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ABSTRACT : The algebraic soft-decoding (ASD) of Reed–

Solomon (RS) codes provides significant coding gain over 

hard-decision decoding with polynomial complexity. In order 

to reduce the complexity in this paper, high-throughput 

interpolator architecture for soft-decision decoding of Reed–

Solomon (RS) codes based on low-complexity chase (LCC) 
decoding is presented. An efficiency is low, in terms of area-

delay product, has been achieved by an LCC decoder, by 

using the proposed interpolator architecture, over the best of 

the previously reported architectures for an RS(255,239) 

code with eight test vectors. We have implemented the 

proposed interpolator in CYCLONE III FPGA which 

provides 1.3 Gb/s throughput. 

 

Keywords: Algebraic soft-decision decoding, interpolation, 
low-complexity chase (LCC), low latency, Nielson’s 

algorithm, Reed–Solomon (R-S) codes. 

 

I.    INTRODUCTION 
The Reed-Solomon codes (RS codes) are non binary cyclic 

codes with code symbols from a Galois field .we want to 

transmit a message f. The bits  of  the  message  can  be  
grouped   in    to log2(q)-bit symbols chosen from the finite 

field with q elements, GF(q). An (n, k) Reed-Solomon code 

over GF(q) represents the k-symbol message,  f = (f0, f1, f2, 

. . . , fk−1)  by an n-symbol codeword, c = (c0, c1, c2, . . . , 

ck−1, . . . , cn−1), where n > k and usually n = q − 1. The k 

symbols of the message f can be considered to be the 

coefficients of the up to degree (k − 1) univariate message 

polynomial. 

f(x) = f0 + f1x + f2x2 + . . . + fk−1xk−1.                         (1)                         

 the                      we use the classical view of Reed-Solomon codes taken from 

the original definition, with this evaluation map encoding 
method, a codeword is formed by evaluating the message 

polynomial f(x) at n elements of GF(q). If the set of 

evaluation elements is X = {x0, x1, . . . , xn−1}, the 

codeword c.  

                             c = (f(x0), f(x1), . . . , f(xn−1)),  xi € X.           (2) 

                              we will always  assume that n = q −1 and the set of 

evaluation elements X is the set of nonzero elements of 

GF(q):  

                               X4={x0,x1,x2,….,xn−1}4={1,_,_2,…..,_n−1}      (3) 

where Xn  is a primitive n’th root of unity. The evaluation 

map encoding method is useful because, it provides insight 

leading to interpolation-based decoding algorithms. 

 

Guruswami-Sudan algorithm  
An interpolation-based decoder takes the point of view that 

a codeword is a message polynomial evaluated at points in  

 

a finite field and uses polynomial interpolation to try to 
reconstruct that polynomial. The Guruswami-Sudan (GS) 

algorithm [5] is an interpolation-based list decoder for Reed- 

Solomon codes. To describe the algorithm, we will first 

need to review some notation and facts about bivariate 

polynomials, which are the basic data structures in the 

algorithm. Consider the bivariate polynomial [14]with 

coefficients chosen from a finite field: 

𝑃 𝑥,𝑦 =   𝑃𝑎 ,𝑏
∞
𝑏=0

∞
𝑎=0 𝑥𝑎𝑦𝑏 ∈ 𝐺𝐹(𝑞)[𝑥,𝑦]  

 Consider the received word y = c + e, where e is an error 

vector with components drawn from GF(q). Since each 

component of c was generated by evaluating f(x) at a unique 
value of x 2 X, a unique xi can be associated with each 

received yi 2 GF(q) to form the list of points, L = {(x0, y0), 

(x1, y1), . . . , (xn−1, yn−1)}. If there is no noise (e = 0), 

then yi = f(xi), 0 _ i < n, and a bivariate[3] polynomial, P(x, 

y) = y−f(x), passes through all the points in L with a 

multiplicity of one. This suggests that an interpolation-based 

approach can be used to decode Reed-Solomon codes. In the 

presence of noise (e6= 0), the interpolation polynomial will 

pass through some points that are not part of the codeword. 

The GS algorithm ensures that under certain conditions, the 

codeword polynomial “lives inside” the interpolation 

polynomial [2, 3].  
 

II. INTERPOLATION 
The GS algorithm is an interpolation-based list decoder with 

two main steps [11]. 

1. Interpolation Step: Given the set of points L and a 

positive integer m, compute P(x, y) of GF(q)[x, y]\{0} of 

minimal (1, k −1)-weighted degree that passes through all 

the points in L with multiplicity at least m.  

2. Factorization Step: Given the interpolation polynomial 
P(x, y), identify all the factors of P(x, y) of the form y − f(x) 

with deg f(x) < k. The output of the algorithm is a list of the 

codewords that correspond to these factors. 

A complete factorization of P(x, y) is not necessary 

since we are just looking for linear y-roots of degree < k. An 

appropriate root-finding algorithm is given.The multiplicity, 

m, functions as a user-selectable complexity parameter. The 

error-correcting ability of the GS algorithm increases as the 

value of m increases. 

Primitive polynomials are of interest here because 

they are used to define the Galois field. A popular choice for 
a primitive polynomial is:   

                p(x) = x8 + x7 + x2 + x1 + 1                    (4) 

This is also known as the 0x87 polynomial, 

corresponding to the binary representation of the 

polynomial's coefficients excluding the MSB (i.e. 

10000111). This specific polynomial is used in the CCSDS 

specification for a RS (255, 223). In GF (2^8) there are 16 

possible primitive polynomials.  

 

 

Iterative Multivariate Interpolation for Low Complexity 

Reed-Solomon Codes 
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A. FINITE FIELDS 
In order to understand the encoding and decoding 

principles of nonbinary codes, such as Reed-Solomon (R-S) 

codes, it is necessary to venture into the area of finite fields 
known as Galois Fields (GF). For any prime number, p, 

there exists a finite field denoted GF(p) that contains p 

elements. It is possible to extend GF(p) to a field of pm 

elements, called an extension field of GF( p), and denoted 

by GF( pm), where m is a nonzero positive integer. Note 

that GF( pm) contains as a subset the elements of GF(p). 

Symbols from the extension field GF(2m) are used in the 

construction of Reed-Solomon (R-S) codes.  

The binary field GF(2) is a subfield of the extension field 

GF(2m), in much the same way as the real number field is a 

subfield of the complex number field. Besides the numbers 

0 and 1, there are additional unique elements in the 
extension field that will be represented with a new symbol 

α. Each nonzero element in GF(2m) can be represented by a 

power of α. An infinite set of elements, F, is formed by 

starting with the elements {0, 1, α}, and generating 

additional elements by progressively multiplying the last 

entry by α.  

F ={0,1α,α2,…,αj,…} ={0,α0,α1,α2,…,αj,…}                  (5)                                                         

To obtain the finite set of elements of GF(2m) from F, a 

condition must be imposed on F so that it may contain only 

2m elements and is closed under multiplication. The 

condition that closes the set of field elements under 
multiplication is  characterized by the irreducible 

polynomial shown below:        

 α(2m−1) + 1 = 0                                      (6) 

or equivalently Using this polynomial constraint, any field 

element that has a power equal to or greater than 2m - 1 can 

be reduced to an element with a power less than 2m - 1, as 

follows: 

α(2m+ n) = α(2m−1) αn+1 = αn+1                                    (7) 

 

B. REVIEW OF LCC DECODING OF RS CODES 
The Reed-Solomon (R-S) codes are particularly 

useful for burst-error correction; that is, they are effective  

for channels that have memory. Also, they can be used 

efficiently on channels where the set of input symbols is 

large. An interesting feature of the R-S code is that as many 

as two information symbols can be added to an R-S code of  

length n without reducing its minimum distance.  

  For R-S codes, error probability is an exponentially 
decreasing function of block length, n, and decoding  

complexity is proportional to a small power of the block 

length. The R-S codes are sometimes used in a concatenated  

arrangement. In such a system, an inner convolution decoder 

first provides some error control by operating on soft-

decision demodulator outputs; the convolutional decoder 

then presents hard-decision data to the outer Reed-Solomon 

decoder, which further reduces the probability of error. 

 

III. SYNDROME COMPUTATION 
Reed-Solomon codes are non-binary cyclic codes 

with symbols made up of m-bit Sequences, where m is any 

positive integer having a value greater than 2. R-S (n, k) 

codes on m-bit symbols exist for all n and k for which  

                              0 < k < n < 2m + 2                            (8) 

Where k is the number of data symbols being encoded, and 

n is the total number of code symbols in the encoded block. 

For the most conventional R-S (n, k) code,  

                          (n, k)= (2m -1, 2m -1 - 2t)                     (8a)   
Where t is the symbol-error correcting capability of the 

code, and n - k = 2t is the number of parity symbols. An 

extended R-S code can be made up with n = 2m or n = 2m + 

1, but not any further. In 2t syndromes are calculated by 

evaluating received polynomial for powers of q. 

    

 
 

Figure 1: Syndrome computation circuits for Reed-Solomon 

codes: (a) over GF(2m); (b) in binary form. 

  

Assume the transmitted code vector is  

t(X) = t0 + t1X + t2X
2 + … + tn-1X

n-1,  

and the received vector is  

r(X) = r0 + r1X + r2X
2 + … + rn-1X

n-1.  

The first step in decoding a Reed-Solomon code is to  

calculate the 2t syndrome components as:  

S0 = r(a0) = r0 + r1 + r2 + … + rn-1  

S1 = r(a1) = r0 + r1(a) + r2(a)2+ … + rn-1(a)n-1  

S2 = r(a2) = r0 + r1(a
2) + r2(a

2)2 + … + rn-1(a
2)n-1 

S2t-1 = r(a2t-1) = r0 + r1(a
2t-1) + r2(a

2t-1)2 + ……..+ rn-1(a
2t-1)n-1.  

The syndrome polynomial is  

S(X) = S0 + S1X + S2X
2 + … + S2t-1X

2t-1. 

The second step in decoding a Reed-Solomon code is to find 

the error location polynomial L(X) and the error evaluation 

polynomial W(X). 

  

The error location polynomial is 

L(X)=1+L1X+L2X
2+…+LeX

e,  

and the error evaluation polynomial is 

W(X)=W0+W1+W2X
2+…+We-1X

e-1,  

where e is the number of errors. The error location 

polynomial and the error evaluation polynomial are related 

to the syndrome polynomial through the key equation is  

L(X)S(X)=W(X)modX2t.  

The  popular  iterative  Berlekamp - Macey  algorithmis 
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used to solve for L(X) and M(X).The last step in decoding a 

Reed-Solomon code is to find the error location and the 

error value. The error location is obtained using Chan’s 

searching algorithm. Basically X is substituted with an in 
L(X) for all possible n in a code to find the root of L(X). 

The inverse of the root of the error location polynomial is 

the error position. After an error location is found, the error 

value is calculated via Forney’s error evaluation algorithm. 

Once the error value is found, it is added to the corrupted 

symbol to correct the error. 

 

IV. IMPLEMENTATIONS 
The implementations below can be customized to 

work with other RS (n, k) codes to yield similar results in 

performance. 
Optimized Software Implementation: The pure 

software implementation is dominated computationally by 

multiplication over a finite field (Galois Field 

multiplication). The encoder requires 71,181 cycles per 

codeword on a MIPS32 processor and the decoder requires 

66,045 cycles. 

Scalar GF Multiply Support: This is the simplest 

form of VOCAL’s hardware acceleration. The Scalar GF 

Multiply Support extends the capabilities of the MIPS32 

processor by taking advantage of MIPS Technologies 

CorExtend capability to decrease the number of cycles to 

23,305 cycles      to encode and 9,174 cycles per codeword 
to decode on the MIPS32 processor. 

SIMD GF Multiply Support: The SIMD GF 

Multiply Support requires 128 bytes of local ROM Memory, 

but increases the performance to 3,918 cycles per megabit to 

encode and 3,078 cycles per codeword to decode. RS 

Encode Kernel. The RS Encode Kernel uses 1024 bytes of  

local ROM memory to encode. The number of cycles to 

process a codeword on a MIPS32 CPU falls to 2,702 cycles  

for encoding and decoding only consumes 828 cycles with 

this implementation. 

 

V. PROPOSED ARCHITECTURE 
Methodologies are the principles and explanations  

of High-Throughput Interpolator Architecture for Low-

Complexity Chase Decoding of RS Codes. And here we 

have Five types of modules are used  

 

A. REGISTERS  
The Shift Register is used for data storage or data movement 

and are used in calculators or computers to store data such 

as two binary numbers before they are added together, or to 

convert the data from either a serial to parallel or parallel to 

serial format. The individual data latches that make up a 

single shift register are all driven by a common clock signal 

making them synchronous devices. 

B. MULTIPLEXERS 
A 2n-to-1 multiplexer sends one of 2n input lines to a single 

output line. A multiplexer has two sets of inputs: 2n data 

input lines, n select lines, to pick one of the 2n data inputs. 

The mux output is a single bit, which is one of the 2n data 

inputs. A 2n-to-1 multiplexer routes one of 2n input lines to 

a single output line. Just like decoders, muxes are common 
enough to be supplied as stand-alone devices for use in 

modular designs. Muxes can implement arbitrary functions. 

Smaller muxes can be combined to produce larger ones. It 

can add active-low or active-high enable inputs. As always, 

we use truth tables and Boolean algebra to analyze things. 

Tune in tomorrow as we start to discuss how to build 
circuits to do arithmetic. 

  

C. D-FLIP-FLOP 
 There are some circuits that are not quite as straight forward 

as the gate circuits. However, we still need to learn about 

circuits that can store and remember information. They're 

the kind of circuits that are used in computers to store 

program information - RAM memory. The combination of 

two flip-flops constitutes a D-type flip-flop. That's D 
because the output of the flip-flop is delayed by the time of  

one clock pulse. Set a value for the data and pulse the clock 

ON and OFF. We’ll find a copy of the data appearing at the  

output on the trailing edge of the clock pulse. Now, if we 

consider the combination of two flip-flops as a unit, we have 

a D flip-flop. It's called a D flip-flop because it delays the 

signal. The signal appears at the output of the circuit delayed 

by the time of one clock pulse. 

 

D. GF (2
8
) MULPTIPLIER 

Galois Field Theory (GFT) deals with numbers that 

are binary in nature, have the properties of a mathematical 

“field,” and are finite in scope. Although some Galois 

computations don’t exist in ordinary mathematics, many 

Galois operations match those of regular math.Addition (Ex-

Or) and multiplication are common Galois operations, and 

logarithms, particularly, are handy for checking 

multiplication results. For over 40 years, Galois Field 

multipliers have been used both for coding theory and for 

cryptography. Both areas are complex, with similar needs, 

and both deal with fixed symbolic alphabets that neatly fit 
the extended Galois Field model. 

 

The Finite Field GF (2
8
):   

The case in which n is greater than one is much more 

difficult to describe. In cryptography, one almost always 

takes p to be 2 in this case. This section just treats the 

special case of p = 2 and n = 8, that is. GF(2
8
), because this 

is the field used by the new U.S. Advanced Encryption 

Standard (AES). The AES works primarily with bytes (8 

bits), represented from the right as: b7b6b5b4b3b2b1b0. The 

8-bit elements of the field are regarded as polynomials with  

coefficients in the field Z2: b7x7 + b6x6 + b5x5 + b4x4 + 

b3x3 + b2x2 + b1x1 + b0. The field elements will be 

denoted by their sequence of bits, using two hex digits. 

 

Multiplication in GF (2
8
): 

Multiplication is this field is much more difficult and harder 

to understand, but it can be implemented very efficiently in 

hardware and software. The first step in multiplying two 

field elements is to multiply their corresponding 

polynomials just as in beginning algebra (except that the 

coefficients are only 0 or 1, and 1 + 1 = 0 makes the 

calculation easier, since many terms just drop out). The 

result would be up to a degree 14 polynomial -- too big to fit 

into one byte. A finite field now makes use of a fixed degree 

eight irreducible polynomial (a polynomial that cannot be 

factored into the product of two simpler polynomials). For 
the AES the polynomial used is the following (other 
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polynomials could have been used): m(x) = x8 + x4 + x3 + x 

+ 1 = 0x11b (hex). The intermediate product of the two 

polynomials must be divided by m(x). The remainder from 

this division is the desired product. This sounds hard, but is 
easier to do by hand than it might seem (though error-

prone). To make it easier to write the polynomials down, 

adopt the convension that instead of x8 + x4 + x3 + x + 1 

just write the exponents of each non-zero term. (Remember 

that terms are either zero or have a 1 as coefficient.) 

 

E. GF (2
8
) ADDER  

To add two field elements, just add the corresponding 

polynomial coefficients using addition in Z2. Here addition 
is modulo 2, so that 1 + 1 = 0, and addition, subtraction and 

exclusive-or are all the same. The identity element is just 

zero: 00000000 (in bits) or 0x00 (hex). 

 

SIMULATION RESULTS 

 
Figure 2: Simulated Output. 

AREA UTILIZATION REPORT 

 
Figure 3: Flow Summary Report 

V. CONCLUSIONS 
The proposed one is a hardware implementation of  

modified Nielson’s algorithm, which works with a different 

scheduling, leads limited growth of the polynomials and 

shares the common interpolation points, for reducing the  
latency of interpolation. Based on the proposed modified 

Nielson’s algorithm, we have derived a multivariate  

interpolator architecture. This will reduce the number of 

iterations required for  LCC decoder. Using our low-latency 

interpolator is found to be at least 45% more efficient in 

terms of area-delay product over the best of previous works. 

This architecture has been implemented in a CYCLONE-III 
FPGA device which provides a throughput of 1.3 Gb/s . 
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