vorticity 

between solid and liquid due to stress relaxation time. Equation (27) does not involve explicitly the term 

representing change of vorticity due to magnetic field gradient and/or temperature gradient. But equation (26) 

shows that solid vorticity z  depends on these factors. Hence, it follows that fluid vorticity is indirectly 

influenced by the temperature and the magnetic field gradient. 

In the absence of magnetic particles, N is zero and magnetization M is also zero, so equation (26) is 

identically satisfied and equation (27) reduces to classical equation of transport of vorticity for fluid in porous 

medium. If instead of magnetic field we consider a suspension of non-magnetic particles, then the corresponding 

equation for the transport of vorticity may be obtained by putting M equal to zero in the equations governing the 

transport of vorticity in magnetic fluids. If magnetization M of the magnetic particles is independent of 

temperature, then the first term of equations (20) and (26) vanish and so the equations governing the transport of 

vorticity in magnetic fluid in porous medium are same as those which govern the transport of vorticity in non-

magnetic suspensions in porous medium. 

                If the temperature gradient T  vanishes or if the magnetic field gradient H vanishes or if 

T  is parallel to H , then also the first term of equations (20) and (26) vanish. Thus, we see that in this 

case also the transport of vorticity in magnetic fluid in porous medium is same as transport of vorticity in 

non-magnetic suspension in porous medium. 
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