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Abstract : We suggest an active vision design in a neural 

style to achieve face detection, or face recognition in gaze, 

understanding network structures on impaired face 

recognition in developmental disorders such as autism 

spectrum deficits and Asperger's syndrome. The core of the 

active vision design is so-called corollary discharge (CD) 

on an ascending pathway of the superior colliculus to the 

frontal eye field (FEF) via the mediodorsal thalamus. The 

CD is the signal about upcoming eye movements for 

achieving the stable visual perception. Assuming that the 

CD is parameterized as controlling dynamical projection 

creation between the FEF and the Fusiform gyrus, face 

detection performance is shown to gradually decrease when 

the value of the CD parameter increases. This indicates a 

deficit of accurate eye motion, which may elicits impaired 

face recognition in gaze. 

Keywords – Active vision design, Face detection, 

Corollary discharge, Dynamic link architecture, Elastic 

graph matching 

I. INTRODUCTION 
The deficits of face recognition (or face perception) are 

frequently diagnosed in developmental disorders such as 

autism spectral disorders (ASDs) and Asperger’s syndrome 

symptoms [1]. They are seen even in schizophrenia patients 

[2]. The face recognition deficiencies evoke serious social 

problems on developmental process in the children, because 

face recognition is one of very significant requirements to 

acquire social communication skills in childhoods. The 

urgent task is thus to correctly understand and then solve a 

mechanism on impaired face recognition. This will be 

allowed to remove social problems occurred in the patients 

and enable them to healthy come back to common life. 

Fusiform Gyrus (FFG) is regarded as a key brain 

area in face recognition. A deficit in cholinergic 

innervations of the FFG was observed in adults with ASD. 

The deficit may be related to not only current but also 

childhood impairment of social functioning [3]. But why 

the cholinergic activity is reduced is still unclear, although 

the cholinergic activity has been well-known to regulate the 

function of the visual pathway, including the FFG. To 

answer this question, we will have to overview a whole 

configuration of visual pathway, including a visuomotor 

system and so forth. In addition, we will have to study 

cognitive modeling of visual perception,  

In general, an object always and complicatedly 

moves. The bulks of eye also move such as saccade. 

Nevertheless, visual perception for moving objects keeps 

stably reflected in the brain, possibly, in the frontal eye 

field (FEF)). Such visual stabilities are not accomplished 

with impaired corollary discharge (CD). In Fig. 1, the CD 

pathway of the superior colliculus (SC) to the FEF through 

the mediodorsal thalamus (MD) was empirically confirmed 

to covey signals about forthcoming eye movements (that is, 

when a saccade will happen and where it will go) [4]. Such 

an ascending signal of the CD allows the FEF to feedback 

motor command signals (called MC in Fig.1) to the SC, to 

generate a saccade for precise object tracking. 

However [5] shows that inactivation in the MD 

can impair the CD, which makes it very difficult to keep 

track of an object. Therefore, this physiological experiment 

indicates that the CD plays an important role in achieving 

precise and accurate eye track of an object as well.  

This is the same of achieving face recognition, 

keeping track of the face. If the CD can contribute to face 

recognition in gaze, it leads to understanding deficits of the 

face tracking (or face attention) by impaired CD pathway. 

In an fMRI experiment, an intensive connectivity between 

the FEF and FFG is already observed [6]. If a mechanism 

on visual face recognition on a network of the FEF and 

FFG with the CD pathway is clear, it can be expected as 

helpful to understand mechanisms on face recognition 

deficits in developmental disorders. For this purpose, it is 

very important to study a neural model of recognition/ 

detection of a face, including MC signals on CD pathway. 

 
 

Fig. 1 Two pathways of corollary discharge (CD) and motor command 

(MC) after visual signals are transmitted to the superior colliculus (SC). 
The ascending pathway of the CD: The SC to the Frontal eye field (FEF) 

via the mediodorsal thalamus (MD), which projects to the Fusiform gyrus 

(FFG). The descending pathway of the MC: The SC to the extraocular 

muscles (EOM) via the Brain Stem (BS). This figure is referred to [4-6]. 

A Neural Network Model of Face Detection for Active Vision 

Implementation 
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We propose an active vision design in a neural 

style for achieving face detection. The dynamic link 

architecture (DLA) [7-9] employed in this work can 

frequently be regarded as a powerful tool for explaining 

two following points: (1) How neural activities in the FEF 

can be projected to the ones in the FFG, including the 

ascending pathway of the CD. (2) How face recognition (or 

detection) can be achieved. Assuming that the CD plays an 

important role in dynamical creation of projections of the 

FEF to FFG, we show face detection performance increased 

with changes of the CD as a control parameter. Within a 

framework of the active vision design, we will discuss 

considerable mechanisms on face recognition deficits 

observed in patients with developmental disorders.   

II. ACTIVE VISION DESIGN 
 

2.1. System Configuration 

Let us begin by looking at a whole system for achieving 

face recognition in gaze. This mainly consists of three 

modules, for the simplicity, the FFG, the FEF, as well as 

the SC/MD (see Fig.2). The FFG as memory stores a facial 

image (called the M). In the FEF, a face is detected on an 

input (I) image, which is sent as an image signal (IS) by a 

camera. The face detection is done by matching the images 

I to M within a framework of the DLA. The matching 

process is controlled by the CD parameter in the SC/MD.  

Motion is estimated in comparison with the previous frame. 

It is delivered as a motor command (MC) signal to a 

servomotor in the camera through the SC/MD. Thus, the 

camera can track a face. 

 

2.2. Feature Representation in FFG module 

We employ an image of the average face created by a face 

generator in [10], whose size is A0=60×60 pixels. Since 

feature representations are composed of the different scales, 

the image is down-sampled with a0
s
 (s=0, …, 5), called the 

Ms. Here a0=0.85 and s=0 implies the original size of the 

image M. A square graph of (n×n - 4) nodes without any 

vertexes is set on each resolution image Ms. Here n (=5) is 

the number of full nodes on a row and column of the square 

graph. Each node on the image Ms is convoluted with a 

family of Gabor functions Ψr(z). r (=0, …, 7) is an 

orientation parameter. The Gabor feature usually consists of 

8 different orientation components. Each orientation 

component is given by a convoluted value ( sM

rĴ ): 
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One orientation component sM

rJ  in the Gabor feature takes 

an absolute value of sM

rĴ :  

)(ˆ)( s

M
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We mention physiological backgrounds of multi-scale 

feature representation for a face. Physiological experiments 

for receptive field already finds that neurons being tuned to 

high spatial frequencies have narrower tuning range than 

neurons being tuned to low spatial frequencies. Also, the 

receptive field structure represented by Eq. (2) is observed 

as constructed by multiplying a global sinusoidal grating by 

a bell-shaped Gaussian envelope [11].  

Furthermore, human vision can be conceived to be 

achieved through low pass filter processing [12]. Once an 

input image about some environmental scene is received on 

a retina, the highest spatial frequency component of the 

Gabor filter is sequentially discarded in bottom-up flow 

(referred to [13]). The prospective discarding spatial 

frequency elements may be stored in another area through 

another pass in the visual cortex. The FFG can be 

considered as one of candidates. Therefore, the multi-scale 

Gabor feature representations are suitable for modeling of 

memory. 

 
 

Fig. 2. An active vision configuration for face recognition. Image signals 
(ISs) are delivered to the FEF from a camera, in which a motion of the face 

is calculated when detecting a position of the face on an input image. 

Information about the motion as a motor command (MC) signal descends 
to the camera via the SC/MD module. It thus allows the camera to 

smoothly track a face. In the SC/MD module, a parameter of the corollary 

discharge (CD) controls matching process for face recognition/detection in 
the dynamic link architecture (DLA). Here shorten forms of the SC/MD, 

FEF and FFG is referred as in Fig.1. 

 
 

Fig. 3. A flowchart of face detection process. It consists of two sub-
processes. The first (Face Detection Process 1) is candidate position 

finding while the second (Face Detection Process 2) is the most 

likely position detection. 
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2.3. CD controlled Graph Matching in FEF module 

In analogy, each frame on the input (I) image is convoluted 

with a family of Gabor function. The main face detection 

processing is then proceeded. As shown in Fig.3, the face 

detection processing consists of two sub-processes of 

candidate position finding and the most likely position 

detection.  

2.3.1. Scan Matching 

In the first sub-process, in order to pick up candidate 

positions, an entire or fragmentary similarity map for each 

scale Ms is calculated with scan matching of the undistorted 

graph Gs onto the image I: 
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where )( I

S

s xe is the similarity of the Gabor feature at xI on 

the image I  to the one for each node ps. It is noticed that Gs 

sometimes represents a set of nodes of the graph. In the 

scan matching process, the left-upper of the image Ms on 

which a square graph is being set up, is firstly adjusted to 

the left-upper of the I. The Ms is repeatedly scanned to the 

right for each row on the I. The scan ends when the right-

lower of the Ms arrives at the right-lower of the I (not 

shown here). As a result, we obtain a similarity map at each 

image Ms. We exemplify similarity map results when one 

facial image I is scanned with a square graph at the level M5 

(Fig. 4). 

Next, we pick up some candidate positions that 

can be expected as the one of a face. Here let the candidate 

position xI
c
 be defined as the center of the image Ms or of its 

square graph. It corresponds to the local maximum on the 

similarity map. The local maximum is satisfied with a 

gradient condition when all differences of the xI
c 

to its 

nearest neighbors xI
n
 take positive:  
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The candidate pixel is depicted with a black square on the 

similarity map as shown in Fig. 4(b). 

2.3.2. Elastic Graph Matching (EGM) 

The EGM for each candidate position xI
c
 is computed to 

obtain the maximum value of the cost function Es
c
, which is 

given by 
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(a) 

 
  

(b) 

 
 

(c) 

 
 

Fig. 4. Similarity maps when a static grayscale image of a face, used as an 

input image (a), is scanned with a square graph at M5. (b) ncd=1 and (c) 
ncd=4 where ncd

 is the scanning step number. In (b) and (c), black squares 

show a local maximum position on the similarity map.  

 

 
 
Fig. 5. Dynamic link architecture (DLA) between the FEF and FFG. One 

feature detector for model representation on the FFG, which has been 

projected to all of feature points on the FEF, then finds the optimal point 
that takes the highest similarity to the model representation through the 

CD control (see a solid line and a solid arrow). In the CD, the other 

controllers (broken arrows) weaken projections between the FEF and the 

FFG (broken lines). 
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where )( I

d

s xe  represents the elasticity of the graph on the 

image I. λd is a constant parameter for the graph elasticity. 

λd=0.05, except for obtaining a similarity map Es(xI) when 

λd=0. G’s is a set of nearest neighbor nodes p’s for ps. 
s

ss

M

ppD 
and I

px sI
D 

 are the Euclidean distance between 

nodes ps (or xI) and p’s on the graph of the image Ms (or I). 
s

ss

M

ppA 
and I

px sI
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take one vector form consisting of 4 

elements. Each element is an angular between two nearest 

neighbors on each quadrant, centered at ps.  

Each node on the image I, which corresponds to 

the node ps
c
 of the square graph Ms, surveys an optimal 

pixel ps
I
 taking a maximum of the cost function Es

c
 within a 

search region R: 
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where R is a set of pixels that can be picked up in a square 

with the size of (2q+1)×(2q+1), centered at the pixel 

corresponding to ps
c
. q=4.  

The optimal pixel xm
I
 is singled out with the 

maximum operation of all candidates, which must be the 

most invariant to feature representation for an M face: 
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Here C is a set of candidates.  

2.4. Motor Command 

Finally, let us explain briefly an algorithm of face tracking 

by controlling a camera. In this algorithm, motions of a face 

are defined as a difference of the face position on the I
(i)

 to 

the one on I
(i+1)
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m
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                                                                   (11) 

where ith is the frame index. The information about 

motions of a face is transmitted to a motor controller in the 

servo camera via the SC/MD module. The camera can be 

expected to track a face on the input.  

A goal of this article is to propose active vision 

architecture to understand a mechanism on impaired face 

detection. It is naturally expected that the accuracy of 

motion gets worse when face detection performance 

decreases. Therefore, we omit the concrete explanation 

about the motor control algorithm in this article. 

2.5. Modeling of Corollary Discharge 

A role of the corollary discharge (CD) pathway is 

reconsidered for interpreting the face detection system in a 

neural style. As mentioned in the Introduction, deficits of 

the CD decrease the accuracy of eye movements. The CD is 

thus necessary to control precisely motions of the eye.  To 

increase the accuracy of motion, the accuracy of the face 

detection also increases.  

For this, the core of face detection with scan 

matching and EGM is feature-based correspondence finding 

within a framework of the DLA. As shown in Fig.5, one 

feature detector on the M graph, projected to all pixels in 

the I, tries to find the optimal with topographic mappings. It 

also enables us to find the highest invariance to feature 

representations for a face. This is the essential of searching 

the local maximum of a similarity map. Also, the same is 

finding the maximum of a cost function. 

However there is still a problem in searching the 

local maximum, which detection fault is increased if a 

number of the local maximum is found as shown in Fig. 

4(b). As one possibility to solve this problem, we do not 

create a whole similarity map, but the local similarity map 

as shown in Fig. 4(c). This can be expected to improve the 

face detection fault. 

Return to neural model interpretations of our face 

detection system. The scanning step number n
cd

 controls 

projection patterns. The all-to-all projection pattern is, for 

 
 

Fig.6. Facial images of a same or different person with the background in a 
Bio ID dataset of 1521 images.  

 

 
 

Fig.7. Face detection demonstration when we used a camera. Numerals on 
the left-upper are respectively the maximum value of a cost function and 

computational cost value for each frame. 
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example, changed to the sparse when the n
cd

 increases. It 

addresses that the CD controls neural connectivity patterns 

between the FEF and FFG. The CD control parameter, 

namely, the scanning step number is one of the remarkable 

points in our detection system. The face detection rate 

computed with our detection system is related to the 

accuracy of the face detection. This will thoroughly be 

discussed in the next section. 

III. DETECTION PERFORMANCE 
We test an ability of our face detection system, using the 

Bio ID database [14] that involves 1521 facial images. Fig. 

6 shows some of facial images in the Bio ID database. On 

the other hand, an image of an average face produced with 

many German facial photos in [10] is employed as the 

model (M) image. This indicates that our face detection 

system has recognition ability for a face as the object, not 

personal identity.  

In the detection ability test, we do 4 trials of n
cd

=1, 

2, 3 and 4. For each trial, the M image should be tried to 

match to each facial image in the Bio ID database. Correct 

face detection can be defined when eyes are in 3 of 5
th
 from 

the top of detected square area. The correct face detection 

rate is the accuracy of the face detection in this work. The 

correct detection results are shown in TABLE I.  

In TABLE I, when the n
cd

 is increased 1 to 4, the 

face detection rate is gradually decreased 97.6% to 95.0%. 

When the scan step number is furthermore increased, the 

face detection rate becomes decreased (as not shown here), 

because the number of candidates is decreased.  

There results indicate as follows: The first can 

expect more improvement of face tracking in active vision. 

In fact, we use a camera. Our face detector can, in real time, 

capture a face without any severe problems even though the 

size of the face is bigger or smaller (see Fig. 7). The second 

is the validity of neural model interpretation of the corollary 

discharge. Increases of the scan step represent because our 

model supports experimental results for a functional role of 

the corollary discharge. 

IV. DISCUSSION 
We propose active vision architecture in a neural style, 

assuming that this architecture contains a mechanism to 

control a motor in a servo camera. The key is the bottom-up 

signal of the MD to the FEF for information about 

forthcoming eye movement, which is called the CD, on 

which the top-down signal is transmitted as a motor 

command. The functional role of the CD is to improve or 

preserve eye movement accuracy.  

In this article, making full use of the concept of the 

DLA, we parameterize the role of the CD for its simplicity, 

and also show that face detection performance calculated 

here, which qualitatively supports to an experimental result, 

is decreased with an increase of the CD parameter value. It 

is not doubtful that the CD is a necessarily function to 

object tracking or visual attention. 

It is still unclear if or not the impaired CD pathway 

is a central mechanism on deficits of face recognition. This 

is due to a decline of face detection performance indirectly 

means difficulties of face tracking by motor controls. Sect. I 

Introduction already reports that patients with deficits of 

face recognition can difficultly pay attention to, or track a 

face. It can thus be inferred that they are not in healthy 

communication environment in their childhood so that the 

CD pathway is impaired in the brain. This may cause a 

decline of abilities for attention to and track a face to induce 

deficits of face recognition. 

As shown in Fig. 5(c), we have created a sparsely 

distributed map of the similarity. Since it means a decrease 

of correlations or connectivity intensities between neural 

activities of the FEF and FFG, the localized similarity map 

result may support inactivation of the cholinergic system in 

the FFG. However, to confirm support of the computational 

model to the cholinergic inactivation, we will have to study 

more declines of neural activities in FEF and MD, together 

with cholinergic inactivation in the FFG in the experiment. 

Such experiments are not yet reported as far as we know.  

There are still lots of improvements in our face 

detection algorithm. The first priority is the CD deficit 

parameter n
cd

. One of goals in this work is to understand 

functional mechanisms on achievement of face recognition 

in developmental process. We have to study neural network 

modeling of the related learning process. For this, 

physiological experiments that have been done by Bell et al. 

[15] are of great use as a reference.  

Bell et al. addressed that representations of recent 

sensory input that followed motor commands are stored and 

updated through anti-Hebbian plasticity at synapses 

between corollary discharge conveying fibers and the 

sensory area. The updating is prevented by no motor 

commands and no plastic changes. If such a learning model 

is achieved for being implemented into our face detection 

system with the EGM, this can expect to lead to solving 

mechanisms on how face recognition can be impaired. Also, 

it gives us one of solutions that the deficit of the CD harms 

not only to the FEF activation, but also to updating and 

storing input image in the FEF. Correspondingly the deficit 

elicits the cholinergic inactivation in the FEF. Furthermore, 

the motor command signals can no longer be transited for 

accurate eye movements so that eye tracking or attention to 

a face is impossible. Therefore, modeling of the learning on 

the CD pathway is crucial for giving us explanations of 

symptoms in face recognition disorders. 

Taking a glance at a current research field of 

developmental robotics, researches and developments on 

physiologically inspired active vision and its relevant 

learning algorithm does not yet seems to be reported [16]. 

The learning model implemented into cognitive 

TABLE I 

FACE DETECTION PERFORMANCE 

Scan 

Step 
The number of correct 

detected images 

The detection rate (%) 

ncd=1 1485 97.6 

ncd=2 1474 96.9 

ncd=3 1472 96.7 

ncd=4 1445 95.0 

A face detection ability test using the database of the BioID with 1521 

facial images. An undistorted graph is scanned with scan step ncd on the 
input image. 
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developmental robots [17] is the already existing. It cannot 

be in a neural style, much less modeling of a corollary 

discharge mechanism. In [18], a multiple forward model for 

a corollary discharge mechanism is used to computationally 

simulate experiments on attribution of own actions to 

intention of self or others. Such a corollary discharge model 

is still conceptual or cognitive, is not based on the 

physiological principles, is already done on computational 

simulations, and is not yet applied into robots. 

There is ample scope for some progresses of 

computer vision technology in a face detection system we 

proposed as a neural style. Even in the improvement [19], 

our face detection system has higher face detection 

performance and comparably rapid computational speeds, 

compared to the Viola-Jones face detection algorithm [20]. 

The details are removed here, because they are different 

directions to this work. But, in the near future, real-time 

visual information processing models will be achieved on 

computers. They can be competed with real visual 

processing in the brain.  

V. CONCLUSION 
In this article, we studied a neural network model for 

correct face detection, to understand functional mechanisms 

on impaired face recognition in developmental disorders 

such as autism spectrum deficits and Asperger's syndrome. 

The core of the design is a so-called corollary discharge 

(CD) mechanism on an ascending pathway of the superior 

colliculus to the frontal eye field (FEF) via the mediodorsal 

thalamus. The CD is the signal about upcoming eye 

movements for achieving the stable visual perception. We 

assume that the CD plays an important role in dynamical 

creation of projection of the FEF to the Fusiform gyrus and 

then show that face detection performance decreases with 

changes of the CD parameter’s value. This can predict a 

decline of the accuracy of eye motion. From a result of the 

detection performance decline, considerable mechanisms on 

the face recognition deficit were discussed, in terms of 

difficulties of face tracking. We indicated that an active 

vision design proposed here was neurally plausible as well 

as powerful to explain deficiencies of face recognition. 
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