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Abstract: The present study deals with stress analysis on 

orthotropic graded  rotating annular discs subjected to 

temperature distributions parabolically decreasing with 

radius. I have  used  infinitesimal deformation theory of 

elasticity and for graded parameters power law functions in 

the solution procedure. With the increasing temperature, 

the  tangential stress  component decreased  at  the  inner  

surface whereas increased at the outer surface, and the 

radial stress component reduced gradually for all the 

temperature distributions. The magnitude of the tangential 

stress component was higher than ones of the radial stress 

component under the room temperatures for both discs. 

But, the tangential stress component decreased more at the 

inner  surface whereas it increased at the outer surface 

when the temperature increased further. Finally, the radial 

displacement at the outer surface had higher value than  

that of the inner surface with the increasing temperature. 
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I. Introduction 
 Composites are gradually being used as structural 

materials  in  many  aerospace  and  automobile 

applications. The reinforcement in these composites is 

generally distributed uniformly. Functionally graded 

composite materials (FGMs) have been the subject of 

intense researches and attracted considerable attention in 

resent years. FGMs are being used as interfacial zone to 

improve the bonding strength of layered composites, to 

reduce the residual and thermal stresses in bonded 

dissimilar materials and as wear resistant layers in machine 

and engine components (Pindera et al., 1995; Erdoğan, 

1995). One of the advantages of FGMs over laminates is  

that,  due  to  continuous material property variation, there 

is no stress build-up at sharp material boundaries thus 

eliminating potential structural integrity issues such as 

delamination. Analysis of rotating discs is an important 

issue in mechanics and engineering applications.  

 An analytical solution for the stress analysis in the 

isotropic rotating disc or a disc under pressure can be found 

in literature (Timoshenko and Goodier, 1951). Çallioğlu et 

al. (2006) investigated elastic-plastic stress analysis of the 

curvilinearly rotating discs.  

 Sayman (2006) studied elastic-plastic stress 

analysis of a thermoplastic composite disc under uniform 

temperature distribution analytically and using a finite 

element commercial code (ANSYS).  

 Singh and Ray (2002) investigated creep in 

orthotropic aluminum-silicon carbide composite rotating 

disc by using Hill’s anisotropic yield. In that study, the 

results obtained have been compared with the results 

obtained using von Mises yield criterion for the isotropic 

composites. In all of these studies, tangential and radial 

elasticity moduli are constant, that is, the orthotropy degree 

is a constant. Since the mathematical problems arising are 

complicated, much of the work on FGMs has been carried 

out numerically. Nevertheless, the mechanical and 

mathematical modeling of FGMs is currently an active 

research area. 

 Horgan and Chan (1999a, b) investigated the 

stress response   in   rotating   disks   and   pressurized   

hollow cylinder  or  disk  made  of  functionally graded  

isotropic linearly elastic materials. They investigated a 

body with Young’s  modulus  varying  radially  only.   

Horgan  and Baxter (1996) examined the externally 

pressurized hollow FGD, stresses in functionally graded 

discs. 

 Composite materials are implemented where high stress and  low  weight  are  required.  Rotating  disk  has  many applications in industry. Using composite material in rotating disk leads to increase of the specific strength. There have been some studies dealing with 

thermal stresses in the basic structural   components   of   

FGMs.    

Jahed H, Dubey RN   [1]   has presented a modification of 

the Tsai-Wu criterion, needed in the case of the multi-

criterion optimal design of thin-walled composite 

structure and a proposal of the evaluation of the load  

carrying  capacity  of  multi-layered  composites  with 

respect to their failure mode.  

 Jahed H, Sherkatti S., [2] have presented   a   semi-

analytical   three-dimensional   elasticity solution for 

rotating functionally graded disks. Their solution includes 

the responses of both of the hollow and solid disks and is 

a generalization of the two-dimensional plane-stress 

solution.  

 Vivio and Vullo [3,4], have introduced an analytical procedure for evaluation of elastic stresses and strains in rotating conical disks and in non-linear variable thickness rotating disks, either solid or annular, subjected to thermal load,  and  having  a  fictitious  density  

variation  along  the radius.  

Leopold WR [5] has examined the stress analysis on 

orthotropic rotating annular disks subjected to various 

temperature    distributions,    such    as    uniform,    

linearly increasing and decreasing with radius 

temperatures.  

Hosseini Kordkheili    and    Naghdabadi    [6]    have    

presented    a semi-analytical thermoelasticity solution for 

hollow and solid rotating  axisymmetric  disks  made  of  

functionally  graded cylinder (or disk) with radially 

orthotropic material.  

 Durodola and Attia (2000) investigated 

deformation and stresses in functionally graded rotating 

disks. They compared  two  methods,  finite  element  

method (ABAQUS) and direct numerical integration of 

governing differential equations, with each other.  

Zenkour (2007) dealt with a solution for a rotating 

annular disk which is assumed to be graded in the radial 

direction according to a simple exponential-law 

distribution.  

 Chen et al. (2007) presented three-dimensional 
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analytical solution for a rotating disc of functionally 

graded materials with transverse isotropic. A significant 

amount of these studies has been done in order to see the 

effects of the FGMs (variation of the elasticity modulus 

only) on the isotropic discs and cylinders.  

You et al. (2007) investigated stress analysis on the FG 

rotating circular discs under uniform temperature.  

Zhang et al. (2003) provided an exact thermal stress 

solution for a functionally graded plate that has a circular 

hole, with the material properties and applied temperature 

varying arbitrarily in the radial direction.  

 Mohammadi and Dryden (2008) examined the 

role of nonhomogeneous stiffness on the thermoelastic 

stress field. In their contribution, Young’s modulus and 

thermal expansion were considered to change 

symmetrically across the radius representing coatings on 

inner and outer radii of the beam.  

 Çallioğlu (2008) studied the stress analysis of the 

rotating hollow discs made of functionally graded 

materials under internal and external pressures. In that 

study, elasticity modulus and density change in the radial 

direction. In the study it is assumed that the isotropic 

material is of radially varying elasticity modulus E, 

density ρ and thermal expansion coefficient α and 

Poisson’s ratio ν as a constant. 

 Closed-form solutions for stresses and 

displacements in functionally graded annular discs 

rotating at a constant angular  velocity and subjected to  

temperature varying parabolically along the radial 

direction is obtained using the  infinitesimal  theory  of  

elasticity  and  for  functional graded case power-law 

function. 

 

II. THERMAL STRESS ANALYSIS 
Due to the fact that this problem is axisymmetric, the 

equilibrium equation for a rotating thin disc is: 

                                 rdσ  + σr - σθ  + ρ(r)ω
2
r

2
  =  0     (2.1) 

                                   dr 

 

 
Figure 1. a functionally graded rotating disk under parabolic 

temperature distribution  

 

Where,  σr, σ
θ
,  ω  and  ρ(r)  are  respectively, the  radial 

stress, tangential stress, angular velocity and  the radially 

varying material mass density. r is the radial distance, r ≠0 

and a < r <.b. Here a and b are inner and outer radii of disc 

illustrated in Figure 1. The solution can be efficiently 

handled by using a special stress function that automatically 

satisfies the equilibrium in Equation 2.1. The particular 

stress-stress function relation with this property is given by 

 

                σr = F ,  σθ  = dF + ρ(r)ω
2
r

2
                           (2.2) 

                        r             dr 

 

Where, F = F(r) is the stress function. 

The governing equation for the stress function is 

determined from the compatibility statement. For this 

axisymmetric case, the displacement field is of the form  

u= ur = ur(r) and u
θ = 0. Therefore, the strain field is 

given by: 

dr

du
r

 , 
r

u
 , 0r

                             (2.3) 

Where, εr, εθ and u are the strains in radial and tangential 

directions and displacement component in the radial 

direction. Eliminating u from these equations develops 

the simple compatibility statement: 

dr

d
rr

                                               (2.4) 

Using Hooke’s law for plane stress case, the strains 

are given by: 
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Where, E, α and T are respectively, elasticity modulus, 

thermal expansion coefficient and temperature change, and 

it is assumed that the disc is of material properties (E,ρ  

and α) and thermal change (T) varying through the radial 

section. Poisson’s ratio υ   is assumed that a constant due 

to the fact that its variation has much less practical 

significance than that in the other material properties. 

Using this result in the compatibility relation to, 

Equation 2.4 generates the governing equation: 
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The superscript “n” represents derivatives with respect to 

r. Let us assume for the sake of argument that: 
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Where, n
1
, n

2  and n
3  are dimensionless arbitrary 

constants (gradient parameters) and T
0 is the initial 

temperature  at  the  inner  surface  of  the  functionally 

graded disc. The differential Equation 2.6 reduces to: 
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The stress function F can be written as: 

 

F = C1r
((n

1+
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 + C2r
((n
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                                                                                      (2.10 )       
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where m =√( n1
2
 - 4vn1+4), C1 and C2 are the integration 

constant 

 A = -     ρω
2
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As n
1 = n

2 = n
3 = 0 and T

0 = 0, B and C terms are equal to 

zero and, the disc becomes the isotropic rotating disc and the 

stress function F is 

 

F =  C1r +C2  _  3 + v  ρω
2
r

3
                                          (2.11) 

                  r          8 

 

The stress components can be obtained from the stress 

function in  Equation 9 as: 
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(2.13) 

 

 
Figure 2. The normalized elasticity modulus 

distributions  along the radial direction of discs. 

 

Radial displacement component 

Radial    displacement    by    using    the   infinitesimal 

deformation theory of elasticity can be determined as: 
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III. Results and Discussion 

 In this paper, a thermal stress analysis is carried 

out on functionally  graded rotating annular discs by 

using an analytical solution including small 

deformation of theory of elasticity. The results are 

presented for Poisson’s ratio v= 0.3 and angular 

velocity ω =  650 rad / s . The inner and outer radii of 

the discs are a = 300 mm and b = 500 mm,  

respectively.  Mechanical  properties  of  the  discs, 

such   as   elasticity   modulus,   density   and   thermal 

expansion coefficient, and temperature applied are 

assumed to be varying along the radial direction. The 

material coefficients are taken to be elasticity modulus 

E= 150 GPa, density  ρ = 5600 kg/m
3  

and thermal 

expansion  coefficient  α =  23  ×  10
-6    

1/°C,  

gradient parameters n1 = -0.5194, n2 = -0.4873 and 

n3 = 0.55236 for Disc 1 and n
1 = 0.5194, n2 = 0.4873 

and n3 = -0.55236 for Disc 2 (You et al., 2007). 

Temperature change is set to T
0  = 0, 300 and 600°C, 

respectively. If room temperature is considered as 

reference temperature, the room temperature should be 

added to the initial temperature, T
0
. Elasticity modulus, 

density and thermal expansion coefficient variations 

are given as normalized values along the radial 

direction of the discs in order to demonstrate the 

effects of FGMs on the discs. For E, ρ α , the  

following  formal  normalized  variables  are used: 

 Figure 2 illustrates the variations of the normalized 

elasticity modulus E along the radial direction for Discs 1 

and 2. As seen in this figure, the elasticity modulus is equal 

to elasticity modulus of the isotropic, homogeny disc at the 

outer surface. In the inner surface of the disc, elasticity 

modulus value increases gradually for Disc 1 while 

decreases for Disc 2. Figure 3 shows the variations of the 

normalized density ρ along the radial direction for Discs 1 

and 2. As seen from this figure, the density value is equal to 

density of the isotropic, homogeny disc at the outer surface. 

Density value in the inner surface of the disc increases 

gradually for Disc 1 whilst decreases for Disc 2. Figure 4 

depicts the variations of the normalized thermal expansion 

coefficient α along the radial direction for Discs 1 and 2. As 

seen from this figure, the thermal expansion coefficient 

value is equal to thermal expansion coefficient of the 

isotropic, homogeny disc at the outer surface. But, in the 

inner surface of the disc, contrary to E and ρ thermal 

expansion coefficient value increases gradually for Disc 2 

whilst decreases for Disc 1. As seen from the last three 

figures, when the normalized elasticity modulus and density 

values for Disc 1 increase about 1.3 times of isotropic disc, 

the normalized thermal expansion coefficient value 

decreases about 0.23 times of isotropic disc. These values 

for Disc 2 are the opposite of Disc 1 approximately. That is 

to say, thermal expansion coefficient decreases when 

elasticity modulus and density increase, or this situation is 

diametrically opposite. Variations of the temperature applied 

along the radial section of the discs are depicted in Figure 5. 

The temperature applied is of a variation decreasing 

parabolically from inner surface to outer surface along the 

radial direction. Figure 6 shows radial stress distributions 

along the radial section of both discs. Due to the boundary 

conditions, the radial stress is equal to zero at the inner and 

outer surfaces. For both discs, it has positive value at the 

reference temperature (T0 = 0°C). However, with the 

increasing temperature it decreases gradually. The reduction 
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is also very much in Disc 2 when it is small for the other. 

Figure 7 illustrates tangential stress distributions along the 

radial direction of both discs. For both discs, the magnitudes 

of the tangential stresses are of lower values in the outer 

surface when they have higher values in the inner surface at 

the reference temperature, and after the middle section of 

the discs the stresses values come close to each other. But, 

with the increasing temperature the tangential stresses 

decrease at the inner surface whereas they increase at the 

outer surface for both discs. Figure 8 depicts radial 

displacement distributions along the radial section of both 

discs. The radial displacements increase less in the inner 

edge whereas increase more in the outer edge with the 

increasing temperature when they in the reference 

temperature adjacent to each other, approximately. If the 

both discs are compared with each other, it can be seen from 

the figure that the radial displacement values in Disc 2 are 

higher than those in Disc 1. 

 

3.1 Radial Stress Plot  

 

 

 
 

 
3.2 Tangential Stress Plot 
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3.3 Tangential Strain Plot 

 
 

3.4 Radial Displacement Plot 

 
 

 

IV. CONCLUSION 

The following conclusions are found from the thermal 

Table1. Comparison of analytical and numerical results in 

rotating isotropic homogeny disc. 

 

procedure surface σθ(MPa) U(mm) εθ (σr)max

(MPa) 

Numeric Inner 524.996 1.051 .00350 39.0360 

Outer 279.605 0.93062 .00186 

Analytic Inner 525.252 1.0505 .00350 39.0371 

outer 279.188 0.93062 .00186 

 

 Maximum radial stresses, tangential stresses, radial 

displacements and tangential strains values obtained from 

ANSYS commercial finite element analysis program and the 

present analytical study at the inner and outer surfaces of the 

only rotating isotropic homogeny disc are given in Table 1 

and their numerical results are depicted in Figure 9. As seen 

in the table, the analytical results are compared with the 

numerical results which are obtained from ANSYS and they 

are found to be consistent with each other. stress analysis of 

the functionally graded discs:  

1) Thermal expansion coefficient decreases when elasticity 

modulus and density increase, or this situation is 

diametrically opposite for functionally graded materials. 

 2) The tangential stress components are found to be highest 

at the inner surface but lowest at the outer surface for both 

Discs. They decrease at the inner surface whereas increase 

at the outer surface by increasing temperature. 

 3) The radial stress components decrease gradually along 

the radial section when the temperature is increased.  

4) The magnitudes of the tangential stresses are higher than 

those of the radial stresses. 

 5) The analytical solution gives the radial displacement 

component at each point. The radial displacements increase 

more and more at the inner and outer surfaces by increasing 

temperature for both discs. 
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