# On some locally closed sets and spaces in Ideal Topological Spaces

M. Navaneethakrishnan<sup>1</sup>, P. Periyasamy<sup>2</sup>, S. Pious Missier<sup>3</sup>

<sup>1</sup> Department of Mathematics, Kamaraj College, Thoothukudi, Tamilnadu, India.
<sup>2</sup> Department of Mathematics, Kamaraj College, Thoothukudi, Tamilnadu, India.
3 Department of Mathematics, V.O.Chidambaram College, Thoothukudi, Tamilnadu, India.

**ABSTRACT:** In this paper we introduce and characterize some new generalized locally closed sets known as  $\hat{\delta}_s$ -locally closed sets and spaces are known as  $\hat{\delta}_s$ -normal space and  $\hat{\delta}_s$ -connected space and discussed some of their properties.

**Keywords and Phrases:**  $\hat{\delta}_s$ -locally closed sets,  $\hat{\delta}_s$ -normal space,  $\hat{\delta}_s$ -connected space.

#### I. Introduction

In topological spaces locally closed sets were studied more by Bourbaki [2] in 1966, which is the intersection of an open set and a closed set. Kuratowski [4] was introduced the local function in ideal spaces. Vaidyanathaswamy [10] was given much importance to the topic and ideal topological space. Balachandran, Sundaram and Maki [1] introduced and investigated the concept of generalized locally closed sets. Navaneethakrishnan and Sivaraj [7] were introduced the concept of Ig-locally\*-closed sets in ideal topological spaces. Navaneethakrishnan, Paulraj Joseph and Sivaraj [8] introduced and investigated the concept of Ig-normal and Ig-regular spaces. The purpose of this paper is to introduce and study the notions of locally closed sets,  $\hat{\delta}_{s}$ -normal space and connectedness in Ideal topological spaces. We study the notions of  $\hat{\delta}_{s}$ -locally closed sets,  $\hat{\delta}_{s}$ -normal space,  $\hat{\delta}_{s}$ -separated sets and  $\hat{\delta}_{s}$ -connectedness in ideal topological spaces.

#### **II.** Preliminaries

**Definition 2.1.** Let  $(X, \tau)$  be a topological space. A subset A of X is said to be (i) a generalized closed (briefly g-closed) set [5] if  $cl(A) \subset U$  whenever  $A \subset U$  and U is open in  $(X, \tau)$ . (ii) a generalized locally closed (briefly GLC) set [1] if  $A = U \cap F$  where U is g-open and F is g-closed in  $(X, \tau)$ .

**Definition 2.2.** For a subset A of  $(X, \tau)$ .

(i)  $A \subseteq GLC^*(X, \tau)$  [1] if there exist a g-open set U and a closed set F of  $(X, \tau)$  such that  $A = U \cap F$ . (ii)  $A \in GLC^{**}(X, \tau)$  [1] if there exist an open set U and a g-closed set F of  $(X, \tau)$  such that  $A = U \cap F$ .

**Definition 2.3.** A topological space  $(X, \tau)$  is said to be  $T_{\frac{1}{2}}$ -space [5] if every g-closed set in it is closed. **Definition 2.4.** Let  $(X, \tau, I)$  be an ideal space. A subset A is said to be (i) Ig-closed [3] if  $A^* \subset U$  whenever  $A \subset U$  and U is open.

(ii) Ig-locally \*-closed [7] if there exist an Ig-open set U and a \*-closed set F such that  $A = U \cap F$ .

Notation 2.5. The class of all Ig-locally \*-closed sets in  $(X, \tau, I)$  is denoted by IgLC  $(X, \tau, I)$  or simply IgLC.

**Definition 2.6.** [11] Let  $(X, \tau, I)$  be an ideal topological space, A a subset of X and x a point of X. (i) x is called a  $\delta$ -I-cluster point of A if A $\cap$ int(cl\*(U))  $\neq \phi$  for each open neighborhood of x. (ii) The family of all  $\delta$ -I-cluster points of A is called the  $\delta$ -I-closure of A and is denoted by [A]<sub> $\delta$ -I</sub> and (iii) A subset A is said to be  $\delta$ -I-closed if [A]<sub> $\delta$ -I</sub> = A. The complement of a  $\delta$ -I-closed set of X is said to be  $\delta$ -I-closed.

**Remark 2.7.** [9] From Definition 2.6 it is clear that  $[A]_{\delta \cdot I} = \{x \in X : int(cl^*(U)) \cap A \neq \phi, \text{ for each } U \in \tau(x)\}$ . **Notation 2.8.** [9]  $[A]_{\delta \cdot I}$  is denoted by  $\sigma cl(A)$ . **Definition 2.9.** [9] Let  $(X, \tau, I)$  be an ideal space. A subset A of X is said to be  $\hat{\delta}_s$ -closed if  $\sigma cl(A) \subset U$  whenever  $A \subset U$  and U is semi-open.

**Lemma 2.10.** [11]  $\tau_s \subset \tau_{\delta-I} \subset \tau$ .

**Remark 2.11.** [11]  $\tau_s$  and  $\tau_{\delta-I}$  are topologies formed by  $\delta$ -open sets and  $\delta$ -I-open sets respectively.

**Lemma 2.12.** [9] Intersection of a  $\hat{\delta}_{s}$ -closed and  $\delta$ -I-closed set is  $\hat{\delta}_{s}$ -closed.

**Lemma 2.13.** [9]  $\sigma cl(A) = \{x \in X : int(cl^*(U)) \cap A \neq \phi, \text{ for all } U \in \tau(x)\}$  is closed.

**Remark 2.14.** 1.[5] It is true that every closed set is g-closed but not conversely

2. [3] every g-closed set is Ig-closed but not conversely.

3. [9] every  $\delta$ -I-closed set is  $\hat{\delta}_s$ -closed but not conversely.

4. [11] every  $\delta$ -I-closed set is closed but not conversely.

### III. $\hat{\delta}_{s}$ -LOCALLY CLOSED SETS

In this section we introduce and study a new class of generalized locally closed set in an ideal topological space (X,  $\tau$ , I) known as  $\hat{\delta}_{s}$ -locally closed sets.

**Definition 3.1.** A subset A of an ideal topological space (X,  $\tau$ , I) is called  $\hat{\delta}_s$ -locally closed set (briefly  $\hat{\delta}_s$ lc) if A = U  $\cap$  F where U is  $\hat{\delta}_s$ -open and F is  $\hat{\delta}_s$ -closed in (X,  $\tau$ , I).

Notation 3.2. The class of all  $\hat{\delta}_s$ -locally closed sets in  $(X, \tau, I)$  is denoted by  $\hat{\delta}_s LC(X, \tau, I)$  or simply  $\hat{\delta}_s LC$ .

**Definition 3.3.** For a subset A of (X,  $\tau$ , I),  $A \in \hat{\delta}_{s}LC^{*}$  (X,  $\tau$ , I) if there exist a  $\hat{\delta}_{s}$ -open set U and a closed set F of (X,  $\tau$ , I) such that  $A = U \cap F$ .

**Definition 3.4.** For a subset A of  $(X, \tau, I)$ ,  $A \in \hat{\delta}_{s}LC^{**}(X, \tau, I)$  if there exist an open set U and a  $\hat{\delta}_{s}$ -closed set F of  $(X, \tau, I)$  such that  $A = U \cap F$ .

**Proposition 3.5.** Let A be a subset of an ideal space  $(X, \tau, I)$ . Then the following holds.

- (i) If  $A \in \hat{\delta}_{s}LC$ , then  $A \in GLC$
- (ii) If  $A \in \hat{\delta}_{s}LC^{*}$ , then  $A \in GLC$ ,  $A \in GLC^{*}$ ,  $A \in I_{g}LC$
- (iii) If  $A \in \hat{\delta}_{s}LC^{**}$ , then  $A \in GLC^{**}$ ,  $A \in GLC$

**Proof.** The proof follows from the Remark 2.14 and Definitions.

**Remark 3.6.** The following examples shows that the converse of the above proposition is not always true.

**Example 3.7.** Let  $X = \{a, b, c, d\}$ ,  $\tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$  and  $I = \{\phi, \{c\}\}$ . Let  $A = \{a, b, c\}$ . Then  $A \in GLC$ ,  $GLC^*$ ,  $GLC^{**}$  but not in  $\hat{\delta}_s LC$ ,  $\hat{\delta}_s LC^*$ .

**Example 3.8.** Let  $X = \{a, b, c, d\}$ ,  $\tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$  and  $I = \{\phi, \{b\}, \{d\}, \{b, d\}\}$ . Let  $A = \{a, c\}$ . Then  $A \in GLC$ ,  $GLC^*$ , IgLC but not in  $\hat{\delta}_{sL}C^{**}$ .

**Theorem 3.9.** For a subset A of an Ideal Space (X,  $\tau$ , I). A  $\in \hat{\delta}_{s}LC^{*}$  if and only if A = U  $\cap$ cl(A) for some  $\hat{\delta}_{s}$ -open set U.

**Proof.** Necessity - Let  $A \in \hat{\delta}_{s}LC^*$ , then there exist a  $\hat{\delta}_{s}$ -open set U and a closed set F in  $(X, \tau, I)$  such that  $A = U \cap F$ . Since  $A \subseteq U$  and  $A \subseteq cl(A)$ , we have  $A \subseteq U \cap cl(A)$ . Conversely, since  $A \subseteq F$ ,  $cl(A) \subseteq cl(F)$ . Since F is closed, cl(F) = F. Therefore,  $cl(A) \subseteq F$  and  $A = U \cap F \supseteq U \cap cl(A)$ . Hence  $A = U \cap cl(A)$ .

**Sufficiency** - Since U is  $\hat{\delta}_s$ -open and cl(A) is closed we have  $U \cap cl(A) \in \hat{\delta}_s LC^*$ .

**Theorem 3.10.** For a subset A of an Ideal Space  $(X, \tau, I)$ . cl(A) - A is  $\hat{\delta}_s$ -closed, if and only if  $A \cup (X-cl(A))$  is  $\hat{\delta}_s$ -open.

**Proof.** Necessity - Let F = cl(A)-A. By hypothesis, F is  $\hat{\delta}_s$ -closed and  $X-F = X \cap (X-F) = X \cap (X-(cl(A) - A))$ =  $A \cup (X-cl(A))$ . Since X-F is  $\hat{\delta}_s$ -open,  $A \cup (X-cl(A))$  is  $\hat{\delta}_s$ -open.

**Sufficiency** - Let  $U = A \cup (X-cl(A))$ . By hypothesis U is  $\hat{\delta}_s$ -open. Then X–U is  $\hat{\delta}_s$ -closed and X–U = X– $(A \cup (X-cl(A)) = cl(A) \cap (X-A) = cl(A) - A$ . Hence proved.

**Definition 3.11.** [9] The intersection of all  $\hat{\delta}_s$ -closed subset of (X,  $\tau$ , I) that contains A is called  $\hat{\delta}_s$ -closure of A and it is denoted by  $\hat{\delta}_s$ cl(A). That is  $\hat{\delta}_s$ cl(A) =  $\cap$  {F:A $\subset$ F, F is  $\hat{\delta}_s$ -closed}.  $\hat{\delta}_s$ cl(A) is always  $\hat{\delta}_s$ -closed.

**Theorem 3.12.** For a subset A of an Ideal Space (X,  $\tau$ , I), the following are equivalent.

- (i)  $A \in \hat{\delta}_{s}LC$
- (ii)  $A = U \cap \hat{\delta}_{s} cl(A)$  for some  $\hat{\delta}_{s}$ -open set U
- (iii)  $\hat{\delta}_{s} cl(A) A is \hat{\delta}_{s}$ -closed
- (iv)  $A \cup (X \hat{\delta}_{s} cl(A))$  is  $\hat{\delta}_{s}$ -open.

**Proof.** (i)  $\Rightarrow$  (ii). Let  $A \in \hat{\delta}_{s}LC$ , then there exist a  $\hat{\delta}_{s}$ -open set U and a  $\hat{\delta}_{s}$ -closed set F in (X,  $\tau$ , I) such that  $A = U \cap F$ . Since  $A \subseteq U$  and  $A \subseteq \hat{\delta}_{s}cl(A)$ , we have  $A \subseteq U \cap \hat{\delta}_{s}cl(A)$ . Conversely, since  $A \subseteq F$ ,  $\hat{\delta}_{s}cl(A) \subseteq \hat{\delta}_{s}-cl(F)$ . Since F is  $\hat{\delta}_{s}$ -closed,  $\hat{\delta}_{s}cl(F) = F$ . Therefore,  $\hat{\delta}_{s}cl(A) \subseteq F$  and  $A = U \cap F \supseteq U \cap \hat{\delta}_{s}cl(A)$ . This proves (ii) (ii)  $\Rightarrow$  (i). Since U is  $\hat{\delta}_{s}$ -open and  $\hat{\delta}_{s}cl(A)$  is  $\hat{\delta}_{s}$ -closed we have  $U \cap \hat{\delta}_{s}cl(A) \in \hat{\delta}_{s}LC$ .

(iii)  $\Rightarrow$  (iv). Let  $F = \hat{\delta}_{s}cl(A) - A$ . By hypothesis, F is  $\hat{\delta}_{s}$ -closed and  $X - F = X \cap (X - F) = X \cap (X - (\hat{\delta}_{s}cl(A) - A))$ =  $A \cup (X - \hat{\delta}_{s}cl(A))$ . Since X - F is  $\hat{\delta}_{s}$ -open,  $A \cup (X - \hat{\delta}_{s}cl(A))$  is  $\hat{\delta}_{s}$ -open.

(iv)  $\Rightarrow$  (iii). Let U = A  $\cup$  (X- $\hat{\delta}_{s}$ cl(A)). By hypothesis U is  $\hat{\delta}_{s}$ -open. Then X–U is  $\hat{\delta}_{s}$ -closed and X–U = X– (A $\cup$ (X- $\hat{\delta}_{s}$ cl(A)) =  $\hat{\delta}_{s}$ cl(A)  $\cap$  (X–A) =  $\hat{\delta}_{s}$ cl(A) –A. This proves (iii).

(ii)  $\Rightarrow$  (iv). Let  $A = U \cap \hat{\delta}_{s} cl(A)$  for some  $\hat{\delta}_{s}$ -open set U. Now,  $A \cup (X - \hat{\delta}_{s} cl(A)) = (U \cap \hat{\delta}_{s} cl(A)) \cup (X - \hat{\delta}_{s} cl(A)) = (U \cup X - \hat{\delta}_{s} cl(A)) \cap (\hat{\delta}_{s} cl(A)) \cup (X - \hat{\delta}_{s} cl(A)) = (U \cup X - \hat{\delta}_{s} cl(A)) \cap X = (U \cup (X - \hat{\delta}_{s} cl(A)))$  is  $\hat{\delta}_{s}$ -open.

 $(iv) \Rightarrow (ii) \text{ Let } U = A \cup (X - \hat{\delta}_{s}cl(A)). \text{ Then } U \text{ is } \hat{\delta}_{s}\text{-open. Now, } U \cap \hat{\delta}_{s}cl(A) = (A \cup (X - \hat{\delta}_{s}cl(A))) \cap \hat{\delta}_{s}cl(A) = (\hat{\delta}_{s}cl(A) \cap A) \cup (\hat{\delta}_{s}cl(A) \cap (X - \hat{\delta}_{s}cl(A))) = A \cup \phi = A. \text{ Therefore } A = U \cap \hat{\delta}_{s}cl(A) \text{ for some } \hat{\delta}_{s}\text{-open set } U.$ 

**Theorem 3.13.** For a subset A of (X,  $\tau$ , I). If  $A \in \hat{\delta}_s LC^{**}$  then there exist an open set U such that  $A = U \cap \hat{\delta}_s cl(A)$ .

**Proof.** Let  $A \in \hat{\delta}_{s}LC^{**}$ . Then there exists an open set U and a  $\hat{\delta}_{s}$ -closed set F in  $(X, \tau, I)$  such that  $A = U \cap F$ . Since  $A \subseteq U$  and  $A \subseteq \hat{\delta}_{s}cl(A)$ , we have  $A \subseteq U \cap \hat{\delta}_{s}cl(A)$ . Conversely, since  $A \subseteq F$ ,  $\hat{\delta}_{s}cl(A) \subseteq \hat{\delta}_{s}cl(F)$ . But  $\hat{\delta}_{s}cl(F)=F$ , since F is  $\hat{\delta}_{s}$ -closed. Therefore,  $\hat{\delta}_{s}cl(A)\subseteq F$  and  $A=U \cap F \supseteq U \cap \hat{\delta}_{s}cl(A)$ .

**Theorem 3.14.** Let A and B be any two subsets of  $(X, \tau, I)$ . If  $A \in \hat{\delta}_{s} LC^{*}$  and B is closed, then  $A \cap B \in \hat{\delta}_{s} LC^{*}$ .

**Proof.** If  $A \in \hat{\delta}_{s}LC^{*}$  then there exists a  $\hat{\delta}_{s}$ -open set U and a closed set F in  $(X, \tau, I)$  such that  $A=U \cap F$ . Now,  $A \cap B = (U \cap F) \cap B = U \cap (F \cap B) \in \hat{\delta}_{s}LC^{*}$ .

**Theorem 3.15.** Let A and B be two subsets of  $(X, \tau, I)$ . If  $A \in \hat{\delta}_s LC^{**}$  and B is open then  $A \cap B \in \hat{\delta}_s LC^{**}$ .

**Proof.** If  $A \in \hat{\delta}_{s} LC^{**}$ , then there exist an open set U and a  $\hat{\delta}_{s}$ -closed set F such that  $A = U \cap F$ . Then  $A \cap B = (U \cap F) \cap B = (U \cap B) \cap F \in \hat{\delta}_{s} LC^{**}$ .

Since X is open, closed,  $\hat{\delta}_s$ -open and  $\hat{\delta}_s$ -closed, a  $\hat{\delta}_s$ -closed subset A of X belongs to  $\hat{\delta}_s$ LC and  $\hat{\delta}_s$ LC\*\*. A  $\hat{\delta}_s$ -open subset B of X belongs to  $\hat{\delta}_s$ LC and  $\hat{\delta}_s$ LC\*. A closed subset C of X belongs to  $\hat{\delta}_s$ LC\* and an open subset of X belongs to  $\hat{\delta}_s$ LC\*\*. The following examples shows that the converse of all are not always true.

**Example 3.16.** Let  $X = \{a, b, c, d\}$ ,  $\tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}$  and  $I = \{\phi, \{b\}, \{c\}, \{b, c\}$ . Let  $A = \{b, c\}$ . Then  $A \in \hat{\delta}_{s}LC$  and  $\hat{\delta}_{s}LC^{**}$  but A is not  $\hat{\delta}_{s}$ -closed.

**Example 3.17.** Let X and  $\tau$  as in Example 3.16 and I = { $\phi$ , {a}, {b}, {a,b}. Let A = {a, c}. Then A  $\in \hat{\delta}_{s}LC$  and  $\hat{\delta}_{s}LC^{*}$  but A is not  $\hat{\delta}_{s}$ -open.

**Example 3.18.** Let X and  $\tau$  as in Example 3.16 and I = { $\phi$ , {a}, {d}, {a,d}. Let A = {b, c}. Then A \in \hat{\delta}\_{s}LC^\* but A is not closed.

**Example 3.19.** In Example 3.7. Let  $A = \{a, d\}$ . Then  $A \in \hat{\delta}_{s}LC^{**}$  but A is not open.

**Theorem 3.20.** Let  $(X, \tau, I)$  be  $T_{1/2}$ -space. If A is  $\hat{\delta}_s$ -closed, then  $A \in \hat{\delta}_s LC^*$ .

**Proof.** Let  $(X, \tau, I)$  be a  $T_{\frac{1}{2}}$ -space and A be a  $\hat{\delta}_s$ -closed set. Since every  $\hat{\delta}_s$ -closed set is g-closed, A is g-closed. By hypothesis, A is closed and hence  $A \in \hat{\delta}_s LC^*$ .

**Theorem 3.21.** Let  $(X, \tau, I)$  be an ideal space and A, B are subsets of X. Then the following hold.

(i) If A, B  $\in \hat{\delta}_{s}LC^{*}$  then A  $\cap$  B  $\in \hat{\delta}_{s}LC^{*}$ .

(ii) If A,  $B \in \hat{\delta}_{s}LC$  then  $A \cap B \in \hat{\delta}_{s}LC$ .

(iii) If A, B  $\in \hat{\delta}_{s}LC^{**}$  then A $\cap$ B  $\in \hat{\delta}_{s}LC^{**}$ 

**Proof.** (i) Since A,  $B \in \hat{\delta}_{s}LC^*$ , there exist  $\hat{\delta}_{s}$ -open sets U, V and closed sets F, G such that  $A = U \cap F$  and  $B = V \cap G$ . Now,  $A \cap B = (U \cap F) \cap (V \cap G) = (U \cap V) \cap (F \cap G) \in \hat{\delta}_{s}LC^*$ . The proof of (ii) and (iii) are similar to the proof of (i).

**Definition 3.22.** A subset A of an ideal topological space  $(X, \tau, I)$  is called  $\hat{\delta}_s$ -locally  $\delta$ -I-closed set if  $A = U \cap F$  where U is  $\hat{\delta}_s$ -open and F is  $\delta$ -I-closed.

The class of all  $\hat{\delta}_{s}$ -locally  $\delta$ -I-closed set is denoted by  $\hat{\delta}_{s}\delta_{I}LC$  (X,  $\tau$ , I) or simply  $\hat{\delta}_{s}\delta_{I}LC$ . **Definition 3.23.** For a subset A of an ideal space (X,  $\tau$ , I),  $A \in \hat{\delta}_{s}\delta_{I}LC^{*}$  if  $A = U \cap F$  where U is  $\delta$ -I-open and F is  $\hat{\delta}_{s}$ -closed.

**Theorem 3.24.** Let A be a subset of an ideal space  $(X, \tau, I)$ . Then the following holds (a) If  $A \in \hat{\delta} {}_{s} \delta_{I} LC$  then  $A \in \hat{\delta} {}_{s} LC$ ,  $A \in \hat{\delta} {}_{s} LC^{*}$ ,  $A \in GLC$ ,  $A \in GLC^{*}$ (b) If  $A \in \hat{\delta} {}_{s} \delta_{I} LC^{*}$  then  $A \in \hat{\delta} {}_{s} LC$ ,  $A \in \hat{\delta} {}_{s} LC^{**}$ ,  $A \in GLC$ ,  $A \in GLC^{**}$ .

**Proof.** The proof follows from the Definitions and Remark 2.14 The following examples shows that the converse is not hold always.

**Example 3.25.** Let  $X = \{a, b, c, d\}$ ,  $\tau = \{X, \phi, \{a\}, \{a, d\}\}$  and  $I = \{\phi, \{a\}\}$ . Let  $A = \{b, c\}$ . Then  $A \in \hat{\delta}_{s}LC^*$ , GLC, GLC\* but not in  $\hat{\delta}_{s}\delta_{l}LC$ . Let  $B = \{a, d\}$ . Then  $B \in \hat{\delta}_{s}LC^{**}$ , GLC, GLC\*\* but not in  $\hat{\delta}_{s}\delta_{l}LC$ .

**Example 3.26.** Let  $X = \{a, b, c, d\}$ ,  $\tau = \{X, \phi, \{a, b, c\}\}$  and  $I = \{\phi, \{a\}\}$ . Let  $A = \{a, b, d\}$ . Then  $A \in \hat{\delta}_{s}LC$  but not in  $\hat{\delta}_{s}\delta_{I}LC$ . Let  $B = \{a, b\}$ . Then  $B \in \hat{\delta}_{s}LC$  but not in  $\hat{\delta}_{s}\delta_{I}LC^{*}$ .

**Theorem 3.27.** For a subset A of  $(X, \tau, I)$ , the following are equivalent.

- (i)  $A \in \hat{\delta}_{s} \delta_{I} LC (X, \tau, I).$
- (ii)  $A = U \cap \sigma cl(A)$  for some  $\hat{\delta}_s$  open set U.
- (iii)  $\sigma cl(A) A$  is  $\hat{\delta}_s$  closed.
- (iv)  $A \cup (X \sigma cl(A))$  is  $\hat{\delta}_s$  open.

**Proof.** (i) $\Rightarrow$ (ii) If  $A \in \hat{\delta}_{s\delta_{I}}LC$ , then there exist a  $\hat{\delta}_{s}$  – open set U and a  $\delta$ -I-closed set F such that  $A = U \cap F$ . Clearly  $A \subset U \cap \sigma cl(A)$ . Since F is  $\delta$ -I-closed,  $\sigma cl(A) \subset \sigma cl(F) = F$  and so  $U \cap \sigma cl(A) \subset U \cap F = A$ . Therefore  $A = U \cap \sigma cl(A)$  for some  $\hat{\delta}_{s}$  - open set U.

(ii) $\Rightarrow$ (i) Since U is  $\hat{\delta}_s$  – open and  $\sigma$ cl(A) is  $\delta$ -I-closed, we have  $A = U \cap \sigma$ cl(A)  $\in \hat{\delta}_s \delta_I LC$ .

(iii) $\Rightarrow$ (iv) Let F =  $\sigma$ cl(A)–A. By assumption F is  $\hat{\delta}_s$ -closed and X–F = X– ( $\sigma$ cl(A)–A) = A $\cup$ (X– $\sigma$ cl(A)). Since X–F is  $\hat{\delta}_s$ -open, we have A $\cup$ (X– $\sigma$ cl(A)) is  $\hat{\delta}_s$ -open.

(iv) $\Rightarrow$ (iii) Let U = A $\cup$ (X- $\sigma$ cl(A)). Then U is  $\hat{\delta}_s$ -open, by hypothesis. This implies that X–U is  $\hat{\delta}_s$ -closed and X–U = X–(A $\cup$ (X– $\sigma$ cl(A)) =  $\sigma$ cl(A) $\cap$ (X–A) =  $\sigma$ cl(A)–A. Thus  $\sigma$ cl(A)–A is  $\hat{\delta}_s$ -closed.

(ii) $\Rightarrow$ (iv) Let A = U $\cap$   $\sigma$ cl(A) for some  $\hat{\delta}_s$ -open set U. Now A $\cup$ (X $-\sigma$ l(A)) = (U $\cap$   $\sigma$ cl(A)) $\cup$ (X $-\sigma$ cl(A)) = (U $\cup$ (X $-\sigma$ cl(A)))  $\cap$  ( $\sigma$ cl(A))  $\cup$  (X $-\sigma$ cl(A)) = (U $\cup$ (X $-\sigma$ cl(A)))  $\cap$  X = U $\cup$  (X $-\sigma$ cl(A)) is  $\hat{\delta}_s$ -open.

(iv) $\Rightarrow$ (ii) Let U = A $\cup$ (X $-\sigma$ cl(A)). Then U is  $\hat{\delta}_s$ -open. Now U $\cap$  $\sigma$ cl(A) = (A $\cup$ (X $-\sigma$ cl(A))) $\cap$  $\sigma$ cl(A) = ( $\sigma$ cl(A) $\cap$ A) $\cup$ ( $\sigma$ cl(A) $\cap$ X $-\sigma$ cl(A)) = A $\cup$  $\phi$  = A. Therefore A = U $\cap$  $\sigma$ cl(A) for some  $\hat{\delta}_s$ -open set U.

**Theorem 3.28.** Let  $(X, \tau, I)$  be an ideal space and A be a subset of X. If  $A \in \hat{\delta}_s \delta_I LC$  and  $\sigma cl(A) = X$ , then A is  $\hat{\delta}_s$ -open.

**Proof.** If  $A \in \hat{\delta}_s \delta_1 LC$ , then by Theorem 3.27,  $A \cup (X - \sigma cl(A))$  is  $\hat{\delta}_s$ -open. Since  $\sigma cl(A) = X$ , then A is  $\hat{\delta}_s$ -open.

**Theorem 3.29.** Let A and B be subsets of an ideal space  $(X, \tau, I)$ . Then the following holds.

(i) If A, B  $\in \hat{\delta}_{s} \delta_{I} LC$  then A $\cap$ B  $\in \hat{\delta}_{s} \delta_{I} LC$ 

(ii) If A, B  $\in \hat{\delta}_{s} \delta_{I} LC^{*}$ , then A $\cap$ B  $\in \hat{\delta}_{s} \delta_{I} LC^{*}$ .

**Proof.** (i) It follows from Definition 3.22 and Theorem 3.27(ii) there exist a  $\hat{\delta}_s$ -open sets U and V such that  $A = U \cap \sigma cl(A)$  and  $B = V \cap \sigma cl(B)$ . Then  $A \cap B = (U \cap \sigma cl(A)) \cap (V \cap \sigma cl(B)) = (U \cap V) \cap (\sigma cl(A) \cap \sigma cl(B))$ . Since  $U \cap V$  is  $\hat{\delta}_s$ -open and  $\sigma cl(A) \cap \sigma cl(B)$  is  $\delta$ -I-closed,  $A \cap B \in \hat{\delta}_s \delta_l LC$ .

(ii) Form the Definition 3.23 there exist  $\delta$ -I-open sets U and V and  $\hat{\delta}_s$ -closed sets, F and G such that  $A = U \cap F$ and  $B = V \cap G$ . Now,  $A \cap B = (U \cap F) \cap (V \cap G) = (U \cap V) \cap (F \cap G) \in \hat{\delta}_s \delta_I LC^*$ , since by Theorem 4.23[9]  $F \cap G$  is  $\hat{\delta}_s$ -closed and  $U \cap F$  is  $\delta$ -I-closed.

**Theorem 3.30.** Let A and B be subsets of  $(X, \tau, I)$ . Then the following holds.

(i) If  $A \in \hat{\delta}_s \delta_I LC$  and B is  $\delta$ -I-closed, then  $A \cap B \in \hat{\delta}_s \delta_I LC$ 

(ii) If  $A \in \hat{\delta}_s \delta_I LC^*$  and B is either  $\delta$ -I-open or  $\delta$ -I-closed, then  $A \cap B \in \hat{\delta}_s \delta_I LC$ .

**Proof.** (i) If  $A \in \hat{\delta}_s \delta_I LC$ , then there exist a  $\hat{\delta}_s$ -open set U and a  $\delta$ -I-closed set F in (X,  $\tau$ , I), such that  $A = U \cap F$ . Now,  $A \cap B = (U \cap F) \cap B = U \cap (F \cap B) \in \hat{\delta}_s \delta_I LC$ .

(ii) If  $A \in \hat{\delta}_s \delta_l LC^*$ , then there exists  $\delta$ -I-open set U and  $\hat{\delta}_s$ -closed set F such that  $A = U \cap F$ . Now,  $A \cap B = (U \cap F) \cap B = (U \cap B) \cap F \in \hat{\delta}_s \delta_l LC^*$ , for B is  $\delta$ -I-open. For B is  $\delta$ -I-closed, by Lemma 2.12,  $F \cap B$  is  $\hat{\delta}_s$ -closed and so  $A \cap B \in \hat{\delta}_s \delta_l LC^*$ .

## **IV.** $\hat{\delta}_{s}$ - **NORMAL SPACES**

In this section we introduce and study a class of normal space known as  $\hat{\delta}_s$ -normal spaces in an ideal topological spaces.

**Definition 4.1. [6]** A space  $(x, \tau)$  is said to be g-normal if for every disjoint g-closed sets A and B, there exist disjoint open sets U and V such that A $\subset$ U and B $\subset$ V.

**Definition 4.2. [8]** An ideal space  $(X, \tau, I)$  is said to be  $I_g$ -normal space if for every pair of disjoint closed sets A and B, there exist disjoint  $I_g$ -open sets U and V such that A $\subset$ U and B $\subset$ V.

**Definition 4.3.** An ideal space  $(X, \tau, I)$  is said to be  $\hat{\delta}_s$ -normal space if for every pair of disjoint closed sets A and B, there exist disjoint  $\hat{\delta}_s$ -open sets U and V such that A $\subset$ U and B $\subset$ V.

Since every  $\hat{\delta}_s$ -open set is  $I_g$ -open, every  $\hat{\delta}_s$ - normal space is  $I_g$ -normal. The following example shows that the converse is fails in some cases.

**Example 4.4.** Let X={a, b, c, d},  $\tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\} \text{ and } I=\{\phi, \{b\}, \{d\}, \{b, d\}\}.$ The (X,  $\tau$ , I) is Ig-normal but not  $\hat{\delta}_s$ -normal.

**Theorem 4.5.** Let  $(X, \tau, I)$  be an ideal space. Then the following are equivalent:

- i) X is  $\hat{\delta}_{s}$ -normal.
- ii) For every pair of disjoint closed sets A and B, there exist disjoint  $\hat{\delta}_s$ -open sets U and V such that A $\subset$ U and B $\subset$ V.
- iii) For every closed set A and open set V containing A, there exists a  $\hat{\delta}$  -open set U such that  $A \subset U \subset \sigma cl(U) \subset V$ .
- iv) For any disjoint closed sets A and B, there exist a  $\hat{\delta}_s$ -open set U such that A $\subset$ U and  $\sigma cl(U) \cap B = \phi$ .
- v) For each pair of disjoint closed sets A and B in (X,  $\tau$ , I), there exist  $\hat{\delta}_s$ -open sets, U and V such that  $A \subseteq U, B \subseteq V$  and  $\sigma cl(U) \cap cl(V) = \phi$ .

**Proof.** (i) $\Rightarrow$ (ii). The proof is follows from the definition of  $\hat{\delta}_{s}$ -normal space.

(ii) $\Rightarrow$ (iii). Let A be a closed set and V be an open set containing A. Then X–V is the closed set distinct from A, therefore there exist disjoint  $\hat{\delta}_s$ -open sets U and W such that A⊂U and X–V⊂W. since U∩W= $\phi$ , U⊂X–W. Therefore U⊂X–W⊂V and since X–W is  $\hat{\delta}_s$ -closed, then A⊂U⊂ $\sigma$ cl(U)⊂ $\sigma$ cl(X–W)⊂V, since V is open and hence semi-open.

(iii)  $\Rightarrow$ (iv). Let A and B be any disjoint closed sets. Then X–B is an open set such that A $\subset$ X–B and by hypothesis there exist a  $\hat{\delta}_s$ -open set U such that A $\subset$ U $\subset$ \sigmacl(U)  $\subset$ X–B $\subset$ V.  $\sigma$ cl(U)  $\subset$ X–B. Hence  $\sigma$ cl(U) $\cap$ B= $\phi$ .

(iv) $\Rightarrow$ (v). Let A and B are closed sets in (X,  $\tau$ , I). Then by assumption, there exists  $\hat{\delta}_s$ -open set U containing A such that  $\sigma cl(U) \cap B = \phi$ . Since  $\sigma cl(U)$  is closed,  $\sigma cl(U)$  and B are distinct closed set in (X,  $\tau$ , I). Therefore again by assumption, there exist a  $\hat{\delta}_s$ -open set V containing B,  $\sigma cl(V) \cap \sigma cl(U) = \phi$ . Hence  $\sigma cl(U) \cap \sigma cl(V) = \phi$ .

(v) $\Rightarrow$ (i) Let A and B be any disjoint closed sets of (X,  $\tau$ , I). By assumption, there exist  $\hat{\delta}_s$ -open sets U and V such that A $\subseteq$ U, B $\subseteq$ V and  $\sigma$ cl(U)  $\cap \sigma$ cl(V)= $\phi$ . We have U $\cap$ V= $\phi$  and thus (X,  $\tau$ , I) is  $\hat{\delta}_s$ -normal.

**Theorem 4.6.** Let  $(X, \tau, I)$  be a  $\hat{\delta}_s$ -normal space. If F is closed and A is a  $\hat{\delta}_s$ -closed set such that A $\cap$ F= $\phi$ , then there exist disjoint  $\hat{\delta}_s$ -open set U and V such that A $\subset$ U and F $\subset$ V.

**Proof.** Since  $A \cap F=\phi$ ,  $A \subset X-F$  Where X-F is open and hence semi-open, By hypothesis  $\sigma cl(A) \subset X-F$ . Since  $\sigma cl(A) \cap F=\phi$  and X is  $\hat{\delta}_s$ -normal and  $\sigma cl(A)$  is closed, there exist disjoint  $\hat{\delta}_s$ -open sets U and V such that  $\sigma cl(A) \subset U$  and  $F \subset V$ .

**Corollary 4.7.** Let  $(X, \tau, I)$  be a  $\hat{\delta}_s$ -normal space. If F is of  $\delta$ -I-closed and A is  $\hat{\delta}_s$ -closed such that  $A \cap F = \phi$ , then there exists disjoint  $\hat{\delta}_s$ -open set U and V such that  $A \subset U$  and  $F \subset V$ .

**Proof.** The Poof follows from the fact that every  $\delta$ -I-closed set is closed.

**Corollary 4.8.** Let  $(X, \tau, I)$  be a  $\hat{\delta}_s$ -normal space. If F is  $\delta$ -closed and A is  $\hat{\delta}_s$ -closed such that  $A \cap F = \phi$ , then there exist disjoint  $\hat{\delta}_s$ -open set U and V such that  $A \subset U$  and  $F \subset V$ .

**Proof.** The proof follows from the fact that every  $\delta$ -closed set is  $\delta$ -I-closed.

**Corollary 4.9.** Let  $(X, \tau, I)$  be  $\hat{\delta}_s$ -normal space. If F is regular closed and A is  $\hat{\delta}_s$ -closed set such that  $A \cap F = \phi$ , then there exists disjoint  $\hat{\delta}_s$ -open sets U and V such that  $cl(A) \subset U$  and  $F \subset V$ .

**Definition 4.10.** An ideal space  $(X, \tau, I)$  is said to be  $\hat{\delta}_s$ -I-normal if for each pair of disjoint  $\hat{\delta}_s$ -closed sets A and B, there exist disjoint open sets U and V in X such that A $\subset$ U and B $\subset$ V.

**Theorem 4.11.** Let  $(X, \tau, I)$  be an ideal space. Then the following are equivalent.

- (i)  $\hat{\delta}_{s}$ -I-normal.
- (ii) For each pair of disjoint  $\hat{\delta}_s$ -closed sets A and B, there exist disjoint open sets U and V in X such that A $\subset$ U and B $\subset$ V.
- (iii) For every  $\hat{\delta}_s$ -closed set A and every  $\hat{\delta}_s$ -open set V containing A, there exist an open set U of X such that  $A \subset U \subset cl(U) \subset V$ .
- (iv) For each disjoint pair of  $\hat{\delta}_{s}$ -closed sets A and B, there exist an open set U such that A $\subset$ U and cl(U) $\cap$ B= $\phi$ .

**Proof.** (i) $\Rightarrow$ (ii). The proof follows from the definition.

(ii) $\Rightarrow$ (iii). Let A be a  $\hat{\delta}_s$ -closed set and V be a  $\hat{\delta}_s$ -open set containing A. Then X–V is  $\hat{\delta}_s$ -closed. Hence A and X–V are disjoint  $\hat{\delta}_s$ -closed sets. By hypothesis there exists disjoint open sets U and W such that A $\subset$ U and X–V $\subset$ W. Since U  $\cap$ W= $\phi$ , U $\subset$ X–W or W $\subset$ X–U. Therefore U $\subset$ X–W $\subset$ V. Therefore A $\subset$ U $\subset$ cl(U)  $\subset$ cl(X–W)= X–W $\subset$ V.

(iii)  $\Rightarrow$ (iv). Let A and B are disjoint  $\hat{\delta}_s$ -closed sets. Then X–B is a  $\hat{\delta}_s$ -open set containing A and therefore by hypothesis, there exist an open set U such that  $A \subset U \subset cl(U) \subset X-B$ . Therefore  $cl(U) \cap B = \phi$ .

(iv)  $\Rightarrow$ (i). Let A and B are disjoint  $\hat{\delta}_s$ -closed sets. By hypothesis there exists an open set U containing A and  $cl(U) \cap B=\phi$ . If we take V=X-cl(U), then V is an open set containing B. Therefore U and V are disjoint open sets such that A $\subset$ U and B $\subset$ V. This proves (X,  $\tau$ , I) is  $\hat{\delta}_s$ -I-normal.

**Remark 4.12.** The following implications hold for an ideal space (X,  $\tau$ , I). Here A  $\Longrightarrow$  B means A implies B, but not conversely and A  $\iff$  B means the implications not hold on either side.



**Theorem 4.13.** Let  $(X, \tau, I)$  be an ideal space. Then every closed subspace of a  $\hat{\delta}_s$ -normal space is  $\hat{\delta}_s$ -normal.

**Proof.** Let G be a closed subspace of a  $\hat{\delta}_s$ -normal space  $(X, \tau, I)$ . Let  $\tau_1$  be the relative topology for G. Let  $E_1$  and  $F_1$  be any two disjoint  $\tau_1$ -closed subsets of G. Then there exist  $\tau$ -closed subsets E and F such that  $E_1=G\cap E$  and  $F_1=G\cap F$ . Since G and E are  $\tau$ -closed,  $E_1$  is also  $\tau$ -closed and  $F_1$  is also  $\tau$ -closed. Thus  $E_1$  and  $F_1$  are disjoint subsets of  $\hat{\delta}_s$ -normal space  $(X, \tau, I)$ . Therefore, there exist disjoint  $\hat{\delta}_s$ -open sets U and V such that  $E_1 \subset U$  and  $F_1 \subset V$ . Hence for every disjoint closed sets  $E_1$  and  $F_1$  in G, we can find disjoint  $\hat{\delta}_s$ -open sets U and V such that  $E_1 \subset U$  and  $F_1 \subset V$ . Therefore  $E_1 \subset U \cap G$  and  $F_1 \subset V \cap G$ , where  $U \cap G$  and  $V \cap G$  are disjoint  $\hat{\delta}_s$ -open sets in G. Hence  $(G, \tau, I)$  is  $\hat{\delta}_s$ -normal.

# V. $\hat{\delta}_{s}$ -CONNECTED SPACE

In this section we define and study a connected space known as  $\hat{\delta}_s$ -connected space.

**Definition 5.1.**  $X = A \cup B$  is said to be a  $\hat{\delta}_s$ -separation of X if A and B are non-empty disjoint  $\hat{\delta}_s$ -open sets. If there is no  $\hat{\delta}_s$ -separation of X, then X is said to be  $\hat{\delta}_s$ -connected. Otherwise it is said to be  $\hat{\delta}_s$ -disconnected.

Note 5.2. If X=A $\cup$ B is a  $\hat{\delta}_s$ -separation then A = X–B and B = X–A. Hence A and B are  $\hat{\delta}_s$ -closed. Theorem 5.3. An ideal space is (X,  $\tau$ , I) is  $\hat{\delta}_s$ -connected if and only if the only subsets which are both  $\hat{\delta}_s$ -open and  $\hat{\delta}_s$ -closed are X and  $\phi$ .

**Proof.** Necessity - Let  $(X, \tau, I)$  be a  $\hat{\delta}_s$ -connected space. Suppose that A is a proper subset which is both  $\hat{\delta}_s$ -open and  $\hat{\delta}_s$ -closed then X=A $\cup$ (X–A) is a  $\hat{\delta}_s$ -separation of X. Which is a contradiction.

**Sufficiency** - Let  $\phi$  be the only subset which is both  $\hat{\delta}_s$ -open and  $\hat{\delta}_s$ -closed. Suppose X is not  $\hat{\delta}_s$ -connected, then X=A $\cup$ B where A and B are non-empty disjoint  $\hat{\delta}_s$ -open subsets which is contradiction.

**Definition 5.4.** Let Y be a subset of X. Then  $Y=A \cup B$  is said to be  $\hat{\delta}_s$ -separation of Y if A and B are non-empty disjoint  $\hat{\delta}_s$ -open sets in X. If there is no  $\hat{\delta}_s$ -separation of Y then Y is said to be  $\hat{\delta}_s$ -connected subset of X.

**Theorem 5.5.** Let  $(X, \tau, I)$  be an ideal topological space. If X is  $\hat{\delta}_s$ -connected, then X cannot be written as the union of two disjoint non-empty  $\hat{\delta}_s$ -closed sets.

**Proof.** Suppose not, that is  $X = A \cup B$ , where A and B are  $\hat{\delta}_s$ -closed sets,  $A \neq \phi$ ,  $B \neq \phi$  and  $A \cap B \neq \phi$ , Then A = X-B and B = X-A. Since A and B are  $\hat{\delta}_s$ -closed sets which implies that A and B are  $\hat{\delta}_s$ -open sets. Therefore X is not  $\hat{\delta}_s$ -connected. Which is a contradiction.

**Corollary 5.6.** Let  $(X, \tau, I)$  be an ideal topological space. If X is  $\hat{\delta}_s$ -connected, then X cannot be written as the union of two disjoint non-empty  $\delta$ -closed sets.

**Corollary 5.7.** Let  $(X, \tau, I)$  be an ideal topological space. If X is  $\hat{\delta}_s$ -connected, then X cannot be written as the union of two disjoint non-empty  $\delta$ -I-closed sets.

**Definition 5.8.** Two non-empty subsets A and B of an ideal space  $(X, \tau, I)$  are called  $\hat{\delta}_s$  - separated if A $\cap \sigma cl(B) = \sigma cl(A) \cap B = \phi$ .

**Remark 5.9.** Since  $cl(A) \subset \sigma cl(A)$ ,  $A \cap cl(B) = cl(A) \cap B \subset A \cap \sigma cl(B) = \sigma cl(A) \cap B = \phi$ . Here  $\hat{\delta}_s$  - separated sets are separated. But the converse need not be true as shown in the following example.

**Example 5.10.** Let  $X=\{a,b,c,d\}, \tau=\{X,\phi,\{b\},\{a,b\},\{b,c\},\{a,b,c\},\{a,b,d\}\}$  and  $I=\{\phi, \{c\},\{d\},\{c,d\}\}$ . Let  $A=\{c\},B=\{d\}$ . Then  $A \cap cl(B)=cl(A) \cap B=\{c\} \cap \{d\}=\phi$ . But  $A \cap \sigmacl(B)=\{c\} \cap X=\{c\}\neq\phi$  and  $\sigmacl(A) \cap B=X \cap \{d\}\neq\phi$ . Therefore A and B are separated but not  $\hat{\delta}_s$ -separated.

**Theorem 5.11.** Let  $(X, \tau, I)$  be an ideal space. If A is  $\hat{\delta}_s$  - connected set of X and H, G are  $\hat{\delta}_s$  - separated sets of X with A $\subset$ H $\cup$ G, then either A $\subset$ H or A $\subset$ G.

**Proof.** Let  $A \subset H \cup G$ , Since  $A = (A \cap H) \cup (A \cap G)$ , then  $(A \cap G) \cap \operatorname{scl}(A \cap H) \subset G \cap \operatorname{scl}(H) = \phi$ . Similarly, we have  $\operatorname{scl}(A \cap G) \cap (A \cap H) = \phi$ . Suppose that,  $A \cap H$  and  $A \cap G$  are non-empty, then A is not  $\hat{\delta}_s$  – connected. This is a contradiction. Thus either  $A \cap H = \phi$  or  $A \cap G = \phi$ . Which implies that  $A \subset H$  or  $A \subset G$ .

**Theorem 5.12.** If A is  $\hat{\delta}_s$ -connected set of an ideal topological space (X,  $\tau$ , I) and A $\subset$ B $\subset\sigma$ cl(A), then B is  $\hat{\delta}_s$ -connected.

**Proof.** Suppose that B is not  $\hat{\delta}_s$  - connected. There exist  $\hat{\delta}_s$  - separated sets H and G such that  $B = H \cup G$ . This implies that H and G are non-empty and  $G \cap \sigma cl(H) = H \cap \sigma cl(G) = \phi$ . By Theorem 5.11, we have either  $A \subset H$  or  $A \subset G$ . Suppose  $A \subset G$ . Then  $\sigma cl(A) \subset \sigma cl(G)$  and  $H \cap \sigma cl(A) = \phi$ . This implies that  $H \subset B \subset \sigma cl(A)$  and  $H = \sigma cl(A) \cap H = \phi$ . Thus H is an empty set. Since H is non-empty, there is a contradiction. Similarly, suppose  $A \subset H$ , then G is empty. Therefore contradiction. Hence B is  $\hat{\delta}_s$  - connected.

**Corollary 5.13.** If A is a  $\hat{\delta}_s$ -connected set in an ideal space (X,  $\tau$ , I), then  $\sigma$ cl(A) is  $\hat{\delta}_s$ -connected.

**Proof.** The proof is obvious.

**Corollary 5.14.** If A is a  $\hat{\delta}_s$ -connected set in an ideal space (X,  $\tau$ , I), then cl(A) is  $\hat{\delta}_s$ -connected. **Corollary 5.15.** If A is a  $\hat{\delta}_s$ -connected set in an ideal space (X,  $\tau$ , I), then cl\*(A) is  $\hat{\delta}_s$ -connected. **Corollary 5.16.** If A is a  $\hat{\delta}_s$ -connected set in an ideal space (X,  $\tau$ , I), then A\* is  $\hat{\delta}_s$ -connected.

**Proof.** The proof is obvious.

**Theorem 5.17.** If  $\{A_{\alpha} : \alpha \in \Delta\}$  is a non-empty family of  $\hat{\delta}_s$  - connected sets of an ideal space  $(X, \tau, I)$  with  $\bigcap_{\alpha \in \Delta}$ 

 $A_{\alpha} \neq \phi$ , then  $\bigcup_{\alpha \in \Delta} A_{\alpha}$  is  $\hat{\delta}_{s}$  - connected.

**Proof.** Suppose  $\bigcup_{\alpha \in \Delta} A_{\alpha}$  is not  $\hat{\delta}_{s}$ -connected. Then we have  $\bigcup_{\alpha \in \Delta} A_{\alpha} = H \cup G$ , where H and G are  $\hat{\delta}_{s}$ -separated sets in X. Since  $\bigcap_{\alpha \in \Delta} A_{\alpha} \neq \phi$ ,  $x \in \bigcap_{\alpha \in \Delta} A_{\alpha}$ . Also since  $x \in \bigcap_{\alpha \in \Delta} A_{\alpha}$ , either  $x \in H$  or  $x \in G$ . Suppose  $x \in H$ . Since  $x \in A_{\alpha}$ 

for each  $\alpha \in \Delta$ ,  $A_{\alpha}$  and H intersects for each  $\alpha$ . By Theorem 5.11,  $A_{\alpha} \subset H$  or  $A_{\alpha} \subset G$ . Since H and G are disjoint  $A_{\alpha} \subset H$  for all  $\alpha \in \Delta$  and hence  $\bigcup_{\substack{ \alpha \in \Delta \\ \alpha \in \Delta }} A_{\alpha} \subset H$ . Which implies that G is empty. This is a contradiction. Similarly,

suppose  $x \in G$ . then we have H is empty. This is a contradiction. Thus  $\bigcup_{\alpha \in \Delta} A_{\alpha}$  is  $\hat{\delta}_s$ -connected.

#### REFERENCES

- Balachandran.K, P.Sundaram and H. Maki, Generalized locally closed sets and glc continuous functions, Indian J.Pure Appl. Math. 27(3) (1996), 235-244.
- [2]. Bourbaki.N, General Topology, Part I, Addison Wesley, Reading, Mass, 1966.
- [3]. Dontchev.J, M.Ganster and T.Noiri, Unified approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [4]. Kuratowski.K, Topology, Vol.I, Academic press, New York, 1966.
- [5]. Levine.N, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2), (1970), 89-96.
- [6]. Munshi, B.M., Separation Axioms, Acta Ciencia Indica, 12(1986), 140-144.
- [7]. Navaneethakrishnan.M and D.Sivaraj, Generalized locally closed sets in Ideal topological spaces, Bulletin of the Allahabad Mathematical Society, Golden Jubilee year volume 2008.
- [8]. Navaneethakrishnan, M. and J. Paulraj Joseph and D. Sivaraj, Ig-normal and Ig-regular spaces. Acta. Math. Hungar, 2009.
- [9]. Navaneethakrishnan.M, P.Periya Samy, S.Pious Missier, Between δ-I-closed sets and g-closed sets in ideal topological spaces. Int. J. Mod. Eng. Res. (2015), 39-45.
- [10]. Vaidyanathaswamy.R, Set topology, Chelsea Publishing Company, 1946.
- [11]. Yuksel.S, A.Acikgoz and T.Noiri, On δ-I-continuous functions, Turk J.Math, 29(2005), 39-51.