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I.  Introduction And Preliminaries 
The introduction of the paper should explain the nature of the problem, previous work, purpose, and the 

contribution of the paper. The contents of each section may be provided to understand easily about the paper. In 

recent years, the fixed point theory and application has rapidly development. 

The topological degree theory and fixed point index theory play an important role in the study of fixed 

points for various classes of nonlinear operators in Banach spaces (see [1-2],[3]and[4],[7],etc.). The new 

conclusions of main theorems: Theorem 2.1 and theorem 2.4, theorem 2.6 and theorem 2.7, theorem 3.1 and 

theorem 4.1. Next, the effective methods of variation iterative method to combine some integral-differential 

equation and partial differential equations with He’s iterative method. First, we need following some definitions 

and conclusion (see [3]). 

Let E be a real Banach space,   a bounded open subset of E and   the zero element of E  If :A E  is a  

complete continuous operator, we have some well known theorems for needing Lemma 1.1 as follows (see [3-4]). 

Lemma 1.1 (see Corollary 2.1 [3]) Let E be a real Banach Space,   is a bounded open subset of E  and .   

If :A E  is a semi-closed 1-set -contractive operator such that satisfies the Leray-Schauder boundary condition  

,Ax tx  for all x  and 1,t  then deg( , , ) 1,I A    and so A  has a fixed point in . 

 

II.   Several fixed point theorems 
In recent years, some new types fixed point theory and application to study the differential-integral 

equations in the physic and mechanics fields. Therefore, some application has rapidly development. First, we 

extended some results as follows. For convenience, we give out following Theorem 2.1. 

Theorem2.1 Let E be a real Banach Space,  is a bounded open subset of E and .  If :A E  is a 

semi-closed 1-set-contractive operator such that  
 


)()(

2 )1(
nnnn

xAxmxAxxmAx , for all .x                    (2.1)  

(where 1, 0, 0     , nm, positive integer ) 

Then deg( , , ) 1I A    , if A  has no fixed points on  and so A  has a fixed point in  .  

Proof  By lemma 1.1, we can prove theorem 2.1 .Suppose that A  has no fixed point on  .Then assume it is not 

true, there exists 
00

, 1x   such that 
0 0 0

Ax x . 

It is easy to see that 
0

1.   Now, consider the function defined by  

,1)())1(()( )()(2    nn mtmttf  for any 1.t   

Since ,0])())1()[(()(' 1)(1)(2    nn mtmtnntf 1t and 0)(' tf . 

So, ( )f t  is a strictly increasing function in ),,1[   and ( ) (1)f t f  for 1t  . Thus, 

Consequently, noting that
0 0,x  0 1  , we have  
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)(

0000

nnn
xAxmxAx  ,          

which contradicts (2.1), and so the condition ( )L S is satisfied. Therefore, it follows from lemma 1.1 that the 

conclusion of theorem 2.1 holds. 

Corollary 2.2.  Let ,1m we get theorem 2.3 [3]. 

Corollary2.3. If  
 nnn

AxmxAxxmAx



)(

2 )1( , then deg( , , ) 1I A     by similar 

proof method.  

In fact,
 


)(nnnnn

xAxmxAxAxmxAx ,it satisfies condition of theorem 2.1. 

In the same reason, we extend some theorem [3] as follows. 

Theorem 2.4 Let E  be a real Banach Space,   is a bounded open subset of E  and .   If :A E  is a 

semi-closed 1-set-contractive operator such that satisfies condition: 

)])1(3)[1(
222333

xkxAxAxkxAxkkxAx  , for all .x                 (2.4)  

Then deg ( , , ) 1I A     

Proof  Similar as above stating, we shall prove that the L-S condition is satisfied. That is there exists 
0 0, 1x    

such that
0 0 0

Ax x , and 
0

1.   Now, consider it by (2.4), we have that 

))(1()1()( 0

33

0

3

0

3

0  kkkk  .  

This is a contradiction. By lemma 1.1, then deg ( , , ) 1I A    that A  has a fixed point in . We complete this 

proof. 

Theorem2.5.Let , ,E A be the same as theorem 2.7. Moreover, if substituting (2.4) into that inequality: 

                              )6[2
422444

xxAxAxxAxxAx  , for all .x                            (2.5) 

Then deg ( , , ) 1I A    , then the A has at least one fixed point in .   

Proof   Similar as the proof of theorem2.4. If we suppose that A  has no fixed point on . Then we shall prove 

that the L-S condition is satisfied. We assume it is not true, there exists 
0 0

, 1x   such that
0 0 0

Ax x , and 
0

1.   

Now, consider it by (2.5), we have that )16(2)1()1(
2

0

4

0

4

0

4

0   . 

By (2.5) we have that )16(2)1()1(
2

0

4

0

4

0

4

0   . Thus, this is a contradiction,  

then by lemma 1.1 that we get the conclusions of theorem 2.5.  

Therefore, we shall consider some higher degree case as follow (Omit similar proof). 

Theorem 2.6 Let E be a real Banach Space,  is a bounded open subset of E  and .   If :A E  is a 

semi-closed 1-set-contractive operator such that satisfies 

condition: 
2222

2

21212
[2 xAxCAxxAxxAx

n

n

nnn 
  

]
222222
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42442
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4424
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nnn
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n xxAxCxAxCxAxC 


 , for every x         (2.6) 

 Then deg ( , , ) 1I A    , then if A  has no fixed points on  and so A has at least one fixed point in  . 

 Theorem 2.7 Let E be a real Banach Space,  is a bounded open subset of E  and .   If :A E is a 

semi-closed 1-set-contractive operator such that satisfies condition: 
2222

2

222
[2 xAxCAxxAxxAx

n

n

nnn 
  

]
222222

2

42442

2

4424

2

nnn

n

nn

n

n

n xxAxCxAxCxAxC 


  for all .x            (2.7) 

Then deg ( , , ) 1I A    , then if A  has no fixed points on   and so A has at least one fixed point in   

(We omit the similar proof of above Theorems). 

III.  Some Notes For Altman Type Inequality 
It is well known we may extend that boundary condition inequality as bellow case:  

222
mxAxmxAx   for all .0,  mx                                             (3.1) 
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then the semi-closed 1-set-contractive operator A  must have fixed point in .  

In fact, there exists 
0 0

, 1x   such that
0 0 0

Ax x , and 
0

1.   By (3.1), we have that 

2 2 2 2

0 0 0
( ) , 2 2 0.m m m m        

Then 012

9   , this is a contradiction. 

By Lemma 1.1, we obtain deg ( , , ) 1,I A     then operator A must have fixed point in .  

We can extend this Altman’s inequality into the determinant type form (also see [3]-[5], [6] etc):   

222
mxAxmxAx  =

2
)(,

,)(
D

xAmx

mxxA
  

that we consider these general case: nD for n-order determinant. Similar Corollary (2) satisfy condition bellow: 

),,2,1(
2222

limxmxAxxBAxAx i  . Then if these semi-closed operators 
lBBB ,,, 21  have not 

common fixed point each other, then S have at least l  numbers fixed points. Now, we write n-order determinant 

type form 

n

Ax x x x

x Ax x x
D

x x Ax x












   



 .  

Then by simple calculation, .))()1(( 1 n

n xxAxxnxAxD  

Moreover, in the similar discussion along this direction, we extend Corollary 2.6 in [3] with as following Theorem 

3.1 

Theorem 3.1 Let AE ,,  be the same as in lemma 1.1.Moreover,if there exists n-positive integer such that ),2( n  

,2

)1(2




 nn

n
DDAx   for all ,x                                                         (3.2) 

Then ,1),,deg(  AI if A has no fixed points on , and so A has at least one fixed point in .   

Proof  Noting the determinant by nD , .))()1(( 1

2



  n

n xxAxxnxAxD  

By (3.2), we have 

                   .))()1()()1(( 2)1(2 nn
xxAxxnxAxxnxAxAx 


 

In fact, there exists
00 , 1x   0x 1, 00  x such that

00 0.Ax x  It is easy to see that
0

1.   

Now, we have the inequality  

                                            .)]1())][1([(
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0

2

000

22

0


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nnn
nn   

Hence, ,))()1()()1((
22

0

2

000000000




nn AxxxAxxnxAxxnxAx  

Which is a contradiction to (3.2), and so the boundary condition of Leray-Schauder condition is satisfied. 

Therefore, it follows from lemma 1.1 that the conclusion of Theorem 3.1 holds.  

Theorem 3.2 Let be the same as in lemma 1.1.Moreover,  if there exists n positive integer such that ( 2)n  , 

,2

2

1   nnn DDD  for all ,x                                                       (3.3)  

Then ,1),,deg(  AI if A has no fixed points on , and so A has at least one fixed point in .  (Omit 

this similar proof).  

Theorem 3.3 Let , ,E A be the same as in lemma 1.And, if there exists n positive integer such that ( 2)n  . 

,21

)1(3




 nnn

n
DDDxAx  for all ,x                                        (3.4)  

Then ,1),,deg(  AI if A has no fixed points on , and so A has at least one fixed point in .   

Proof Notice the determinant nD , then ,))((1

n

n xxAxxnxAxD  and  

,))()1(( 1

2



  n

n xxAxxnxAxD  similar as in above way that we omit the similar proof of 

Theorem 3.2. In fact, on the contrary, there exists 1, 00  x such that .000 xAx   It is easy to see that 
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0
1.  It is well know by (3.4), we easy obtain that there is a contraction for this inequality. So A has at least one 

fixed point in .   

Theorem 3.4 Suppose that same as Theorem 3.3, satisfy follows form: 

,321

)3(2




 nnnn

n
DDDDxAx  for all ,x                                    (3.5)  

Then ,1),,deg(  AI  if A has no fixed points on  and so A has at least one fixed point in . (Omit 

this similar proof of Theorem 3.4).   

Remark  Notes that new case of non-symmetry form with nD for n-order determinant are given with more 

conclusions.  

 

IV. solution of integral equation by vim 

To ensure a high-quality product, diagrams and lettering MUST be either computer-drafted or drawn 

using India ink. Recently, the variation iteration method (VIM) has been favorably applied to some various kinds of 

nonlinear problems, for example, fractional differential equations, nonlinear differential equations, nonlinear 

thermo-elasticity, nonlinear wave equations. 

They have wide applications in mechanics, physics, optimization and control, nonlinear programming, 

economics, and engineer sciences. 

In this section, we apply the variation iteration method (simple writing VIM) to Integral-differential equations 

bellow (see [3] and [4-6] etc.). To illustrate the basic idea of the method, we consider:   

),()]([)]([ tgtuNtuL   

where L is a linear operator, N is a nonlinear operator and )(tg is a continuous function. 

The basic character of the method is to construct functional for the system, which reads:  

 1
0

( ) ( ) ( ) ( )
x

nn n nu x u x s Lu Lu Nu g s ds     , 

where  is the Lagrange multiplier which can be identified optimally via variation theory, nu is the nth 

approximate solution, and nu  denotes a restricted variation, .0nu There is an iterative formula:  



b

a
nn dttutxkxfxu )(),()()(1   

of this integral equation.   

Theorem 4.1 ([4, theorem 4.1]).Consider the iteration scheme ),()(0 xfxu   and the 

                                                    

b

a
nn dttutxkxfxu )(),()()(1  .                                                       (4.1a) 

Now, for ,,2,1,0 n to construct a sequence of successive iterations that for the  ( )nu t to the solution of 

integral equation (4.1). In addition, we assume that  
b

a

b

a
Bdxdttxk 22 ),( , and assume that ,)( 2

],[ baLxf   if 

B/1 , then the  above iteration converges in the norm of 
2

],[ baL  to the solution of integral equation (4.1).  

Corollary4.2 If )()(),(
1

tbxatxk ii

m

i




 , and
2 2( , ) ,

b b

a a
k x t dxdt B    then assume ,)( 2

],[ baLxf   

if B/1 , the above iteration converges in the norm of 
2

],[ baL  to the solution of integral equation (4.1).   

Corollary4.3 If 1 2( , ) ( , ) ( , ),k x t k x t k x t  and
2 2( , ) ,

b b

a a
k x t dxdt B    then assume ,)( 2

],[ baLxf   

if B/1 , the above iteration converges in the norm of 
2

],[ baL to the solution of integral equation (4.1). 

 

Example4.1. Consider that integral equation  

 
1

0

23 )()()( dttutxtxxxxu 
.                                                        (4.2)  

Where )10(,)( 23

0   xxxxu , let  
1 1 1

2 5 4 
  

    and that 
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 

1

0

23

1 )()()( dttutxtxxxxu nn                                                     (4.2a) 

Where      
b

a

b

a
Bdxdttxtdxdttxk 2111

1

0

1

0

22 9/7339)(),( , if ,7/3 then the 

iterative (4.1a) is convergent to the solution of equation (4.2). Substituting )(0 xu in to (4.2a), it is that 

(writing
23)( xxxxP  

 ) 

 
1

0
0

23

1 )()()( dttutxtxxxxu  ),1(23  xxxx 
 

 
1 1

3 2

2 1
0 0

( ) ( ) ( ) ( ) ( 1) ( 1)( ) P x xt t u t dt P x x t t t t t dtu x


 
              

                                2
2 1( ) / 4xP x


      

        2 32
1

3 2
0

( ) ( ) 2 ( 1) / 4 ( 1) ( ) ( ) 2 1 / 3 / 3u x P x x x t u t dt P x x
 

                  

By inductively,     2

1
1 / 3 / 3 / 3( ) ( )

n

n
xu x P x


   


       

Then the solution: )(lim)( xuxu n
n 

 ( ) 3 / (3 )P x x


    .(See Fig 1and Fig 2) 

  
Fig 1 Fig 2 

 Example 4.2 Consider that integral equation (positive integer )1k  

 
1

0

2 )()()( dttutxxxxxu kkk 
                                                       (4.3)  

Where 0)0( u , and  )10()( 2

0    kk xxxxu  

From that                                  

 
1

0
1

2 )()()( dttutxxxxxu n

kkk

n   

By theorem 4.1 and by simple computation, we obtain again that   

    
b

a

b

a

k Bkdxdttxdxdttxk 2
1

0

1

0

22 )12(3/1)(),( ,  

then if )12(3  k , then iterative 

 

 
1

0
1

2 )()()( dttutxxxxxu n

kkk

n 
, 

which is convergent the solution of integral equation (4.3). We may omit the detail calculating (Let  
1

2 


   

   
1 1

4 2k k
 

    ). 

                           22

1
1 2 2 2( ) / ( ) / ( ) / ( ) .

nk k k

n
k k ku x x x x x


    




            

 

 
1

0
1

2 )()()( dttutxxxxxu n

kkk

n 
, 

which is convergent the solution of integral equation (4.3). We may omit the detail calculating 

(Let      
1 1 1

2 4 2k k 
  

      ). 
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               22

1
1 2 2 2( ) / ( ) / ( ) / ( ) .

nk k k

n
k k ku x x x x x


    




             

The solution  
2

1
( ) / ( )( ) 2 2 .

kk k

n
xu x x x x k k


  




        

Theorem 4.2 (see theorem 3 in [5])  Let D  be a bounded open convex subset in a real Banach 

space X and ;D Suppose that EDA :  is a semi-closed 1-set-contractive operator and satisfies the 

following condition:  

00 xxxAx   for every Dx  and Dx 0
.                                     (4.4) 

Then the operator equation xAx  has a solution in D (omit the proof) 

To illustrate the application of the obtained results, we consider the examples. 

 

Example 4.3 Similar as example 1 , we consider integral equation: 

 1 1

0
(1 / 7) (1 / 11)sin cos 2.1 0,

x

t t dt x
 

    ],[ x                  (4.5) 

It is easy to prove that this equation has a solution in ].,[   

In fact, let  
0

(1 / 7) (1 / 11)sin cos 2.1.
x

Ax t t dt   ],[ x , and  that .:],,[   xDD We 

write ,yy  for every .Ry Thus, we have     

   
0

1 1 1 1

0
/ 77(1 / 7) (1 /11) (1 / 7) (1 /11)( ) 2.1 sin cos 18 2.1 2.1A t t dt dt





  


   



             

And  

.1.21.277/18)cos)11/1(sin)7/1((1.2)( 11

0
 

 


dtttA  

It follows that ,1.21.2  xAx for every Dx  . Meanwhile, A  is semi-closed 1-set-contractive operator 

similar example 1 by theorem 4.2 that we obtain the xAx  has a solution in ].,[  That is, Eq. (4.5) has a 

solution in ].,[    

 

V.   Effective Modification of He’s variation iteration 

In this section, we apply the effective modification method of He’s VIM to solve some 

integral-differential equations [7]. In [7] by the variation iteration method (VIM) simulate the system of this form 

).(xgNuRuLu                              

To illustrate its basic idea of the method .we consider the following general nonlinear system  

),(xgNuRuLu                                                                     (5.1) 

Lu  shows the highest derivative term and it is assumed easily invertible, R is a linear differential operator 

of order less than L , Nu represents the nonlinear terms, and g is the source term. Applying the inverse operator 

1

xL  to both sides of equation (*), then we obtain ][][ 11 NuLRuLfu xx

  . 

The variation iteration method (VIM) proposed by Ji-Huan He (see [5], [7] has recently been intensively studied 

by scientists and engineers. the references cited therein) is one of the methods which have received much concern 

.It is based on the Lagrange multiplier and it merits of simplicity and easy execution. Unlike the traditional 

numerical methods. Along the direction and technique in [9], we may get more examples bellow. 

We notice that an effective iterative method and some examples  

Example5.1 Consider the following integral-differential equation  
1

'''

0
(4 / 3)( ) ( )xu x e x xt u t dt     , 

Where 
'' 2

(0) 1, '(0) 1 , (0)u u u     with exact solution ( ) .xu x x e   

In fact, we check 
0 1
( ) , ( ) 7 / 4,

x
f x x e f x x


    to divide f  in tow parts for 

0 1
( ) ( ) ( ),f x f x f x   and 

writing  2 2
1/ 1/ 1/e


   

 
   . 

       3
1 1 1

1 1 1

0
0 0 0

/ 3 ( /18) (( ) ( ) / 6)
t

x x x
x x xL xtu t dt L x t t e dt L x dx




  
        
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  3

0
(1 3 ) /18

x

x dx     4
1 3 / 72.x   

By    
1

4 1

1
0

(1/ 4) (1 3 ) /18( ) ( ) .
x

n x n
u x x e x L xtu t dt







     Then, we have 

   
1

4 1

1 0
0

(1 3 ) / 72( ) ( ) ,
x x

x
u x x e x L xtu t dt x e

 



       

   
1

4 1

2 1
0

(1 3 ) / 72( ) ( ) ,
x t

x
u x x e x L xtu t dt x e

 



      ,  and we have that 

( )
x

n
u x x e


   Therefore, this is a closed form ( )

x
u x x e


  , shows that the method is a very convenient and 

only one iterative leads to the exact solution. 

 

Example5.2 Consider the following integral-differential equation  

                                                    ,)()3/4()(
1

0

)6( dtttuxxexu x

                                                                (5.2)     

where 5)5(4)4(3)3(2 )0(,)0(,)0(,)0('',1)0(',1)0(   uuuuuu   

In similar example1, we easy have it.(We may omit it) 

where ,)()(
0 00 00 0

1 dtdtdtdtdtdtL
x xx xx x

x     
 ,)()( 00

xexxfxu   

3/7)())3/4(()()()( 01 xexxexfxfxf xx  
, ),()()( 10 xfxfxf   

and writing  2 2
1/ 1/ 1/e


   

 
   .  

     

  3 3

1 1
1 1 1

0
0 0

0 0 0 0

/ 3

( (

( ) ( )

/18) / 6) ,

t

x x x

x x x x

x x

x x

L xtu t dt L x t t e dt L

dx dxdxdx






  




  



 

   
               

      4 7

0 0 0
1 3 ) / 18 1 3 ) / 18 .( / 4 ( / 7!

x x x

x dx x       

   7
1

1

1 0
0

1 3 ) / 3( ) ( / 7! ( ) , ,
x x

x
xu x x e L xtu t dt x e

 



         

and so on,  

   7
1

1

1
0

1 3 ) / 3( ) ( / 7! ( ) .
x x

n x n
xu x x e L xtu t dt x e







       

By simple operations, we have that  

.1,)(,,)(,)( 10  nexxuexxuexxu x

n

xx    

Therefore, the exact solution in a closed form xexxu )( , shows that the method 

is a very convenient. The exact solution 
xexxu )( is only one iterative. (See Fig 3, 0.75  and 1.25  ). 

  

Fig 3 

VI. Some Notes of Burger’s Equation 
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We shall consider the exact and numerical solutions for Burger’s equation ,which has attracted much 

attention .Solving this equation has been an interesting tasks for mathematicians 

 

VI.1 One-dimensional Burger’s equation 

. Consider the following one-dimension Berger’s equation with initial and boundary conditions: 

Example 6.1 Consider the following equation (similar as example 1 [15]): 
2

2
,

( ,0) 3 , 0.

u u u
u

t x x

u x x t

  
 

  

 







                                                                 (6.0) 

According the direction of [2] and method for this example, then it can be written as by iterative formula (6) [2]: 

.)),(),()((),(),(
2

2

0
1 


 d

x

u
vx

x

u
ux

u
txutxu nn

n

n
x

nn













 

                       (6.1) 

Starting with .3),(0 xtxu   

The following reads can be derived from iterative formula (6.1) 

,241263),(

,63),(

32

2

1

xtxtxtxtxu

xtxtxu




 

.,3841929648241263),( 765432

3 xtxtxtxtxtxtxtxtxu   

Thus, we have that  

),(lim),( txutxu n
n

  

nnn

n

tx

tttttttx

)3(2)1(

)1286432168421(3

0

765432











 

).21/(3 tx   

This is an exact solution.  

Remark Starting with ,)1(),(0 xatxu  )21/()1(),(lim),( tatxutxu n
n




. 

As 0a ( as special case: 1a that is example 1 [15], ,2a  this is example 1 in this paper ). Notice that 

baxtxu ),(0 or xxtxu  2

0 ),( (similar polynomial case). More form.  

),(lim),( txutxu n
n

  

nnn

n

txx

ttttttxx

)(2)1(

)6432168421)((

2

0

654322











 

).21/()( 2 txx   

This is an exact solution.  

Or xxxtxu kk  1

0 ),( (similar polynomial case).more form.  

).21/()(),(lim),( 1 txxxtxutxu kk

n
n

 


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Fig 4 

 
Fig 5 

Example 6.2  Consider the following equation (similar as example 1 [15]): 
2

2
,

( , 0) 10 , 0.

u u u
u

t x x

u x x t

  
 

  

 







                                                                     (6.2) 

For this example, by above Example 6.1, can be written as .9a Starting with .10),(0 xtxu  Thus, we have that 

an exact solution. 

),(lim),( txutxu n
n 

 ).21/(10 tx   

 

VI-2 Two-dimensional Burger’s equation 

Similar as example 3 [15], we get following example 2 for two-dimension case. 

Example 6.3 Consider the system of Burger’s equation in the following equation (similar as example 3 [15]): 

),(
1

2

2

2

2

y

u

x

u

Ry

u
v

x

u
u

t

u
























).(

1
2

2

2

2

y

v

x

v

Ry

v
v

x

v
u

t

v
























                        (6.3) 

with initial conditions: .)0,,(,)0,,( 00 yxyxvyxyxu  We have by iterative [15]: 

y

u
v

x

u
u

u
tyxutyxu n

n

n

n

n
t

nn













 

0
1 [),,(),,( ,](

1
2

2

2

2

d
y

u

x

u

R

nn









  

                       
y

v
v

x

v
u

v
tyxvtyxv n

n

n

n

n
t

nn













 

0
1 [),,(),,( .](

1
2

2

2

2

d
y

v

x

v

R

nn









                     (6.4) 

Consider the initial approximations .)0,,(,)0,,( 00 yxyxvyxyxu  and applying VIM formula (6.4), 

other term of the sequence are computed as follows: 

.2),,(,2),,( 11 ytyxtyxvxtyxtyxu   

,)3/4(222),,( 322

2 xtytxtxtyxtyxu   

.)3/4(22.2.),,( 322

2 ytytxtytyxtyxv   

),,(lim),,( tyxutyxu n
n

  

)21(2)21()421( 2242   txttyttx  

).21/()2( 2txtyx   

),,(lim),,( tyxvtyxv n
n

  

)21(2)21()421( 2242   tyttyttx  

),21/()2( 2txtyx    

which are exact solutions )2/1( t . We omit the detail stating for this results. 

 

VII. Conclusion 
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In this Letter, we apply the variation iteration method to integral-differential  equation ,and extend some 

results in [3]- [4]-[5]. The obtained solution shows the method is also a very convenient and effective for various 

integral-differential equations, only one iteration leads to exact solutions. 
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