
International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 3, Issue. 1, Jan.-Feb. 2013 pp-12-18 ISSN: 2249-6645

www.ijmer.com 12 | Page

Gaurav Chandil
1
, Priyanka Mishra

2

1, 2(Department of Electronics and Communication Engineering, United Group of Institutions, Allahabad, India)

ABSTRACT: HDLC controller megacell is a high performance module for the bit oriented, switched, non-switched packet

transmission module. The controller fulfills the specifications according to ITU q.921, X.25 level 2 recommendations. It

supports half duplex and full duplex communication lines, point-to-point and multipoint channels. Furthermore, the

controller is designed to permit synchronous, code transparent data transmission. The control information is always in the
same position and specific bit patterns used for control differ dramatically from those representing data that reduces the

chances of errors. The data stream and transmission rate is controlled by the network node. In this paper, we have designed,

simulated and implemented HDLC controller .This design is coded in a hardware description language (VHDL). The

function of coded design is to simulate on simulation software (e.g. modelsim). After simulation, the design is synthesized

and translated into a structural architecture, in terms of the components on the target FPGA device (Spartan 3) and perform

the post-translate simulation in order to ensure the proper functioning of the design after translation. After the successful

simulation of the post-translate model, the design is mapped to the existing slices of the FPGA and the post-map model

simulated. The post-map model does not include the routing delays. The objective of this paper is to run the programmed

FPGA at frequency i.e. it Operates up to 155.52 Mbits/s data rates.In this paper, we implemented the various HDLC

controllers for 16-bit address, 8 bit data and 16 bit CRC Check, simulation result for final output at the receiver end for 8-

bit data16-bit address and 16-bit CRC, with bit stuffing and removal of error in HDLC.

Keywords: High Level Data Link Control (HDLC) Controller, Frame Check Sequence (FCS), Cyclic Redundancy Check
(CRC), Synchronous Data Link Control (SDLC).

I. INTRODUCTION
 HDLC (High-level Data Link Control) is a group of protocols for transmitting synchronous data packets between

point to point nodes. In this controller, data is organized into frames. HDLC protocol resides with Layer 2 of the OSI model ,

the data link layer. It make use of zero insertion/deletion process (bit stuffing) to ensure that the bit pattern of the delimiter

flag does not occur in the fields between flags. The HDLC frame is synchronous and therefore relies on the physical layer to
provide method of clocking and synchronizing the transmission and reception of frames paper.

 HDLC controller is one of the most important data link control protocols which are widely used for high

performance. It is the basis for many other important data link control protocols, such as LAPB, LAPD and PPP, which use

the same or similar formats and the same mechanisms employed in HDLC[2] (William Stallings, 2007). Some key

applications of this protocol include frame relay switches, error correction in modems, packet data switches and data link

controllers [3] (Amit Dhir, 2000).

 For high speed hardware implementation of new technologies and innovative thoughts in order to check their
validity and possible advantage is possible by using modern field programmable gates such as the digital FPGAs and the

analog FPAAs. Many researchers have attempted to improve existing designs of various types of data processors using

FPGA implementation. The HDLC controller presented in this paper offers high frequency. The signals of our controllers are

compatible with ITU q.921.X.25 level 2 recommendation. It supports point to point, multipoint and half and full duplex

communication channels. HDLC controller is designed to permit both synchronous and code transparent data transmission

this control information reduces the possibility of errors. In this paper, we have designed, simulated and implemented HDLC

controller .This presented design is coded in a hardware description language (VHDL).the design is then synthesized and
translated into a structural architecture, in terms of the components on the target FPGA device (Spartan 3) and perform the

post-translate simulation in order to ensure the proper functioning of the design after translation. After the post-translate

model simulation ,the design is mapped to the existing slices of the FPGA and the post-map model simulated.We

implemented the various HDLC controllers for 16-bit address, 8 bit data and 16 bit CRC Check, simulation result for final

output at the receiver end for 8-bit data16-bit address and 16-bit CRC ,with bit stuffing and removal of error in HDLC.The

main objective of this paper is to run the programmed FPGA at available resources of the target technology efficiently with

high. Our design is flexible, so it is easily modifiable and also it is possible to integrate it with other systems.

 The remainder of this paper is organized as follows: section II describes briefly HDLC frame format. Section III

discusses the system of implemented HDLC controller. Implementation of system on Virtex target is described in section IV.

A comparison of the proposed HDLC controller with some well-known HDLC controllers is presented in section V.

II. SYSTEM MODEL FOR HDLC PROTOCOL
 The CDAC HDLC Protocol Core is a high performance module for the bit oriented packet transmission mode. It is

suitable for Frame- Relay; X.25, ISDN B-Channel and D-channel. The core fulfills the specification According to ITU

Q.921, X.25 Level 2 recommendation. The data interface is 8 bit wide synchronous and is suitable for interfacing to transmit

and receive FIFOs.An example of an HDLC frame structure is shown below, for an 8-bit address field with an interframe fill

Design and Implementation of HDLC Controller by Using

Crc-16

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 3, Issue. 1, Jan.-Feb. 2013 pp-12-18 ISSN: 2249-6645

www.ijmer.com 13 | Page

pattern of back-to-back flags. This figure does not include bits inserted for transparency. The fields are transmitted in order

from left to right, least significant bit first.

Fig.1.HDLC frame format

 Transparency is performed by the core on all bits between and including the address and the FCS. This operation

involves inserting a zero after any sequence of 5 consecutive ones in the transmitted data stream (including the last five bits
of the FCS). The receiver core detects and removes these inserted zero bits. At any time, the transmission of a frame can be

aborted by sending the Abort flag, which are 01111111. An aborted frame will be marked as such by the receiver core.

Additionally the channel can be set to an inactive or "Idle" state, where a continuous sequence of one bits is transmitted.

 Each frame begins and ends with a Flag Sequence, which is the binary sequence 01111110 (hexadecimal 0x7e). All

implementations continuously check for this flag, which is used for frame synchronization. Only one Flag Sequence is

required between two frames. Two consecutive Flag Sequences constitute an empty frame, which is silently discarded, and

not counted as a FCS error. The Address field is of programmable size, a single octet or a pair of octets. The field can

contains the value programmed into the Transmit Address Register at the time the frame is started. This can be any arbitrary

address, or the broadcast or "All-Stations" address, which are all ones. The receiver core matches the received address field

against the value currently held in the Receive Address Register, or, if programmed to, the broadcast address. Frames with

unrecognized addresses are silently discarded. The data field may contain any number of bits. There is no limit within the

core to the maximum size of the data field. Data octets are reassembled by the core and presented to the host interface with a
suitable byte strobe. Any extra bits in the last received octet which do not correspond to receive data bits are undefined. The

Frame Check Sequence field is programmable to either 16 bits (two octets), or 32 bits (four octets). The FCS is transmitted

least significant octet first, which contains the coefficient of the highest term in the generated check polynomial. The FCS

field is calculated over all bits of the Address, Control, and data fields, not including any bits inserted for transparency. This

also does not include the Flag Sequences nor the FCS field itself. The data stream presented to the host can be configured to

either include the address field, or have it removed. FCS octets are always removed from the stream to the host. Higher-level

protocols such as LAPD, LAPF or PPP will define values for sub fields within the data field. The end of the data field is

found by locating the closing Flag Sequence and removing the Frame Check Sequence field. Frames where the received FCS

and calculated FCS indicate that the data has been corrupted during transmission will be marked by the core at the time that

the end of the frame is signaled to the host. To guarantee that a flag does not appear inadvertently anywhere else in the

frame, HDLC uses a process called bit stuffing. Every time the user wants to send a bit sequence having more than 5
consecutive 1s, it inserts (stuffs) one redundant 0after the fifth 1. For example, the sequence 01111111111000 becomes

011111101111000. This extra zero is inserted regardless of whether the sixth bit is another one or not. Its presence tells the

receiver that the current sequence is not a flag. Once the receiver has seen the stuffed 0, it is dropped from the data and the

original stream is restored.

III. DESIGN AND IMLEMENTATION OF HDLC CONTROLLER
 Figure 3.2 shows the basic operation of HDLC controller. The Transmit Data Interface provides a byte wide

interface between the transmission host and the HDLC Protocol core. Transmit data is loaded into the core on the rising edge

of clk when the write strobe input asserted. The start and end bytes of a transmitted HDLC frame are indicated by asserting
the appropriate signals with the same timing as the data bytes. The HDLC cores, on receipt of the first byte of a new packet,

generate the appropriate flag sequence and transmit the frame data calculating the FCS. When the last byte of the frame is

seen, the FCS is transmitted along the closing flag. Extra zeroes are inserted into the Bit stream to avoid transmission of the

control flag sequence within the frame data. The transmit data is available on the TxD pin with appropriate setup to be

sampled by clk. If TxEN is reasserted, the transmit pipeline is stalled, and the TxD pin is tristated. A transmit control register

is provided which can enable or disable the channel, select transparent mode where the HDLC protocol is disabled, and

specify the HDLC core action on transmit FIFO under runs. In addition, it is possible to force the transmission of the HDLC

Abort sequence. This will cause the currently transmitted frame to be discarded. The transmit core can be configured to

automatically restart after an abort, with the next frame, or to remain stilled until the host microprocessor cleared the abort or

transmit FIFO under run condition. The various blocks of the transmitter section are-

•Transmit register-It is an 8 bit long register that contains the data to be transmitted.
•Address insertion block- This block contains the address of the destination, which can be either of 8 bits or 16 bits.

•FCS generation block- FCS is performed for detecting errors in the received data by grouping the bytes of data into a block

and calculating a Cyclic Redundancy Check (CRC).

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 3, Issue. 1, Jan.-Feb. 2013 pp-12-18 ISSN: 2249-6645

www.ijmer.com 14 | Page

Fig.3.2. Basic block diagram of HDLC Controller

 The CRC is calculated by performing a modulo 2 division of the data by a generator polynomial and recording the

remainder after division as shown in figure 3.3. A string of 0s is appended to the data unit. The number n is less than the

number of data of bits in the predetermined divisor, which is n+ 1 bit. CRC replaces n 0 bits derived in step 2 at the end of
data unit. Data unit arrives at the receiver data first, followed by CRC. The receiver treats the whole string as a data unit and

divides by the same divisor. If remainder comes out to be 0 the string is error free. The newly elongated is divided is divided

by the divisor. The remainder is the CRC. Three polynomials are in common use they are:

CRC-16 = x16 + x15 + x2+ 1 (used in HDLC).

CRC-CCITT = x16 + x12 + x5 + 1 (used in Ethernet).

 Although this division may be performed in software, it is basically performed using a shift register and X-OR

gates. The hardware solution for implementing a CRC is much simpler than a software approach.

Fig.3.3. Modular division

 An example for a CRC-16 is illustrated in figure3.4.Basic Encoder/Decoder for a 16-bit CRC is shown with change

in polynomial to a divisor of size N+1 followed by shift register of size N these registers are aligned with the divisor so that

the cells are located between the bits.XOR gate are situated where there is a 1 in the divisor except for the leftmost bit.

Eventually, a feedback connection is made from the leftmost bit to the XORs.

 Protocols at the network layer and higher (e.g. IP, UDP, TCP) usually the processing has not corrupted use a

simpler checksum to verify that the data being transported performed by the nodes in the network.

Fig.3.4 Basic block diagram of CRC16

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 3, Issue. 1, Jan.-Feb. 2013 pp-12-18 ISSN: 2249-6645

www.ijmer.com 15 | Page

• Zero insertion block- A bit sequence having more than 5 consecutive 1s, this block inserts (stuffs) one redundant 0after

the fifth 1.

• Flag generation block- To inform the receiving station that a new packet is arriving; a specific bit pattern 01111110 is

affixed in the beginning.
• Transmit control register- This register controls the flow of data from transmitter to receiver.

 Receiver section-The HDLC protocol core receiver accepts a bit stream. The flag detection block searches the bit

stream for the flag sequence in order to determine the frame boundaries. Any stuffed zeroes are detected and removed by the

zero deletion blocks and the FCS is calculated and checked by the FCS-16 or FCS-32 block depending on the control register

word. The bit stream is accepted on port RxD. The data is latched on the rising edge of clk under the control of the enable

input RxEN. The flag detection block stream for the flag sequence in order to determine the frame boundaries. Any stuffed

zeroes are detected and removed and the FCS is calculated and checked. Frame data is placed on the receiver data interface

and made available to the host. In addition, flag information is passed over indicating the start and end bytes of the HDLC

frame as well as showing any error condition which may have been detected during receipt of the frame.

 The receiver can be configured into transparent mode, effectively disabling the HDLC protocol functions. In normal

HDLC protocol made, all received frames are presented to the host on the output register[6]. A status register is provided

which can be used to monitor the status of the receiver channel, and indicates if the packet currently being received includes
any errors. The various blocks in this section are:

• Flag detection block- It checks for the incoming flag.

• Zero deletion block- This block deletes the stuffed zeroes which were introduced during transmission.

• FCS calculator- Calculate the FCS and if the remainder comes out be zero that represents error free transmission.

 This block performs the reverse function of the FCS generator. The whole packet is again divided by the same

polynomial that was used at the transmitter end i.e.

CRC-16 = x16 + x15 + x2+ 1

CRC-32 = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

Fig.3.5 Basic block diagram of CRC16

 If after the packet with the polynomial the remainder comes out to be zero that means the transmission and

reception are error free and in case the remainder is not zero that means an error has occurred during the process and hence

the packet is discarded and the whole packet is retransmitted.

1. Data unit arrives at the receiver data first, followed by CRC. The receiver treats the whole string as a data unit and divides

by the same divisor.

2. If remainder comes out to be 0 the string is error free and is accepted but if the remainder comes out to be other than 0, it

is assumed that it contains an error and the whole frame is discarded and is retransmitted.

• Address detector- It detects the address and matched with the address of the destination.

• Receive register- It contains the original 8 bit data sent by the receiver.

IV. SIMULATION RESULTS
The design and implementation of the HDLC Controller, the results obtained are as follows:

VHDL CODE FOR HDLC Controller

Title:HDLC components package for HDLC controller

File:hdlc_components_pkg.vhd

Simulators:Modelsim 5.3XE/Windows98

Dependency: ieee.std_logic_1164

--------- CODE FOR CRC-16 GENERATION ------------

Library IEEE;
Use IEEE.STD_LOGIC_1164.ALL;

Use IEEE.STD_LOGIC_ARITH.ALL;

Use IEEE.STD_LOGIC_UNSIGNED.ALL;

Uncomment the following library declaration if instantiating any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 3, Issue. 1, Jan.-Feb. 2013 pp-12-18 ISSN: 2249-6645

www.ijmer.com 16 | Page

entity hdlc is

port (clk,reset,wrtxaddrhi,wrtxaddrlo,wrtxctrl:in std_logic;

datain:in std_logic_vector(7 downto 0);

txaddressout:out std_logic_vector(15 downto 0);
txd:out std_logic;

txaddressin1,txaddressin2,txctrlreg:instd_logic_vector(7 downto 0));

end hdlc;

.----------CRC 16 generation------------

a2:process(clk,done,crcappreg)

variable count:std_logic_vector(5 downto 0):="000000";

begin

-------CRC 16 for 16 bit address-------

if(ctrlreg(4)='0')then

 if(ctrlreg(3)='1')then

.

.
count:=count+"000001";

count15<=count;

crc(0)<=s1;

.

.

crc(15)<=s3;

.

.

end if;

else

if(clk'event and clk='0')then
.

.

count16<=count;

crc(0)<=s1;

.

.

crc(15)<=s3;

.

.

end if;

end if;

if(ctrlreg(3)='1') then
.

.

end if;

else

if(count="100010")then

.

.

end if;

end process a2;

 SIMULATION RESULT FOR 16-BIT ADDRESS,8-BIT DATA AND 16-BIT CRC CHECK: For the
data<=00110011 and 16bitaddress i.e. txaddressinlo<=11110000, txaddressinhi<=11110000, we make clock=1,reset=0,

wrtaddresshi=1 and wrtaddresslo=1. After the address and the data are attached together, we divide them with a constant

polynomial of 16 bits and append the remainder of the division along the data and address.The simulation result for the

generation of CRC 1 is illustrated in figure.3.6.

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 3, Issue. 1, Jan.-Feb. 2013 pp-12-18 ISSN: 2249-6645

www.ijmer.com 17 | Page

Fig.3.6: Simulation result for crc-16 of 16-bit address and 8 bit data

 SIMULATION RESULT OF THE FINAL OUTPUT AT THE RECEIVER END FOR 8-BIT DATA,16-BIT

ADDRESS AND 16 BIT CRC:The highlighted simulation results shown in figure 3.7 shows the result of the CRC check at

the O/P which is CRC2<=000000000000000 which indicates an error free transmission.The resultant address, data at the O/P
which is same as that of transmitter is Rxdatout<=00001110 , rxaddressout<=1111000011110000.

Fig.3.7: Simulation result for O/P at the receiver for 16 bit address and 8 bit data

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 3, Issue. 1, Jan.-Feb. 2013 pp-12-18 ISSN: 2249-6645

www.ijmer.com 18 | Page

V. CONCLUSION

 In this paper, we have studied and simulated the HDLC Controller of 16-bit address for 8-bit data. It can
automatically check the frame sequence generation by every time the user want to send a bit sequence using cyclic

redundancy check CRC-16 to provide error free transmission of data.The simulation result of Post Synthesis is an Optimized
Gate Level net list form which a net list code is extracted and it is simulated using Simulator and it is verified that design is

working efficiently. In this paper,we studied and implemented the HDLC and CRC Calculation. The aim of this paper is to

run the programmed FPGA at frequency i.e. in our simulation result,with single +5 V power supply, it performs up to

155.52 Mbits/s data rates.furthermore,we implemented the various HDLC controllers for 16-bit address, 8 bit data and 16 bit

CRC Check, simulation result for final output at the receiver end for 8-bit data16-bit address and 16-bit CRC ,with bit

stuffing and removal of error in HDLC.it is capable of working in different modes:Normal response mode,asynchronous

response mode and asynchronous balanced mode.HDLC controller desgn supports full Duplex and half duplex mode of

operations.It is CCITT X.25 compatible, which is a protocol at the physical layer.An Automation Frame Check Sequence

(CRC) generation at the transmitter end and it is capable of checking the receiver end for reliable and error free

transmission.Also flexible with minimum CPU Overhead as it supports a comprehensive frame Level instruction set.It is

Fully Compatible with TTL ICs.

REFERENCES
[1] Gaurav Chandil;Priyanka Mishra;”Study and performance evaluation of Xilinx HDLC Controller and FCS Calculator”,vol.2,issue

10 (October 2012),PP 41-50.
[2] William Stallings, 2007. Data and Computer Communications, Eight edition, Prentice Hall, pp: 222.
[3] Amit Dhir, 2000. “HDLC Controller Solutions with Spartan-II FPGAs,” Xilinx Inc.

[4] M.A.; Barbetta, L.; Neri, F.; “A Petri net simulation model of HDLC Marsan”,TENCON '89. Fourth IEEE Region 10 International
Conference 22-24 Nov. 1989Page(s):240–247Digital Object Identifier 0.1109/TENCON.1989.176933.

[5] Davis, G.T.; Mandalia, B.D. “Modified byte insertion/deletion for HDLC in ISDN”;Southeastcon '89. Proceedings 'Energy and
Information Technologies in the Southeast’. IEEE 9-12 April 1989 Page(s):1207 - 1210 vol.3 Digital Object Identifier
10.1109/SECON.1989.132614.

[6] “FPGA implementation of a single-channel HDLC Layer-2 protocol transmitter using VHDL”,Qasim, S.M.; Abbasi, S.A.;
Microelectronics, 2003. ICM 2003. Proceedings of the 15th International Conference on 9-11.

[7] Lu, Y., Z. Wang, L. Qiao and B. Huanq, 2002. "Design and implementation of multi-channel high speed HDLC data processor,"

IEEE International Conference on Communications, Circuits and Systems, and West Sino Expositions, 2: 1471-1475.
[8] Latombe, J. (1996). Robot Motion Planning. Kluwer Academic Publishers, UK.
[9] Jun Wang; Wenhao Zhang; Yuxi Zhang; Wei Wu; Weiguang Chang; Sch. of Electron. & Inf. Eng., Beihang Univ. (BUAA), Beijing,

China “Design and implementation of HDLC procedure based on FPGA” , Anti- ounterfeiting, Security, and Identification in
Communication, 2009. ASID 2009. 3rd International Conference, 20-22 Aug.2009.

[10] Guozheng Li Nanlin Tan State Key Lab. of Rail Traffic Control & Safety, Beijing Jiaotong Univ.,Beijing, China “Design and
Implementation of HDLC Protocol and Manchester Encoding Based on FPGA in Train Communication Network”, Information and
Computing (ICIC), 2010 Third International Conference.

[11] Allaire, F.C.J., M. Tarbouchi, G. Labonte and G. Fusina, 2009. "FPGA implementation of genetic algorithm for UAV real-time path
planning," Journal of Intelligent and Robotic Systems: Theory and Applications, 54(1-3): 495-510.

[12] Chen, H. and Y.Q. Han, 2003. "ASIC design of high-speed low-power HDLC controller," Journal of Beijing Institute of Technology
(English Edition), 12(SUPPL.): 66-69.

[13] Gao, Zhen-bin and Jian-Fei Liu, 2005. "FPGA implementation of a multi-channel HDLC protocol transceiver", In Proceedings of
the 2005 International Conference on Communications, Circuits and Systems,2: 1300-1302.

