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Abstract: In a linear motion of a system of two cable connected satellites, one stable equilibrium point exists when 
perturbative forces like solar radiation pressure, shadow of the earth, oblateness of the earth, air resistence and earth’s 

magnetic force act simultaneously. Many research workers obtained the stable point in case of any one of above mentioned 

perturbative forces. We have obtained one stable point of equilibrium in case of perturbative forces like the shadow of the 

earth due to solar pressure and air resistance acting together on the motion of two cable-connected satellites. Liapunov’s 

theorem has been exploited to test the stability of the equilibrium point. 

 

I. Introduction 
 The present paper is concerned with the stability of the equilibrium point of the centre of mass of the system of two 

satellites connected by a light, flexible and extensible cable under the influence of the shadow of the earth due to solar 

pressure and air resistance in case of circular orbit. Beletsky; V.V. is the pioneer worker in this field. This paper is an attempt 

towards generalization of work done by him. 

 

II. Equations of motion 
 The equations of motion of one of the two satellites moving along keplerian elliptic orbit in Nechvill’s coordinates 

may be obtained by using Lagramje’s equations of motion of first kind in the form: 

 

 

 














































z
r

Azz

y
r

vAfxy

x
r

vAfxyx

0

1

0

.1

32

03

1

1sin"

1sincos'2"

1coscos'3'2"



















         --------    (1) 

Where  

  
222;

cos1

1
zyxr

ve



  

           V= True anomaly of the centre of mass of the system. 
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Here dashes denotes differentiations with respect to true anomaly v 

The condition of constraint is given by  

  
2

2

0222




 zyx                           ---------------     (2) 

For circular orbit of the centre of mass of the system, we must have e=0 and so 
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Putting =1 and ’=0 in (1), we get the equations of motion for two dimensional case 
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Where 
22 yxr   

The condition of constant given by (2) takes the form: 

2

0

22  yx    ------------------- (4) 

We also assume that in case of circular orbit, the true anomaly v for the elliptic orbit will be replaced by  whose value is as 
follows: 

 =0t      -------------------- (5) 

Where 0  is the angular velocity of the centre of mass of the system in case of circular orbit and t is the time. 
Hence (3) can be written as 
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        --------------------   (6) 

When  in (4), the inequality sign holds, then the free motion of the system will take place otherwise the motion will be 

constrained. 

Therefore, we have three types of motion 
(i) Free motion (in case of loose string) 

(ii) Constrained motion (in case of tight string) 

(iii) Evolutional motion (combination of free and constrained motion) 

 

To find the Jacobian integral of the problem, we averaged the periodic terms in (6) as follows: 

   

   























































































sinsincos
sincos2sincos

2

1

sincoscos
coscos2coscos

2

1

10

10

11

11

A
dAdA

and

A
dAdA

---- (7) 

Where  is taken to be constant 
Thus, the equations of motion (6) of the system are being described by using averaged values given by (7) in the form: 
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  ----------------------- (8) 

We find that the equations of motion given by (8) do not contain time t explicitly. Hence, there must exist Jacobi’s integral 

for the problem. 

 Multiplying the first equation of (8) by 2x’ and the second equation of (8) by 2y’ and adding them together and then 
integrating, we get Jacobi’s integral in the form. 
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Where h is the constant of integration 

Equation given by (9) can be written as 
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The curve of zero velocity can be obtained in the form. 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.6, Nov-Dec. 2012 pp-4335-4338             ISSN: 2249-6645 

www.ijmer.com                                                                             4337 | Page 

   022

sinsincos
2

sincoscos
2

3

22

0

22

2





hyxyxfy

AyAxx







         ---------------  (11) 

Hence we conclude that the satellite of mass m1 will move inside the boundaries of different curves of zero velocity 

represented by (11) of (10) for different values of Jacobian constant h. 

 

III. Equilibrium point of the problem 
 We have obtained the system of equations given by (8) for the motion of the system in rotating frame of reference. 

It has been assumed that the system is moving with effective constraints and the connecting level of the two satellites of 

masses m1 and m2 respectively will always remain tight. 

 The equilibrium positions of the system are given by the constant values of the coordinates in the rotating frame of 

reference. 

 Now, let x =x0 and y=y0 give the equilibrium position where x0 and y0 are constants 

Hence, x’=0=x” and y’=0=y” 

Thus, equations given by (8) take the form: 
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 From (12) it follows that it is very difficult to get the solution in its present form. Hence we are compelled to make 

the following assumptions ; =900. Hence the sun rays are assumed to be in the direction perpendicular to the line of the 
perigee of the circular orbit of the centre of mass  of the systems. 

Hence on putting =900 in (12), we get 
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From 13, we get the equilibrium point as 
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It can be easily seen that the equilibrium position given by (14) gives a meaningful value of Hook’s modulus of elasticity if 
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IV. Stability of the system 
 We shall study the stability of equilibrium point given by (14) of the system in the sense of Liapunov. For this,  

Let a = x = 0 and b = y = 










f
A

 0sincos 
 

Let 1 and 2  be the small variations in x0 and y0 respectively. For the given position of equilibrium (o, b) given by (14). 
Hence, we get 
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Hence on putting =900 in equations (8) and using (15), we get 
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Multiplying the first equation and the 2nd equation of (16) by 21’ and 2(b+2)’ respectively and adding these together and 
then integrating, we get Jacobi’s integral in the form: 
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Where h is the constant of integration. 

To test the stability in the sense of Liapunov, we take Jacobi’s integral given by (17) as Liapunov’s function v (1’,2’,1,2)  
and is obtained expanding the terms of (17) as 
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 Where 0 (3) stands for third and higher order terms in 1 and 2  By Liapunov’s theorem on stability, it follows that 
the only criterion for given equilibrium position (0,b) to be stable is that V defined by (18) must be positive definite and for 

this the following three conditions must be satisfied: 
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(ii) and (iii) can be seen to be since 
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Thus, all the above three conditions given in (19) are satisfied. Hence, we conclude that the equilibrium point (0,b) given by 

(14) of the system is stable in the sense of Liapunov. 
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