
International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3107-3115 ISSN: 2249-6645

www.ijmer.com 3107 | Page

O.Anjaneyulu¹, L.Swapna², C.V.Krishna Reddy³,
Member, IEEE KITS,Warangal¹², NNRESGI-Hyd³ Andhra Pradesh, India

ABSTRACT—In this paper, Carry Tree Adders are Proposed. Parallel prefix adders have the best performance in VLSI

Design. Parallel prefix adders gives the best performance compared to the Ripple Carry Adder (RCA) and Carry Skip Adder

(CSA). Here Delay measurements are done for Kogge-Stone Adder, Sparse Kogge-Stone Adder and Spanning Tree Adder.

Speed of Kogge-Stone adder and Sparse Kogge-Stone adder have improved compared to the Ripple Carry Adder (RCA) and

Carry Skip Adder (CSA). Model Simulator-Altera 6.6d and Xilinx 10.1 tools were used for simulation and synthesis of the

design.

Index Terms –Carry Skip Adder (CSA), Kogge-Stone adder, Ripple carry adder (RCA), sparse Kogge-Stone adder and

Spanning tree adder.

I. INTRODUCTION

In VLSI implementations, parallel-prefix adders are known to have the best performance. Reconfigurable logic

such as -Field Programmable Gate Arrays (FPGAs) has been gaining in popularity in recent years because it offers

improved -performance in terms of speed and power over DSP-based and microprocessor-based solutions for many

practical designs involving mobile DSP and telecommunications applications. Parallel-prefix adders will have a

different performance than VLSI implementations. In particular, most modern FPGAs employ a fast-carry chain which

optimizes the carry path for the simple Ripple Carry Adder (RCA).

An efficient testing strategy for evaluating the -performance of these adders is discussed. Several tree-based

adder structures are implemented and characterized on a FPGA and compared with the Ripple Carry Adder (RCA)

and the Carry Skip Adder (CSA). Finally, some conclusions and suggestions for improving FPGA designs to

enable better tree-based adder performance are given.

II. CARRY-TREE ADDER DESIGNS
Parallel-prefix adders, also known as carry-tree adders, pre-compute the propagate and generate signals [1]. These

signals are variously combined using the fundamental carry operator (fco) [2].

(Gʟ ,Pʟ) ο (Gʀ , Pʀ)=(Gʟ + Pʟ •Gʀ , Pʟ •Pʀ)(1)

Due to associative property of the fco, these operators can be combined in different ways to form various adder

structures. For, example the four-bit carry-look ahead-generator is given by:

c₄=(g₄, p₄) ο[(g₃, p₃) ο [(g₂, p₂) ο (g₁, p₁)]] (2)

A simple rearrangement of the order of operations allows parallel operation, resulting in a more efficient tree structure for

this four bit example:

c₄= [(g₄, p₄) ο(g₃, p₃)] ο[(g₂, p₂) ο(g₁, p₁)] (3)

It is readily apparent that a key advantage of the tree structured adder is that the critical path due to the carry delay is

on the order of log2N for an N-bit wide adder. The arrangement of the prefix network gives rise to various families of

adders. For a discussion of the various carry-tree structures, see [1,3].

For this study, the focus is on the Kogge-Stone adder [4]

Here we designate BC as the black cell which generates the ordered pair in equation (1); the grey cell (GC) generates the left

signal only, following [1]. The interconnect area is known to be high, but for an FPGA with large routing overhead to

begin with, this is not as important as in a VLSI -implementation. The regularity of the Kogge-Stone prefix

network has built in redundancy which has implications for fault-tolerant designs [5]. The sparse Kogge-Stone adder,

shown in Fig 2, is also studied. This hybrid design completes the summation process with a 4 bit RCA

allowing the carry prefix network to be simplified.

An Improved Optimization Techniques for Parallel

Prefix Adder using FPGA

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3107-3115 ISSN: 2249-6645

www.ijmer.com 3108 | Page

Fig1.16 bit Kogge-Stone adder

Fig2. sparse 16 bit Kogge-Stone adder

 Another carry-tree adder known as the spanning tree carry-look ahead (CLA) adder is also examined [6]. Like the

sparse Kogge-Stone adder, this design terminates with a 4- bit RCA. As the FPGA uses a fast carry-chain for the RCA, it is

interesting to compare the performance of this adder with the sparse Kogge-Stone and regular Kogge-Stone adders.

Also of interest for the spanning-tree CLA is its testability feature [7].

Fig3. Spanning Tree Carry Look ahead Adder (16 bit)

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3107-3115 ISSN: 2249-6645

www.ijmer.com 3109 | Page

III. METHOD OF STUDY
The adders to be studied were designed with varied bit widths up to 128 bits and coded in VHDL. The

functionality of the designs were verified via simulation with Model Simulator. The Xilinx ISE 10.1 software was used to

synthesize the designs onto the Spartan 3E FPGA. In order to effectively test for the critical delay, two steps were taken.

First, a memory block (labelled as ROM in the figure below) was instantiated on the FPGA using the Core Generator to

allow arbitrary patterns of inputs to be applied to the adder design. A multiplexer at each adder output selects whether or not

to include the adder in the measured results, as shown in Fig A switch on the FPGA board was wired to the select pin of the

multiplexers. This allows measurements to be made to subtract out the delay due to the memory, the multiplexer. And

interconnect (both external cabling and internal routing).

Second, the parallel prefix network was analysed to determine if a specific pattern could be used to extract the

worst case delay. Considering the structure of the Generate-Propagate (GP) blocks (i.e., the BC and GC cells), we were able

to develop the following scheme, by considering the following subset of input values to the GP blocks.

Table1: Subset of (g, p) Relations Used for Testing

If we arbitrarily assign the (g, p) ordered pairs the values (1,0) = True and (0, 1) = False, then the table is self-

contained and forms an OR truth table. Furthermore, if both inputs to the GP block are False, then the output is False;

conversely, if both inputs are True, then the output is True. Hence, an input pattern that alternates between generating

the (g, p) pairs of (1, 0) and (0, 1) will force its GP pair block to alternate states. Likewise, it is easily seen that the GP

blocks being fed by its predecessors will also alternate states. Therefore, this scheme will ensure that a worse case delay

will be generated in the parallel prefix network since every block will be active. In order to ensure this scheme works,

the parallel prefix adders were synthesized with the ―Keep Hierarchy‖ design setting turned on (otherwise, the FPGA

compiler attempts to reorganize the logic assigned to each LUT). With this option turned on, it ensures that each GP

block is mapped to one LUT, preserving the basic parallel prefix structure, and ensuring that this test strategy is

effective for determining the critical delay. The designs were also synthesized for speed rather than area optimization.

IV. DISCUSSION OF RESULTS
The simulated adder delays obtained from the Xilinx ISE synthesis reports are shown in Fig. An RCA as large as

160 bits wide was synthesizable on the FPGA, while a Kogge-Stone adder up to 128 bits wide was implemented.

The carry-skip adders are compared with the Kogge-Stone adders. The actual measured data appears to be a bit smaller than

what is predicted by the Xilinx ISE synthesis reports. An analysis of these reports, which give a breakdown of delay due to

logic and routing, would seem to indicate that at adder widths approaching 256 bits and beyond, the Kogge-Stone

adder will have superior performance compared to the RCA. Based on the synthesis reports, the delay of the Kogge-Stone

adder can be predicted by the following equation:

tĸѕ = (n+2)οοʟ ᴜ ᴛ + οοο(n) (4) where N = 2n, the adder bit width, ΔLUT is the delay through a lookup table (LUT),

and ρĸѕ(n) is the routing delay of the kogge-Stone adder as a function of n. The delay of the RCA can be predicted as:

tʀ cᴀ = (N – 2)οοοᴜ x + οʀ cᴀ (5)

where ΔMUX is the mux delay associated with the fast-carry chain and τʀ ϲ ᴀ is a fixed logic delay. There is no routing

delay assumed for the RCA due to the use of the fast-carry

chain. For the Spartan 3E FPGA, the synthesis reports give the following values: ΔLUT = 0.612 ns, ΔMUX = 0.051 ns, and

Ʈ ʀ ϲ ᴀ = 1.715 ns. Even though ΔMUX << ΔLUT, it is expected that the Kogge-Stone adder will eventually be faster than

the RCA because N = 2n, provided that ρĸѕ(n) grows relatively slower than (N – 2)ΔMUX. Indeed, Table II predicts that

the Kogge-Stone adder will have superior performance at N =256.

Table2 : Delay Results for the Kogge-Stone Adders
N

Synth.

Predict

Route

Delay

Route

Fitted

Delay

tKS

Delay

 tRCA

4 4.343 1.895 1.852 4.300 1.817

16 6.113 2.441 2.614 6.286 2.429

32 7.607 3.323 3.154 7.438 3.245

64 8.771 3.875 3.800 8.696 4.877

128 10.038 4.530 4.552 10.060 8.141

256 – – 5.410 11.530 14.669

(all delays given in ns)

(gL,pL) (gR,pR) (gL + pL gR, pL pR)

(0,1) (0,1) (0,1)

(0,1) (1,0) (1,0)

(1,0) (0,1) (1,0)

(1,0) (1,0) (1,0)

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3107-3115 ISSN: 2249-6645

www.ijmer.com 3110 | Page

The second and third columns represent the total predicted delay and the delay due to routing only for the Kogge-Stone

adder from the synthesis reports of the Xilinx ISE software. The fitted routing delay in column four represents the predicted

routing delay using a quadratic polynomial in n based on the N = 4 to 128 data. This allows the N = 256 routing delay

to be predicted with some degree of confidence as an actual Kogge-Stone adder at this bit width was not synthesized.

The final two columns give the predicted adder delays for the Kogge-Stone and RCA using equations (4) and (5),

respectively. The good match between the measured and simulated data for the implemented Kogge-Stone adders and RCAs

gives confidence that the predicted superiority of the Kogge-Stone adder at the 256 bit width is accurate. This differs from

the results in [10], where the parallel prefix adders, including the Kogge-Stone adder, always exhibited inferior performance

compared with the RCA(simulation results out to 256 bits were reported). The work in [10] did use a different FPGA (Xilinx

Vertex 5), which may account for some of the differences. The poor performance of some of the other implemented

adders also deserves some comment. The spanning tree adder is comparable in performance to the Kogge-Stone adder at

16 bits. However, the spanning tree adder is significantly slower at higher bit widths, according to the simulation results, and

slightly slower, according to the measured data. The structure of the spanning tree adder results in an extra stage of logic for

some adder outputs compared to the Kogge-Stone. This fact coupled with the way the FPGA place and route software

arranges the adder is likely the reason for this significant increase in delay for higher order bit widths. Similarly, the inferior

performance of the carry-skip adders is due to the LUT delay and routing overhead associated with each carry-skip logic

structure. Even if the carry-skip logic could be implemented with the fast-carry chain, this would just make it equivalent in

speed to the RCA. Hence, the RCA delay represents the theoretical lower limit for a carry-skip architecture on an FPGA.

V. SIMULATION RESULTS

(a)Ripple-Carry Adder

(b) Carry-Select Adder

(c) Carry-Skip Adder

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3107-3115 ISSN: 2249-6645

www.ijmer.com 3111 | Page

(d) Kogge-Stone Adder

(e) Sparse Kogge-Stone Adder

(f) Spanning Tree adder

Figure: (a)-(f): A 16-bit parallel prefix adder simulation result for all combinations outputs.

For the HDL structural design, the test vectors for excitation has been provided, and the response is as shown in Figure. Here

the input reference vector is a=0010110111010101,b=0010110011011110,for Ripple carry adder,

a=0010111100111100, b=0011001111001111, for Carry select adder, a=0101101110111010,b=0011011001101111 for

Carry skip adder.

a=0000110101100100,b=0010100001100100 for Kogge stone adder,

a=0101110101011000,b=0011010010110111 for sparse kogge stone adder,

a=0001101101010110,b=0001100101111011 for panning tree adder.

VI. SYNTHESIS REPORT
Final Results

RTL Top Level Output File Name : ripple carry adder.ngr

Top Level Output File Name : ripple carry adder

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics
IOs : 50

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3107-3115 ISSN: 2249-6645

www.ijmer.com 3112 | Page

Cell Usage :

BELS : 32

LUT3 : 32

 # IO Buffers : 50

IBUF : 33

OBUF : 17

Timing constraints

Delay: 21.69ns (Levels of Logic = 18)

Source: B<0> (PAD)

Destination: C out (PAD)

 Data Path: B<0> to C out

Cell:

In_>Out

Fan

out

Gate delay Net delay Logic

Name(Net

Name)

IBUF:I-

>O

2 1.106 0.532 B_0_IBUF

(B_0_IBUF)

LUT3:I0-

>O

2 0.612 0.449 FA0/cout1

(c<0>)

LUT3:I1-

>O

2 0.612 0.449 FA1/cout1

(c<1>)

LUT3:I1-

>O

2 0.612 0.449 FA2/cout1

(c<2>)

LUT3:I1-

>O

2 0.612 0.449 FA3/cout1

(c<3>)

LUT3:I1-

>O

2 0.612 0.449 FA4/cout1

(c<4>)

LUT3:I1-

>O

2 0.612 0.449 FA5/cout1

(c<5>)

LUT3:I1-

>O

2 0.612 0.449 FA6/cout1

(c<6>)

LUT3:I1-

>O

2 0.612 0.449 FA7/cout1

(c<7>)

LUT3:I1-

>O

2 0.612 0.449 FA8/cout1

(c<8>)

LUT3:I1-

>O

2 0.612 0.449 FA9/cout1

(c<9>)

LUT3:I1-

>O

2 0.612 0.449 FA10/cout1

(c<10>)

LUT3:I1-

>O

2 0.612 0.449 FA11/cout1

(c<11>)

LUT3:I1-

>O

2 0.612 0.449 FA12/cout1

(c<12>)

LUT3:I1-

>O

2 0.612 0.449 FA13/cout1

(c<13>)

LUT3:I1-

>O

2 0.612 0.449 FA14/cout1

(c<14>)

LUT3:I1-

>O

1 0.612 0.357 FA15/cout1

(c<15>)

OBUF:I-

>O

 3.169 Cout_

OBUF

(Cout)

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3107-3115 ISSN: 2249-6645

www.ijmer.com 3113 | Page

Final Results

RTL Top Level Output File Name : kogge-stone adder.ngr

Top Level Output File Name : kogge-tone adder

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics

IOs : 50

Cell Usage:

BELS : 41

GND : 01

LUT3 : 27

LUT4 : 9

IO Buffers : 50

IBUF : 33

OBUF : 17

Timing constraints

Delay: 20.262ns (Levels of Logic = 17)

Source: b<1> (PAD)

Destination: Sum<14> (PAD)

Data Path: b<1> to Sum<14>

Cell: in-

>out

Fan

out

Gate

delay

Net

delay

Logic name(Net Name)

 IBUF:I-

>O

4 1.106 0.651 b_1_IBUF (b_1_IBUF)

LUT4:I0-

>O

1 0.612 0.000 GC2/G1_SW01

(GC2/G1_SW0)

MUXF5:I1-

>O

2 0.278 0.410 GC2/G1_SW0_f5

(q<1>)

LUT3:I2-

>O

2 0.612 0.532 GC2/G1 (q<2>)

 LUT3:I0-

>O

2 0.612 0.532 GC6/G_SW0_SW0

(s<3>)

 LUT3:I0-

>O

2 0.612 0.532 GC7/G_SW0_SW0

(s<4>)

 LUT3:I0-

>O

2 0.612 0.532 GC8/G_SW0_SW0

(s<5>)

LUT3:I0-

>O

2 0.612 0.410 GC9/G_SW0_SW0

(s<6>)

 LUT3:I2-

>O

3 0.612 0.603 GC9/G_SW0 (v<7>)

LUT3:I0-

>O

2 0.612 0.410 GC9/G_SW1 (v<8>)

LUT3:I2-

>O

2 0.612 0.410 GC9/G (v<9>)

LUT3:I2-

>O

2 0.612 0.532 GC12/G_SW0 (v<10>)

LUT3:I0-

>O

2 0.612 0.410 GC12/G_SW1

(GC13/G5)

LUT3:I2-

>O

2 0.612 0.410 GC12/G (GC14/G9)

LUT3:I2-

>O

2 0.612 0.410 GC14/G18 (GC13/G34)

LUT3:I2-

>O

1 0.612 0.357 Mxor_sum<14>_Result1

(sum_14_OBUF)

OBUF:I-

>O

 3.169 sum_14_OBUF

(sum<14>)

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3107-3115 ISSN: 2249-6645

www.ijmer.com 3114 | Page

 Final Results
 RTL Top Level Output File Name: sparse kogge-stone

Adder.ngr

Top Level Output File Name : sparse kogge

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics

IOs : 65

Cell Usage:

BELS : 54

LUT2 : 02

LUT3 : 30

LUT4 :19

 # MUXF5 :03

IO Buffers : 65

IBUF : 33

OBUF : 32

Timing constraints

Delay: 15.916ns (Levels of Logic = 13)

Source: a<6> (PAD)

Destination: C<6>t (PAD)

Data Path: a<6> to C<16>

Cell:

in_>out

Fan

out

Gate

delay

Net

delay

Logic

Name(Net

Name)

 IBUF:I-

>O

4 1.106 0.651 a_6_IBUF

(a_6_IBUF)

LUT4:I0-

>O

2 0.612 0.449 BC8/G18

(BC8/G18)

LUT4:I1-

>O

1 0.612 0.000 BC8/G461

(BC8/G461)

MUXF5:I1-

>O

3 0.278 0.603 BC8/G46_f5

(BC8/G46)

LUT4:I0-

>O

1 0.612 0.387 GC3/C13

(GC3/C13)

LUT3:I2-

>O

1 0.612 0.360 GC3/C21

(GC3/C21)

LUT4:I3-

>O

1 0.612 0.426 GC3/C46

(GC3/C46)

LUT4:I1-

>O

2 0.612 0.449 GC3/C77

(GC3/C77)

LUT3:I1-

>O

3 0.612 0.520 FA13/cout1

(C_13_OBUF)

LUT3:I1-

>O

3 0.612 0.520 FA14/cout1

(C_14_OBUF)

LUT3:I1-

>O

3 0.612 0.520 FA15/cout1

(C_15_OBUF)

LUT3:I1-

>O

1 0.612 0.357 FA16/cout1

(C_16_OBUF)

OBUF:I-

>O

 3.169 C_16_OBUF

(C<16>)

VII. IMPLEMENTATION AND RESULTS
The proposed design is functionally verified and the results are verified. The timing report was obtained. The Simulation

Verified in Modelsim and Synthesis was verified in Xilinx.

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3107-3115 ISSN: 2249-6645

www.ijmer.com 3115 | Page

N

Delay

tʀ ϲ ᴀ

Delay

tᴋ ѕ

Delay

tѕᴋ ѕ

16 21.690ns 20.262ns 15.916ns

VIII. CONCLUSION
In this paper An improved optimization techniques for parallel prefix adder has been proposed and implemented.

The design of the proposed prefix adders is done using Ripple carry adder and Kogge-stone adder, Sparse kogge tone adder

and panning tree adder. speed of parallel prefix adder is increased compared to the Ripple carry adder. The functional

verification of the proposed design of the An improved optimization techniques for parallel prefix adder is performed

through simulations using the Verilog HDL flow in ModelSim for prefix adders and Synthesis done using Xilixn.The design

of An improved optimization technique for parallel prefix adder has been performed. The proposed design of An improved

optimization techniques for parallel prefix adder can perform ripple carry adder,kogge stone adder,spare kogge

adder,spanning tree adder ,parallel adder give the better result compared to the ripple carry adder.

REFERENCES
[1] N. H. E. Weste and D. Harris, CMOS VLSI Design, 4th edition, Pearson –Addison-Wesley, 2011.

[2] R. P. Brent and H. T. Kung, ―A regular layout for parallel adders,‖ IEEE Trans. Comput., vol. C-31, pp.260-264,

1982.

[3] D. Harris, ―A Taxonomy of Parallel Prefix Networks,‖ in Proc. 37th Asiloma r Conf. Signals Systems and Computers, pp.

2213–7, 2003.

[4] P. M. Kogge and H. S. Stone, ―A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence

Equations,‖ IEEE Trans. on Computers, Vol. C-22, No 8, August 1973.

[5] P. Ndai, S. Lu, D. Somesekhar, and K. Roy, ―Fine Grained Redundancy in Adders,‖ Int. Symp. on Quality Electronic Design,

pp. 317-321, March 2007.

[6] T. Lynch and E. E. Swartzlander, ―A Spanning Tree Carry Lookahead Adder,‖ IEEE Trans. on Computers,vol. 41, no. 8, pp. 931-

939, Aug. 1992.

[7] D. Gizopoulos, M. Psarakis, A. Paschalis, and Y. Zorian, ―Easily Testable Cellular Carry Lookahead Adders,‖ Journal of

Electronic Testing: Theory and Applications 19, 285-298, 2003.

[8] S. Xing and W. W. H. Yu, ―FPGA Adders:Performance Evaluation and Optimal Design,‖ IEEE Design & Test of Computers,

vol. 15, no. 1, pp. 24-29,Jan. 1998.

[9] M. Bečvář and P. Štukjunger, ―Fixed-Point Arithmetic in FPGA,‖ Acta Polytechnica, vol. 45, no. 2, pp. 67-72, 2005.

[10] K. Vitoroulis and A. J. Al-Khalili, ―Performance of Parallel Prefix Adders Implemented with FPGA technology,‖ IEEE Northeast

Workshop on Circuits and Systems, pp. 498-501, Aug. 2007.

