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ABSTRACT: The effect of rotation on the Rayleigh-Bénard convection in a horizontal layer of ferrofluid is investigated 

by using Galerkin weighted residuals method. Linear stability theory based upon normal mode analysis and perturbation 

method is used to find expressions for Rayleigh number for free-free boundary layer of fluid. It is observed that the system is 

more stable in the rotating fluid than non-rotating fluid layer. ‘Principle of exchange of stabilities’ not valid and the 

oscillatory convection is possible only for certain conditions. The effect of rotation and magnetic parameters on the 

stationary convection is investigated analytically. 
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Nomenclature 

a   wave number   

B   magnetic induction 

g  acceleration due to gravity 

H  magnetic field Intensity  

k  thermal conductivity   

K1  pyomagnetic coefficient 

M  magnetization 

M1  buoyancy magnetization 

M3                          magnetic parameter 

N  magnetic thermal Rayleigh number 

n  growth rate of disturbances 

p  pressure (Pa) 

Pr    Prandtl number 

q                       fluid velocity  

R    Rayleigh number 

t  time   

T  temperature  

Ta  average temperature 

TA                             Taylor number 

u, v, w    fluid velocity components  

(X, y, z)   space co-ordinates  
 

Greek symbols 

α  thermal expansion coefficient  

β  uniform temperature gradient 

μo   magnetic permeability 

μ   viscosity  

ρ   density of the fluid

 

  

(ρ c )                heat capacity of  fluid                  

 κ     thermal diffusivity  

Φ'  perturbed magnetic potential 

ω   dimensional frequency  

χ  magnetic susceptibility  

Superscripts 

 '  non dimensional variables 

' '  perturbed quantity 

Subscripts 

0  lower boundary 

1               upper boundary 

H  horizontal plane 

 

 

 

Effect of rotation on the onset of Rayleigh-Bénard 

convection in a layer of Ferrofluid  
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I. INTRODUCTION 
 Ferromagnetic fluid has wide ranges of applications in  instrumentation, lubrication, printing, vacuum technology, 

vibration damping, metals recovery, acoustics and medicine, its commercial usage includes vacuum feed through for 

semiconductor manufacturing in liquid-cooled loudspeakers and computer disk drives etc. Owing the applications of the 

ferrofluid its study is important to the researchers. A detailed account on the stability of ferrofluid has been given by 

Rosensweig (1985) in his monograph. This monograph reviews several applications of heat transfer through ferrofluid. One 

such phenomenon is enhanced convective cooling having a temperature-dependent magnetic moment due to magnetization 

of the fluid. This magnetization, in general, is a function of the magnetic field, temperature, salinity and density of the fluid.

 In our analysis, we assume that the magnetization is aligned with the magnetic field. Convective instability of a 

ferromagnetic fluid for a fluid layer heated from below in the presence of uniform vertical magnetic field has been 

considered by Finlayson (1970). He explained the concept of thermo-mechanical interaction in ferromagnetic fluids. 

 Thermo convective stability of ferromagnetic fluids without considering buoyancy effects has been investigated by 

Lalas and Carmi (1971).  Linear and nonlinear convective instability of a ferromagnetic fluid for a fluid layer heated from 

below under various assumptions is studied by many authors Shliomis (2002), Blennerhassett et.al.(1991), Gupta and Gupta 

(1979), Stiles and Kagan (1990), Sunil et.al. (2005, 2006), Sunil, Mahajan (2008), Venkatasubramanian and Kaloni (1994), 

Zebib (1996), Mahajan (2010). Rotation also play important role in the thermal instability of fluid layer and has applications 

in rotating machineries such as nuclear reactors, petroleum industry  bio mechanics etc. Owing to the various applications 

of ferrofluid an attempt has been made to investigate the thermal instability of a ferromagnetic fluid in the presence of 

rotation in a fluid layer heated from below using Galerkin weighted residuals method.  

 

II. MATHEMATICAL FORMULATION OF THE PROBLEM 
 Consider an infinite, horizontal layer of an electrically non-conducting incompressible ferromagnetic fluid of 

thickness ‘d’, bounded by plane z = 0 and  z = d. Fluid layer is acted upon by gravity force g (0, 0, -g) and a uniform 

magnetic field k̂Hext

0H  acts outside the fluid layer. The layer is heated from below such that a uniform temperature 

gradient 









dz

dT
 is to be maintained. The temperature T at z = 0 taken to be T0 and T1 at z = d, (T0 > T1 as shown in 

Fig.1. 

 
Fig.1 Geometrical configuration of the problem 

 

 The governing equations under Boussinesq approximation for the above model (Finlayson (1970), Resenweig 

(1997), and Mahajan (2010) are: 

0. q ,                                                                                                                                                                                     (1)                                   

    qHMqg
q

00

2

00 2.p
dt

d
 ,                                                               (2)

    TkT.qC
dt

dT
C 2

f0f0    ,                                                                                                                          (3)    

Maxwell’s equations, in magnetostatic limit: 

0. B , 0 H ,    MH  0B .                                                                                                                         (4) 

The magnetization has the relationship 

    a100 TTKHHM
H


H

M .                                                                                    (5) 

The density equation of state is taken as 

  aTT1   .                                                                                                                                                           (6) 

Here ρ, ρ0, q, t, p, μ, μ0, H, B, C0, T, M, K1,  and α are the fluid density, reference density, velocity, time, pressure, dynamic 

viscosity (constant), magnetic permeability, magnetic field, magnetic induction, specific heat at constant pressure, 

temperature, magnetization, thermal conductivity and thermal expansion coefficient, Ta is the average temperature given by, 
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






 


2

TT
T 10

a  
HH , MM and  a00 T,HMM  . The magnetic susceptibility and pyomagnetic coefficient 

are defined by 

aT,HH

M

















  

and 

aT,H

1
T

M
K

















 

respectively. 

 Since the fluid under consideration is confined between two horizontal planes z = 0 and z = d, on these two planes 

certain boundary conditions must be satisfied.  We take case of free-free surface and assume the temperature and volumetric 

fraction of the nanoparticles are constant and the boundary conditions [Chandrasekhar (1961)] are  

0,zat       TT    0,w 0  and   d.zat       TT    0,w 1                                                               (7)  

 

II.1 Basic Solutions 

The basic state is assumed to be a quiescent state and is given by                                       

    0w,v,uqw,v,uq b 
 , 

 zpp b
 ,

  ab TzzTT 
,

 

 
k̂

1

TTK
HH ab1

b 











 

,      

 
k̂

1

TTK
MM ab2

b 











   , extHMH   .                                                                                                   (8)                          

 

II.2   The Perturbation Equations 

We shall analyze the stability of the basic state by introducing the following perturbations: 

qqq b
 ,   pzpp b  ,    zTT b  ,   HzHH b     MzMM b

 .                                                 (9)                    

where q′(u,v,w), δp, θ, H′(H'1,H'2,H'3) and M′(M'1,M'2,M'3)  are perturbations in velocity, pressure, temperature, magnetic 

field and magnetization. These perturbations are assumed to be small and then the linearized perturbation equations are  

0. q ,                                                                                                                                                                                  (10) 

    






















 qq

q
01

11
0

2 2k̂Kk̂
z

1
1

K
k̂gp

t


 ,                                          (11) 

w
t

2 



,                                                                                                                                                         (12) 

z
K

zH

M

H

M
1 12

1

2

0

0

1

2

0

0






























  .                                                                                                                                                                            (13) 

  Where   and   1H  is the perturbed magnetic potential and 
 

f00cρ

k
κ   is thermal diffusivity of the fluid.  

And boundary conditions are  

0zat       0D ,TT    0,w 0  and   d.zat      0D ,TT    0,w 1                                       (14)  

We introduce non-dimensional variables as  

,
d

z,y,x
)z,y,x( 







 
 ,

d


 qq ,t

d

κ
t

2
 ,p

κ

d
p

2




 ,
d




 
12

1

1
dK

1





  . 

There after dropping the dashes ( '' ) for simplicity. 

Equations (10) - (14), in non dimensional form can be written as  

0. q ,                                                                                                                                                                                   (15) 

   
yxA

1
11

2 ueveTk̂
z

RMk̂M1Rp
tPr

1










q

q
,                                                              (16) 

w
t

2 


 ,                                                                                                                                                                (17) 

 
zz

1MM
2

1

2

31

2

3








 .                                                                                                                                        (18)

 
Where non-dimensional parameters are: 
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ρκ

μ
P r 

is Prandtl number; 
μκ

dgαρ
R

4

0 


 is Rayleigh number; 
 

   
1g

K
M 

0

2

10

1





measure the ratio of magnetic 

to gravitational forces, 
2

2

A

d2
T 












 is the Taylor number,

  
  

1μκ

dK
RMN 

422

10

1



 is magnetic thermal Rayleigh 

number; 
 

  
1

H

M
1

M 
0

0

3














 measure the departure of linearity in the magnetic equation of state and values from one 

 00 HM  higher values are possible for the usual equation of state. 

The dimensionless boundary conditions are 

0zat      0D1,T    0,w  and 1zat      0D 0,T    0,w  .                                                   (19) 

Eliminating p from equation (16) we get 

  0
z

TDRMM1Rw
tPr

1
A1

2

H1

2

H1

22 
















 ,                                                                      (20) 

and  

z

w
T

tPr

1
A

2

















 . 

                                    

                                                                                                      (21) 

Where stands for z- component of the vorticity ,2

H  is two-dimensional Laplacian operator on horizontal plane.

   Eliminating   from equations (20) and (21), we get 

 

  .0D
tPr

1
RM

tPr

1
M1RwDTw

tPr

1
1

22

H1

22

H1

2

A

2

2
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






































               

 (22) 

 

III.   NORMAL MODE ANALYSIS 
 Analyzing the disturbances of normal modes and assume that the perturbation quantities are of the form  

     ntyikxikexpΦ(z)Θ(z),W(z),φ,w, yx1  ,                                                                                                                 (23) 

 
where, kx, ky are wave numbers in x- and y- direction and n is growth rate of disturbances.  

Using equation (21), equations (20) and (17) - (18) becomes            

    0,DΦ
Pr

n
aDRMaΘ

Pr

n
aDM1RaWDTaD

Pr

n
aD 22

1

222

1

22

A

22

2

22 








































                              (24) 

  0,ΘnaDW 22                                                                                                (25) 

  0MaDD 3

22  .                                                                                                                                                (26) 

where 
dz

d
D    and a

2 
=  k

2
x+ k

2
y is dimensionless the resultant wave number. 

The boundary conditions of the problem in view of normal mode analysis are 

0,1zat       0D   ,0  0,WD 0,W 2 
 
.
                                                                                                                    

(27) 

 

IV.  METHOD OF SOLUTION 
 The Galerkin weighted residuals method is used to obtain an approximate solute on to the system of equations (24) 

– (26) with the corresponding boundary conditions (27). In this method, the test functions are the same as the base (trial) 

functions. Accordingly W, Θ and Φ are taken as 





n

1p

pp

n

1p

pp

n

1p

pp DCDΦ,B ,WAW .                                                                                                  (28)  

Where Ap, Bp and Cp are unknown coefficients, p =1, 2, 3...N and the base functions Wp, Θp and DΦp are assumed in the 

following form for free-free boundaries are: 

, z pπosCDΦ z,  πposCΘ , z  pπosCW ppp 
                                                                                              (29) 

Such that Wp, Θp and Φp  satisfy  the corresponding boundary conditions. Using expression for W, Θ and DΦ in equations 

(24) – (26) and multiplying first equation by Wp second equation by Θp and third by DΦp and integrating in the limits from 

zero to unity, we obtain a set of 3N linear homogeneous equations in 3N unknown Ap, Bp and Cp;  p =1,2,3,...N. For existing 
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of non trivial solution, the vanishing of the determinant of coefficients produces the characteristics equation of the system in 

term of Rayleigh number R. 

 

V.   LINEAR STABILITY ANALYSIS 
 We confined our analysis to the one term Galerkin approximation; for one term Galerkin approximation, we take 

N=1, we get the expression for Rayleigh number R as: 

  

  





















Pr

n
aMMaMaa

T
Pr

n
aaMa

R
22

31

2

3

222

2

A

2

2222

3

22

.                                                                                                   (30) 

For neutral stability, the real part of n is zero. Hence we put n = iω, in equation (30), where ω is real and is dimensionless 

frequency, we get 

  

  






 









 



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i
aMMaMaa

T
Pr

i
aaMa

R
22

31

2

3

222

2

A

2

2222

3

22

.

 

                                                                                                  (31) 

Equating real and imaginary parts of equation (31), we get 

  
 

  













Pr

J2

Pr

J
Ta

Ma

aMMaMaRa 2

2

2
22

A

422

3

22

22

31

2

3

222

,                                                    (32)                                                                                                      

and  

 
 

   
0

PrPr

a2
a

MaPr

MMaMaRa
2

2222
222

3

22

31

2

3

222




























 



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


 .                                                            (33) 

From equation (36) it follows that ω is real it is necessary that 

  
 

  2

A

422

3

22

22

31

2

3

222

Ta
Ma

aMMaMaRa





.                                                                                       (34) 

 Hence equation (32) gives the oscillatory stability provided that inequalities (34) hold. 

 

(a) Stationary  Convection                 
Consider the case of stationary convection i.e., ω = 0, from equation (30), we have 

  
 31

2

3

222

2

A

322

3

22

MMaMaa

TaMa
R




 .                                                                                                                               (35) 

From equation (35) we have  

,0
T

R

A





0

M

R

3





 and 0

M

R

1





. 

Thus rotation has stabilizing effect while magnetization parameters have destabilizing effect on fluid layer. 

In the absence of rotation TA=0, the Rayleigh number R for steady onset is given by  

  
 31

2

3

222

322

3

22

MMaMaa

aMa
R




 . 

This is the good agreement of the result as obtained by Finlayson (1970). 

In the absence of rotation TA=0 and magnetic parameters M1=M3=0, the Rayleigh number R for steady onset is given by  

 
2

322

a

a
R


 .                                                 

Consequently critical Rayleigh number is given by
4

27
Rc

2
 .  

This is exactly the same the result as obtained by Chandrasekhar (1961) in the classical Bénard problem.
 
     

 

VI.  CONCLUSIONS 
 A linear stability analysis of thermal instability for ferrofluid in the presence of rotation is investigated for free-

free boundary layer.  Galerkin-type weighted residuals method is used for the stability analysis. The behavior of rotation 

and magnetization on the onset of convection analyzed.  
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The main conclusions are as follows:  

a. Rotation stabilizes the fluid layer while magnetization parameters destabilize the fluid in case of stationary 

convection. 

b. The ‘principle of exchange of stabilities’ is not valid for the problem. 

c. The oscillatory convection is possible if 

  
 

  2
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. 
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