
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3769-3772 ISSN: 2249-6645

www.ijmer.com 3769 | Page

N. Sireesha
1
, V. Prasanth

2

1 PG Scholar, ECE, Pragati Engineering College, JNTUK, AP, INDIA
2 Associate Professor, ECE, Pragati Engineering College, JNTUK, AP,INDIA

ABSTRACT : The algebraic soft-decoding (ASD) of Reed–

Solomon (RS) codes provides significant coding gain over

hard-decision decoding with polynomial complexity. In order

to reduce the complexity in this paper, high-throughput

interpolator architecture for soft-decision decoding of Reed–

Solomon (RS) codes based on low-complexity chase (LCC)
decoding is presented. An efficiency is low, in terms of area-

delay product, has been achieved by an LCC decoder, by

using the proposed interpolator architecture, over the best of

the previously reported architectures for an RS(255,239)

code with eight test vectors. We have implemented the

proposed interpolator in CYCLONE III FPGA which

provides 1.3 Gb/s throughput.

Keywords: Algebraic soft-decision decoding, interpolation,
low-complexity chase (LCC), low latency, Nielson’s

algorithm, Reed–Solomon (R-S) codes.

I. INTRODUCTION
The Reed-Solomon codes (RS codes) are non binary cyclic

codes with code symbols from a Galois field .we want to

transmit a message f. The bits of the message can be
grouped in to log2(q)-bit symbols chosen from the finite

field with q elements, GF(q). An (n, k) Reed-Solomon code

over GF(q) represents the k-symbol message, f = (f0, f1, f2,

. . . , fk−1) by an n-symbol codeword, c = (c0, c1, c2, . . . ,

ck−1, . . . , cn−1), where n > k and usually n = q − 1. The k

symbols of the message f can be considered to be the

coefficients of the up to degree (k − 1) univariate message

polynomial.

f(x) = f0 + f1x + f2x2 + . . . + fk−1xk−1. (1)

 the we use the classical view of Reed-Solomon codes taken from

the original definition, with this evaluation map encoding
method, a codeword is formed by evaluating the message

polynomial f(x) at n elements of GF(q). If the set of

evaluation elements is X = {x0, x1, . . . , xn−1}, the

codeword c.

 c = (f(x0), f(x1), . . . , f(xn−1)), xi € X. (2)

 we will always assume that n = q −1 and the set of

evaluation elements X is the set of nonzero elements of

GF(q):

 X4={x0,x1,x2,….,xn−1}4={1,_,_2,…..,_n−1} (3)

where Xn is a primitive n’th root of unity. The evaluation

map encoding method is useful because, it provides insight

leading to interpolation-based decoding algorithms.

Guruswami-Sudan algorithm
An interpolation-based decoder takes the point of view that

a codeword is a message polynomial evaluated at points in

a finite field and uses polynomial interpolation to try to
reconstruct that polynomial. The Guruswami-Sudan (GS)

algorithm [5] is an interpolation-based list decoder for Reed-

Solomon codes. To describe the algorithm, we will first

need to review some notation and facts about bivariate

polynomials, which are the basic data structures in the

algorithm. Consider the bivariate polynomial [14]with

coefficients chosen from a finite field:

𝑃 𝑥,𝑦 = 𝑃𝑎 ,𝑏
∞
𝑏=0

∞
𝑎=0 𝑥𝑎𝑦𝑏 ∈ 𝐺𝐹(𝑞)[𝑥,𝑦]

 Consider the received word y = c + e, where e is an error

vector with components drawn from GF(q). Since each

component of c was generated by evaluating f(x) at a unique
value of x 2 X, a unique xi can be associated with each

received yi 2 GF(q) to form the list of points, L = {(x0, y0),

(x1, y1), . . . , (xn−1, yn−1)}. If there is no noise (e = 0),

then yi = f(xi), 0 _ i < n, and a bivariate[3] polynomial, P(x,

y) = y−f(x), passes through all the points in L with a

multiplicity of one. This suggests that an interpolation-based

approach can be used to decode Reed-Solomon codes. In the

presence of noise (e6= 0), the interpolation polynomial will

pass through some points that are not part of the codeword.

The GS algorithm ensures that under certain conditions, the

codeword polynomial “lives inside” the interpolation

polynomial [2, 3].

II. INTERPOLATION
The GS algorithm is an interpolation-based list decoder with

two main steps [11].

1. Interpolation Step: Given the set of points L and a

positive integer m, compute P(x, y) of GF(q)[x, y]\{0} of

minimal (1, k −1)-weighted degree that passes through all

the points in L with multiplicity at least m.

2. Factorization Step: Given the interpolation polynomial
P(x, y), identify all the factors of P(x, y) of the form y − f(x)

with deg f(x) < k. The output of the algorithm is a list of the

codewords that correspond to these factors.

A complete factorization of P(x, y) is not necessary

since we are just looking for linear y-roots of degree < k. An

appropriate root-finding algorithm is given.The multiplicity,

m, functions as a user-selectable complexity parameter. The

error-correcting ability of the GS algorithm increases as the

value of m increases.

Primitive polynomials are of interest here because

they are used to define the Galois field. A popular choice for
a primitive polynomial is:

 p(x) = x8 + x7 + x2 + x1 + 1 (4)

This is also known as the 0x87 polynomial,

corresponding to the binary representation of the

polynomial's coefficients excluding the MSB (i.e.

10000111). This specific polynomial is used in the CCSDS

specification for a RS (255, 223). In GF (2^8) there are 16

possible primitive polynomials.

Iterative Multivariate Interpolation for Low Complexity

Reed-Solomon Codes

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3769-3772 ISSN: 2249-6645

www.ijmer.com 3770 | Page

A. FINITE FIELDS
In order to understand the encoding and decoding

principles of nonbinary codes, such as Reed-Solomon (R-S)

codes, it is necessary to venture into the area of finite fields
known as Galois Fields (GF). For any prime number, p,

there exists a finite field denoted GF(p) that contains p

elements. It is possible to extend GF(p) to a field of pm

elements, called an extension field of GF(p), and denoted

by GF(pm), where m is a nonzero positive integer. Note

that GF(pm) contains as a subset the elements of GF(p).

Symbols from the extension field GF(2m) are used in the

construction of Reed-Solomon (R-S) codes.

The binary field GF(2) is a subfield of the extension field

GF(2m), in much the same way as the real number field is a

subfield of the complex number field. Besides the numbers

0 and 1, there are additional unique elements in the
extension field that will be represented with a new symbol

α. Each nonzero element in GF(2m) can be represented by a

power of α. An infinite set of elements, F, is formed by

starting with the elements {0, 1, α}, and generating

additional elements by progressively multiplying the last

entry by α.

F ={0,1α,α2,…,αj,…} ={0,α0,α1,α2,…,αj,…} (5)

To obtain the finite set of elements of GF(2m) from F, a

condition must be imposed on F so that it may contain only

2m elements and is closed under multiplication. The

condition that closes the set of field elements under
multiplication is characterized by the irreducible

polynomial shown below:

 α(2m−1) + 1 = 0 (6)

or equivalently Using this polynomial constraint, any field

element that has a power equal to or greater than 2m - 1 can

be reduced to an element with a power less than 2m - 1, as

follows:

α(2m+ n) = α(2m−1) αn+1 = αn+1 (7)

B. REVIEW OF LCC DECODING OF RS CODES
The Reed-Solomon (R-S) codes are particularly

useful for burst-error correction; that is, they are effective

for channels that have memory. Also, they can be used

efficiently on channels where the set of input symbols is

large. An interesting feature of the R-S code is that as many

as two information symbols can be added to an R-S code of

length n without reducing its minimum distance.

 For R-S codes, error probability is an exponentially
decreasing function of block length, n, and decoding

complexity is proportional to a small power of the block

length. The R-S codes are sometimes used in a concatenated

arrangement. In such a system, an inner convolution decoder

first provides some error control by operating on soft-

decision demodulator outputs; the convolutional decoder

then presents hard-decision data to the outer Reed-Solomon

decoder, which further reduces the probability of error.

III. SYNDROME COMPUTATION
Reed-Solomon codes are non-binary cyclic codes

with symbols made up of m-bit Sequences, where m is any

positive integer having a value greater than 2. R-S (n, k)

codes on m-bit symbols exist for all n and k for which

 0 < k < n < 2m + 2 (8)

Where k is the number of data symbols being encoded, and

n is the total number of code symbols in the encoded block.

For the most conventional R-S (n, k) code,

 (n, k)= (2m -1, 2m -1 - 2t) (8a)
Where t is the symbol-error correcting capability of the

code, and n - k = 2t is the number of parity symbols. An

extended R-S code can be made up with n = 2m or n = 2m +

1, but not any further. In 2t syndromes are calculated by

evaluating received polynomial for powers of q.

Figure 1: Syndrome computation circuits for Reed-Solomon

codes: (a) over GF(2m); (b) in binary form.

Assume the transmitted code vector is

t(X) = t0 + t1X + t2X
2 + … + tn-1X

n-1,

and the received vector is

r(X) = r0 + r1X + r2X
2 + … + rn-1X

n-1.

The first step in decoding a Reed-Solomon code is to

calculate the 2t syndrome components as:

S0 = r(a0) = r0 + r1 + r2 + … + rn-1

S1 = r(a1) = r0 + r1(a) + r2(a)2+ … + rn-1(a)n-1

S2 = r(a2) = r0 + r1(a
2) + r2(a

2)2 + … + rn-1(a
2)n-1

S2t-1 = r(a2t-1) = r0 + r1(a
2t-1) + r2(a

2t-1)2 + ……..+ rn-1(a
2t-1)n-1.

The syndrome polynomial is

S(X) = S0 + S1X + S2X
2 + … + S2t-1X

2t-1.

The second step in decoding a Reed-Solomon code is to find

the error location polynomial L(X) and the error evaluation

polynomial W(X).

The error location polynomial is

L(X)=1+L1X+L2X
2+…+LeX

e,

and the error evaluation polynomial is

W(X)=W0+W1+W2X
2+…+We-1X

e-1,

where e is the number of errors. The error location

polynomial and the error evaluation polynomial are related

to the syndrome polynomial through the key equation is

L(X)S(X)=W(X)modX2t.

The popular iterative Berlekamp - Macey algorithmis

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3769-3772 ISSN: 2249-6645

www.ijmer.com 3771 | Page

used to solve for L(X) and M(X).The last step in decoding a

Reed-Solomon code is to find the error location and the

error value. The error location is obtained using Chan’s

searching algorithm. Basically X is substituted with an in
L(X) for all possible n in a code to find the root of L(X).

The inverse of the root of the error location polynomial is

the error position. After an error location is found, the error

value is calculated via Forney’s error evaluation algorithm.

Once the error value is found, it is added to the corrupted

symbol to correct the error.

IV. IMPLEMENTATIONS
The implementations below can be customized to

work with other RS (n, k) codes to yield similar results in

performance.
Optimized Software Implementation: The pure

software implementation is dominated computationally by

multiplication over a finite field (Galois Field

multiplication). The encoder requires 71,181 cycles per

codeword on a MIPS32 processor and the decoder requires

66,045 cycles.

Scalar GF Multiply Support: This is the simplest

form of VOCAL’s hardware acceleration. The Scalar GF

Multiply Support extends the capabilities of the MIPS32

processor by taking advantage of MIPS Technologies

CorExtend capability to decrease the number of cycles to

23,305 cycles to encode and 9,174 cycles per codeword
to decode on the MIPS32 processor.

SIMD GF Multiply Support: The SIMD GF

Multiply Support requires 128 bytes of local ROM Memory,

but increases the performance to 3,918 cycles per megabit to

encode and 3,078 cycles per codeword to decode. RS

Encode Kernel. The RS Encode Kernel uses 1024 bytes of

local ROM memory to encode. The number of cycles to

process a codeword on a MIPS32 CPU falls to 2,702 cycles

for encoding and decoding only consumes 828 cycles with

this implementation.

V. PROPOSED ARCHITECTURE
Methodologies are the principles and explanations

of High-Throughput Interpolator Architecture for Low-

Complexity Chase Decoding of RS Codes. And here we

have Five types of modules are used

A. REGISTERS
The Shift Register is used for data storage or data movement

and are used in calculators or computers to store data such

as two binary numbers before they are added together, or to

convert the data from either a serial to parallel or parallel to

serial format. The individual data latches that make up a

single shift register are all driven by a common clock signal

making them synchronous devices.

B. MULTIPLEXERS
A 2n-to-1 multiplexer sends one of 2n input lines to a single

output line. A multiplexer has two sets of inputs: 2n data

input lines, n select lines, to pick one of the 2n data inputs.

The mux output is a single bit, which is one of the 2n data

inputs. A 2n-to-1 multiplexer routes one of 2n input lines to

a single output line. Just like decoders, muxes are common
enough to be supplied as stand-alone devices for use in

modular designs. Muxes can implement arbitrary functions.

Smaller muxes can be combined to produce larger ones. It

can add active-low or active-high enable inputs. As always,

we use truth tables and Boolean algebra to analyze things.

Tune in tomorrow as we start to discuss how to build
circuits to do arithmetic.

C. D-FLIP-FLOP
 There are some circuits that are not quite as straight forward

as the gate circuits. However, we still need to learn about

circuits that can store and remember information. They're

the kind of circuits that are used in computers to store

program information - RAM memory. The combination of

two flip-flops constitutes a D-type flip-flop. That's D
because the output of the flip-flop is delayed by the time of

one clock pulse. Set a value for the data and pulse the clock

ON and OFF. We’ll find a copy of the data appearing at the

output on the trailing edge of the clock pulse. Now, if we

consider the combination of two flip-flops as a unit, we have

a D flip-flop. It's called a D flip-flop because it delays the

signal. The signal appears at the output of the circuit delayed

by the time of one clock pulse.

D. GF (2
8
) MULPTIPLIER

Galois Field Theory (GFT) deals with numbers that

are binary in nature, have the properties of a mathematical

“field,” and are finite in scope. Although some Galois

computations don’t exist in ordinary mathematics, many

Galois operations match those of regular math.Addition (Ex-

Or) and multiplication are common Galois operations, and

logarithms, particularly, are handy for checking

multiplication results. For over 40 years, Galois Field

multipliers have been used both for coding theory and for

cryptography. Both areas are complex, with similar needs,

and both deal with fixed symbolic alphabets that neatly fit
the extended Galois Field model.

The Finite Field GF (2
8
):

The case in which n is greater than one is much more

difficult to describe. In cryptography, one almost always

takes p to be 2 in this case. This section just treats the

special case of p = 2 and n = 8, that is. GF(2
8
), because this

is the field used by the new U.S. Advanced Encryption

Standard (AES). The AES works primarily with bytes (8

bits), represented from the right as: b7b6b5b4b3b2b1b0. The

8-bit elements of the field are regarded as polynomials with

coefficients in the field Z2: b7x7 + b6x6 + b5x5 + b4x4 +

b3x3 + b2x2 + b1x1 + b0. The field elements will be

denoted by their sequence of bits, using two hex digits.

Multiplication in GF (2
8
):

Multiplication is this field is much more difficult and harder

to understand, but it can be implemented very efficiently in

hardware and software. The first step in multiplying two

field elements is to multiply their corresponding

polynomials just as in beginning algebra (except that the

coefficients are only 0 or 1, and 1 + 1 = 0 makes the

calculation easier, since many terms just drop out). The

result would be up to a degree 14 polynomial -- too big to fit

into one byte. A finite field now makes use of a fixed degree

eight irreducible polynomial (a polynomial that cannot be

factored into the product of two simpler polynomials). For
the AES the polynomial used is the following (other

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3769-3772 ISSN: 2249-6645

www.ijmer.com 3772 | Page

polynomials could have been used): m(x) = x8 + x4 + x3 + x

+ 1 = 0x11b (hex). The intermediate product of the two

polynomials must be divided by m(x). The remainder from

this division is the desired product. This sounds hard, but is
easier to do by hand than it might seem (though error-

prone). To make it easier to write the polynomials down,

adopt the convension that instead of x8 + x4 + x3 + x + 1

just write the exponents of each non-zero term. (Remember

that terms are either zero or have a 1 as coefficient.)

E. GF (2
8
) ADDER

To add two field elements, just add the corresponding

polynomial coefficients using addition in Z2. Here addition
is modulo 2, so that 1 + 1 = 0, and addition, subtraction and

exclusive-or are all the same. The identity element is just

zero: 00000000 (in bits) or 0x00 (hex).

SIMULATION RESULTS

Figure 2: Simulated Output.

AREA UTILIZATION REPORT

Figure 3: Flow Summary Report

V. CONCLUSIONS
The proposed one is a hardware implementation of

modified Nielson’s algorithm, which works with a different

scheduling, leads limited growth of the polynomials and

shares the common interpolation points, for reducing the
latency of interpolation. Based on the proposed modified

Nielson’s algorithm, we have derived a multivariate

interpolator architecture. This will reduce the number of

iterations required for LCC decoder. Using our low-latency

interpolator is found to be at least 45% more efficient in

terms of area-delay product over the best of previous works.

This architecture has been implemented in a CYCLONE-III
FPGA device which provides a throughput of 1.3 Gb/s .

REFERENCES
[1] F. García-Herrero, M. J. Canet, J. Valls, and P. K. Meher

“High-Throughput Interpolator Architecture for Low-
Complexity Chase Decoding of RS Codes” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 3, pp.
568–573, Mar. 2011

[2] R. Koetter and A. Vardy, “Algebraic soft-decision decoding
of Reed–Solomon codes,” IEEE Trans. Inf. Theory, vol. 49,
no. 11, pp. 2809–2825, Nov. 2003.

[3] A. Ahmed, N. R. Shanbhag, and R. Koetter, “An
architectural comparision of Reed–Solomon soft-decoding
algorithm,” Signals, Syst. Comput., pp. 912–916, 2006.

[4] W. J. Gross, F. R. Kschischang, R. Koetter, and P.G.Gulak,
“Architecture and implementation of an interpolation

processor for soft-decision Reed–Solomon decoding,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15,
no. 3, pp. 309–318, Mar. 2007.

[5] X. Zhang, “Reduced complexity interpolation architecture
for soft-decision Reed–Solomon decoding,” IEEE Trans.
Very Large Scale Integr.(VLSI) Syst., vol. 14, no. 10, pp.
1156–1161, Oct. 2006.

[6] Z. Wang and J. Ma, “High-speed interpolation architecture

for softdecision decoding of Reed–Solomon codes,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 9,
pp. 937–950, Sep. 2006.

[7] J. Zhu and X. Zhang, “Efficient VLSI architecture for soft-
decision decoding of Reed–Solomon codes,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 55, no. 10, pp. 3050–
3062, Nov. 2008.

[8] J. Bellorado and A. Kavcic, “A low-complexity method for

Chase-type decoding of Reed–Solomon codes,” Proc. ISIT,
pp. 2037–2041, Jul. 2006.

[9] X. Zhang and J. Zhu, “High-throughput interpolation
architecture for algebraic soft-decision Reed–Solomon
decoding,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.
57, no. 3, pp. 581–591, Mar. 2010.

[10] J. Zhu, X. Zhang, and Z. Wang, “Backward interpolation
architecture for algebraic soft-decision Reed–Solomon
decoding,” IEEE Trans.Very Large Scale Integr. (VLSI)

Syst., vol. 17, no. 11, pp. 1602–1615, 2009.
[11] T. K. Moon, Error Correction Coding: Mathematical

Methods and Algorithms. Hoboken, NJ: Wiley, 2004.
[12] W. J. Gross, F. R. Kschischang, R. Koetter, and P. G.

Gulak, “A VLSI architecture for interpolation-based in soft-
decision list decoding of Reed–Solomon decoders,” J. VLSI
Signal Process., vol. 39, no. 1–2, pp. 93–111, 2005.

[13] F. Parvaresh and A. Vardy, “Multiplicity assignments for

algebraic soft-decoding of Reed–Solomon codes,” in Proc.
ISIT, 2003, pp. 205–205.

[14] X. Zhang, “High-speed VLSI architecture for low-
complexity Chase soft-decision Reed–Solomon decoding,”
in Proc. Inf. Theory Applic.Workshop, San Diego, CA, Feb.
2009.

[15] J. Ma, A. Vardy, and Z.Wang, “Reencoder design for soft-
decision decoding of an (255,239) Reed–Solomon code,” in

Proc. IEEE Int. Symp.Circuits Syst., Island of Kos, Greece,
May 2006, pp. 3550–3553.

