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ABSTRACT: Virtualization technology is being used 

intensively in data centers, cluster systems, enterprises and 
organizational networks, Hence the capability of Virtual 

Machine (VM) Migration importance has been increased for 

maintaining high performance, improved manageability and 

fault tolerance. Live Migration allows virtual machine 

monitor to move the running virtual machine from one 

physical server to another with zero downtime, continuous 

service availability and complete transaction integrity. In this 

paper we, present a performance evaluation of parameters 

that affect live migration and varying in the performance 

depending on workload.  

 

Keywords: Virtual Machine (VM), Migration Time (MT), 

Down Time (DT), Dirty Page, Virtualization. 

 

I. INTRODUCTION 
System virtualization is the ability to abstract and pool 

resources on a physical platform. This abstraction decouples 

software from hardware and enables multiple operating 
system images to run concurrently on a single physical 

platform without interfering with each other. As a technique, 

system virtualization has existed for decades on mainframes. 

In the past, industry standard x86-based machines, with their 

limited computing resources. Virtualization can increase 

utilization of computing resources by consolidating the 

workloads running on many physical systems into virtual 

machines running on a single physical system. Virtual 

machines can be provisioned on-demand, replicated and 

migrated. Virtual machine (VM) migration, which is the 

ability to move a VM from one physical server to another 
under virtual machine monitor (VMM) control, is a capability 

being increasingly utilized in today’s enterprise 

environments. 

  Implemented by several existing virtualization 

products, live migration can aid in aspects such as high-

availability services, transparent mobility, consolidated 

management, and workload balancing [1]. While 

virtualization and live migration enable important new 

functionality, the combination introduces novel security 

challenges. A virtual machine monitor that incorporates a 

vulnerable implementation of live migration functionality 

may expose both the guest and host operating system to 
attack and result in a compromise of integrity. Given the 

large and increasing market for virtualization technology, a 

comprehensive understanding of virtual machine migration 

security is essential. However, the security of virtual machine 

migration has yet to be analyzed. 

 

After a live migration, guest software continues to 

maintain an identical view of the pre and post migration 

hardware. In this paper we discuss Processors provide 

support for a VMM to hide differences in software-visible 

processor features during Live.  

 

1.1 SHORT BACKGROUND ON VM TECHNOLOGY 

Initially very popular in the 1960’s, for instance in 

the context of shared mainframe computers, this technology 

was subsequently abandoned in favour of multiprogrammed 

efficient commodity operating systems, running on 

increasingly cheaper and more widely available hardware. 

However, the virtual machine technology, initially based on 

the principle of exporting (possibly multiple) virtualized 

software versions of the machine hardware to upper layers 

(originally the operating system) came back to fashion in the 

past years. Reasons for this come-back spanned the need for 

easier management of large scale distributed systems or MPP 
machines [2], or the need for support for mobility (the easy 

checkpointing capability mentioned above) and increased 

security (as many commodity OSs had become quite 

unmanageable and/or insecure and proved to under-use the 

same increasingly cheaper hardware resources that caused the 

“retirement” of VMs 20 years ago).However, while they have 

indeed come back, VMs are less interesting now for resource 

multiplexing but more as a way to “circumvent” existing 

“popular” Operating Systems that have become 

unmanageable and provide little opportunities for activities 

like checkpointing or sandboxing. Issues and challenges of 
VM implementations include minimizing virtualization 

overhead and exporting a virtualized interface identical or as 

similar as possible to the virtualized machine to ensure 

compatibility.  

Various design choices exist, such as providing a 

“classic” VM architecture – such as Xen  or VMWare ESX 

Server [3] (laying underneath the Operating system and thus 

maximizing performance) or a “hosted” architecture, such as 

VMWare Workstation (laying “on top” of a host operating 

system, as an application and improving). Another important 

design choice is that of slightly modifying the virtualized 

interface to be exported to replace portions of the instructions 
set which are not easily virtualizable by different and more 

efficiently implementable equivalents. This approach is 

called paravirtualization and it is applied in VM 

implementations such as Xen or Disco [4]. VMs can provide 

important benefits that can be useful in many contexts, 

including migration. Firstly, they have the serious advantage 

of abstracting away the details of underlying hardware and 
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exporting a uniform view of the virtualized machine, 

therefore providing an elegant solution to the resource 

heterogeneity problem. Additionally, they provide a complete 

encapsulation of the machine software state, therefore the 

VM can be easily and very conveniently checkpointed, 

suspended and restarted at will. Consequently, VMs can be 

dynamically mapped to physical machines or migrated much 

easier than processes.  

Therefore, the implementation complexity of 

migration implementation, which we saw that was a limiting 
factor in the case of process migration, is greatly reduced. 

Besides migration-empowered applications like dynamic load 

balancing, fault tolerance or Internet Suspend-Resume [5] 

type applications, VM can be used for things like convenient 

distribution of software packages (for instance Oracle 

delivers packages of readily installed and configured 

software under the form of VMs) or for damage containment 

and “forensics” against worm or hacker attacks. 

 

1.2 VIRTUAL MACHINE MIGRATION 

There are many ways to migrate a VM. In static 
migration, the VM is shutdown using OS-supported methods; 

its static VM image is moved to another VMM and restarted. 

In cold migration, the VM is suspended using OS supported 

or VMM-supported methods. The suspended VM image is 

moved to a VMM on a different machine and resumed. In 

live migration, the VMM moves a running VM instance 

nearly instantaneously from one server to another. Live 

Migration allows for dynamic load balancing of virtualized 

resource pools, hardware maintenance without downtime and 

dynamic failover support. As long as the hardware in the pre 

and post migration environment is identical, guest software 

should behave in exactly the same way before and after the 
migration. It is when guest software runs in a different 

hardware environment after a migration that certain 

challenges can arise[6]. Note that even though a VMM 

presents a virtual platform to guest software, there could be 

certain interfaces, depending on VMM design, which guest 

software can directly use to determine underlying hardware’s 

capabilities.  

After the reboot/restart following a static migration, 

guest software should go through its platform discovery 

phase and be able to adjust to any differences in underlying 

(virtual) hardware. Following a cold migration, guest 
software may continue to maintain an identical view of the 

pre and post migration hardware. When suspended using OS-

supported methods, some operating systems will re-scan the 

hardware upon resume. Depending on their policies and the 

hardware differences between current and previous hardware, 

the OSes may refuse to resume and require a reboot. After a 

live migration, guest software continues to maintain an 

identical view of the pre and post migration hardware. 

 

1.3 Issues with VM migration 

However, things get a little more complicated. More 

precisely, to perform a correct migration, besides the 
checkpointed state of the VM, the memory image of that VM 

also has to be migrated, for the state to be correctly 

preserved. All this should be done while programs in the VM 

are still running; therefore memory pages are still getting 

dirtied. Therefore, we see that increased simplicity comes at a 

certain price, since the VM’s memory image and state is 

undoubtedly much larger than the process’ checkpointed state 

in the case of process migration.  

Additionally, as with all migrations, resources used 

by processes running within the migrated VM should still be 

available after the migration attached. Since these resources 

might be hard to migrate (because of large sizes or 

consistency constraints for instance), this brings back the 

problem of residual dependencies. For instance, the problem 

of migrating the file system present on the virtual disk of a 
Virtual Machine [7]. In the context of Virtual Machine 

migration, “residual dependencies” are especially important, 

considering that the size of a virtual machine can be much 

larger than that of a process. While migrating the entire VM, 

as we have seen, has the advantage that support for check 

pointing is readily provided, unlike in the case of a regular 

process, the VM’s address space, and especially it’s virtual 

disk are of considerable size, therefore leaving residual 

dependencies may be unavoidable to ensure reasonable 

migration times (at least with current typical network 

resources)[8]. As with all migration systems, transparency 
remains an issue also for VM migration. 

 

II. LIVE MIGRATION 
Virtual machine live migration is a virtualization 

process that moves a virtual machine (VM) from one 

physical host server to another. It moves the memory and 

state of a VM without shutting down the application, so users 

will generally not detect any significant interruption in 

application availability. The process captures the complete 
memory space occupied by the VM along with the exact state 

of all the processor registers currently operating on the VM 

then sends that content across a TCP/IP link to memory space 

on another server. Processor registers are then loaded, and the 

newly moved VM can pick up its operation without missing a 

step. 

Most VM live migrations occur between similar 

hypervisors, so the migrated VM retains its name and other 

unique identifiers. Even though the VM is on a different 

server, it's the exact same machine as far as the users are 

concerned. Live migration is a key benefit of virtualization, 

allowing workloads to move in real time as server or data 
center conditions change [9]. Consider the impact on 

business continuity: A virtual server scheduled for 

maintenance can migrate its workloads to a spare server or to 

other servers that have extra computing capacity. Once the 

maintenance is complete and the server returns to service, 

these workloads can all migrate back to the original server 

without disruption. 

Live migration helps server consolidation by 

allowing IT administrators to balance workloads across data 

center servers, ensuring that each server is used efficiently 

without being overtaxed. Live migration helps with disaster 
recovery too because VMs can just as easily be moved from 

one site to another, relying on spare servers at a remote site to 

receive and operate the migrated VMs. 

All of the major virtualization software platforms 

include VM live migration tools. These include VMware 

VMotion (part of vSphere), Microsoft Live Migration (part of 

Hyper-V R2) and Citrix Systems XenServer live migration. 

Migration tools typically allow administrators to prioritize 

http://searchservervirtualization.techtarget.com/sDefinition/0,,sid94_gci1219658,00.html
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the movement of each VM so that failover and failback 

processes occur in a predictable and repeatable manner. 

Mission-critical VMs usually take priority and are often 

moved to spare servers with ample computing resources. 

Secondary VMs can be addressed next, although the 

migration software may be left to move noncritical VMs 

automatically based on the computing resources on each 

available server. Migration audits allow administrators to 

locate VMs and track their movements to refine and optimize 

ongoing migration behaviours. Live migration works 
between almost all virtual host servers, but it's important to 

test migration behaviours between servers with various 

processor manufacturers. Processors from Intel and AMD 

both include extensions that provide hardware assistance for 

virtualization tasks, including migration. However, Intel VT 

and AMD-V processors use different architectures to 

facilitate migration, and moving VMs between Intel and 

AMD-based servers may result in unexpectedly poor 

migration performance. 

2.1 Live Migration options for storage configurations  
In addition to network settings, there are some 

storage connection types that must also be carefully 

configured on Hyper-V hosts for Live Migration to run 

properly. A Virtual Hard Disk (VHD) attachment, for 

instance, is arguably the simplest for Live Migration 
purposes. When VHDs are attached to a highly available 

VM, they must also exist on shared storage. This setup 

ensures that every cluster node can automatically access the 

disk when a VM migrates. For pass-through disks, another 

storage configuration, additional care is necessary. These 

disks have a direct relationship with both VMs and their 

hosts, which must be considered before performing Live 

Migration. A pass-through disk must be exposed to the host 

and then passed through to the VM. Pass-through disks are 

supported in a clustered configuration; but the cluster must be 

informed of any new pass-through disks by refreshing the 

VM configuration after it has been attached. Pass-through 
disks must be managed like other cluster resources. The 

storage area network connections to the cluster must be 

exposed to every potential cluster host.  

III. Design 
At a high level we can consider a virtual machine to 

encapsulate access to a set of physical resources. Providing 

live migration of these VMs in a clustered server 

environment leads us to focus on the physical resources used 

in such environments: specifically on memory, network and 

disk. This section summarizes the design decisions that we 

have made in our approach to live VM migration. We start by 

describing how memory and then device access is moved 

across a set of physical hosts and then go on to a high-level 
description of how a migration progresses.  

3.1 Migrating Memory 

Moving the contents of a VM's memory from one 
physical host to another can be approached in any number of 

ways. However, when a VM is running a live service it is 

important that this transfer occurs in a manner that balances 

the requirements of minimizing both downtime and total 

migration time. The former is the period during which the 

service is unavailable due to there being no currently 

executing instance of the VM; this period will be directly 

visible to clients of the VM as service interruption. The latter 

is the duration between when migration is initiated and when 

the original VM may be finally discarded and, hence, the 

source host may potentially be taken down for maintenance, 

upgrade or repair. It is easiest to consider the trade-offs 

between these requirements by generalizing memory transfer 

into three phases:  
 

Push phase 
The source VM continues running while certain 

pages are pushed across the network to the new destination. 

To ensure consistency, pages modified during this process 

must be re-sent. 

 

Stop-and-copy phase 
The source VM is stopped, pages are copied across to the 

destination VM, then the new VM is started. 

 

Pull phase 
The new VM executes and, if it accesses a page that has not 

yet been copied, this page is faulted in ("pulled") across the 

network from the source VM. 

Although one can imagine a scheme incorporating 

all three phases, most practical solutions select one or two of 

the three. For example, pure stop-and-copy [10] involves 

halting the original VM, copying all pages to the destination, 

and then starting the new VM. This has advantages in terms 

of simplicity but means that both downtime and total 

migration time are proportional to the amount of physical 

memory allocated to the VM. This can lead to an 
unacceptable outage if the VM is running a live service.  

Another option is pure demand-migration [11] in 

which a short stop-and-copy phase transfers essential kernel 

data structures to the destination. The destination VM is then 

started, and other pages are transferred across the network on 

first use. This results in a much shorter downtime, but 

produces a much longer total migration time; and in practice, 

performance after migration is likely to be unacceptably 

degraded until a considerable set of pages have been faulted 

across. Until this time the VM will fault on a high proportion 

of its memory accesses, each of which initiates a 
synchronous transfer across the network.  

The approach taken in this paper, pre-copy [12] 

migration, balances these concerns by combining a bounded 

iterative push phase with a typically very short stop-and-copy 

phase. By `iterative' we mean that pre-copying occurs in 

rounds, in which the pages to be transferred during round n 

are those that are modified during round n-1 (all pages are 

transferred in the first round). Every VM will have some 

(hopefully small) set of pages that it updates very frequently 

and which are therefore poor candidates for pre-copy 

migration. Hence we bound the number of rounds of pre-

copying, based on our analysis of the writable working set 
(WWS) behaviour of typical server workloads. Finally, a 

crucial additional concern for live migration is the impact on 

active services. For instance, iteratively scanning and sending 

a VM's memory image between two hosts in a cluster could 

easily consume the entire bandwidth available between them 

http://searchservervirtualization.techtarget.com/tip/0,289483,sid94_gci1370496_mem1,00.html
../Local%20Settings/AppData/Local/AppData/Local/AppData/Local/My%20Documents/Downloads/NSDI%20'05%20—%20Technical%20Paper.htm#collective-migration


International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.4, July-Aug. 2012 pp-1564-1571             ISSN: 2249-6645 

                                                                                           www.ijmer.com                                                                     1567 | Page 

and hence starve the active services of resources. This service 

degradation will occur to some extent during any live 

migration scheme. We address this issue by carefully 

controlling the network and CPU resources used by the 

migration process; thereby ensuring that it does not interfere 

excessively with active traffic or processing.  

3.2 Resources for Migration 
A key challenge in managing the migration of OS 

instances is what to do about resources that are associated 

with the physical machine that they are migrating away from. 

While memory can be copied directly to the new host, 

connections to local devices such as disks and network 

interfaces demand additional consideration. The two key 

problems that we have encountered in this space concern 
what to do with network resources and local storage.  

For network resources, we want a migrated OS to 

maintain all open network connections without relying on 

forwarding mechanisms on the original host (which may be 

shut down following migration), or on support from mobility 

or redirection mechanisms that are not already present (as 

in [13]). A migrating VM will include all protocol state 

(e.g. TCP PCBs), and will carry its IP address with it. To 

address these requirements we observed that in a cluster 

environment, the network interfaces of the source and 

destination machines typically exist on a single switched 
LAN. Our solution for managing migration with respect to 

network in this environment is to generate an unsolicited 

ARP reply from the migrated host, advertising that the IP has 

moved to a new location. This will reconfigure peers to send 

packets to the new physical address, and while a very small 

number of in-flight packets may be lost, the migrated domain 

will be able to continue using open connections with almost 

no observable interference.  

Some routers are configured not to accept broadcast 

ARP replies (in order to prevent IP spoofing), so an 

unsolicited ARP may not work in all scenarios. If the 

operating system is aware of the migration, it can opt to send 
directed replies only to interfaces listed in its own ARP 

cache, to remove the need for a broadcast. Alternatively, on a 

switched network, the migrating OS can keep its original 

Ethernet MAC address, relying on the network switch to 

detect its move to a new port. In the cluster, the migration of 

storage may be similarly addressed: Most modern data 

centers consolidate their storage requirements using a 

network-attached storage (NAS) device, in preference to 

using local disks in individual servers. NAS has many 

advantages in this environment, including simple centralised 

administration, widespread vendor support, and reliance on 
fewer spindles leading to a reduced failure rate. A further 

advantage for migration is that it obviates the need to migrate 

disk storage, as the NAS is uniformly accessible from all host 

machines in the cluster 

 

3.3 Pre-copy Migration 

Pre-copy migration tries to tackle problems 

associated with earlier designs by combining a bounded 

iterative push step with a final and typically very short stop-

and-copy[14] phase. The core idea of this design is that of 

iterative convergence. The design involves iterating through 

multiple rounds of copying in which the VM memory pages 

that have been modified since the previous copy are resent to 

the destination on the assumption that at some point the 

number of modified pages will be small enough to halt the 

VM temporarily, copy the (small number of) remaining pages 

across, and restart it on the destination host. Such a design 

minimises both total migration time and downtime. 

 

3.3.1 Stages in Pre-copy Migration 

Pre-copy migration involves 6 stages, namely: 

 
1) Initialisation: a target is pre-selected for future migration. 

2) Reservation: resources at the destination host are  

     reserved.  

3) Iterative pre-copy: pages modified during the previous   

     iteration are transferred to the destination. The entire    

     RAM is sent in the first iteration. 

4) Stop-and-copy: the VM is halted for a final transfer   

     round. 

5) Commitment: the destination host indicates that it has    

     received successfully a consistent copy of the VM. 

6) Activation: resources are re-attached to the VM on the   
    destination host. 

 

Unless there are stop conditions, the iterative pre-

copy stage may continue indefinitely. Thus, the definition of 

stop conditions is critical in terminating this stage in a timely 

manner. These conditions are usually highly dependent on 

the design of both the hypervisor and the live migration sub-

system but are generally defined to minimise link usage and 

the amount of data copied between physical hosts while 

minimising VM downtime. However, the existence of these 

stop conditions has a significant effect on migration 

performance and may cause non-linear trends in the total 
migration time and downtime experienced by VMs. 

 

3.3.2. Defining Migration Performance  

Migration performance may be evaluated by 

measuring total migration time and total downtime. The 

former is the period when state on both machines is 

synchronised, which may affect reliability while the latter is 

the duration in which the VM is suspended thus seen by 

clients as service outage. Using the pre-copy migration 

model, total migration time may be defined as the sum of the 

time spent on all 6 migration stages (Equation 1) from 
initialisation at the source host through to activation at the 

destination. Total downtime, however, is the time required 

for the final 3 stages to complete (Equation 2). While it is 

expected that the iterative pre-copy stage will dominate total 

migration time, our measurements found that for certain 

classes of applications  specifically those that do not have a 

high memory page modification rate the initialisation, 

reservation, commitment and activation stages may add a 

significant overhead to total migration time and downtime. 

We classify the initialisation and reservation stages together 

as pre-migration overhead while the commitment and 

activation stages compose post-migration overhead.  
 

TotalMigrationTime = Initialisation + Reservation 

                          Pre-migrationOverhead 

 

 +∑ pre-copy +  stop-and-copy 
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 + Commitment + Activation 

Post-migrationOverhead            Equation (1) 

 

TotalDowntime =     Stop-and-copy 

 

                            + Commitment + Activation 

                            Post-migrationOverhead                                      

 

                            Equation (2) 

 

3.3.3. Migration Bounds 

Given the stop conditions, it is possible to work out 

the upper and lower migration performance bounds for a 

specific migration algorithm. We will use a real-world case 

to characterise these boundaries. While there exist a range of 

live migration platforms, for the remainder of this paper we 

will base our analysis on the Xen migration platform. Xen is 

already being used as the basis for large scale cloud 

deployments [15] and thus this work would immediately 

benefit these deployments. Moreover, Xen is open-source 

allowing us to quickly and efficiently determine the 
migration sub-system design and implementation. Note 

however that our measurement techniques, methodology, and 

prediction models design basis are applicable to any 

virtualisation platform that employs the pre-copy migration 

mechanism. The stop conditions that are used in Xen 

migration algorithm are defined as follows:  

1) Less than 50 pages were dirtied during the last pre-copy 

iteration. 

2) 29 pre-copy iterations have been carried out. 

3) More than 3 times the total amount of RAM allocated to 

the VM has been copied to the destination host. The first 

condition guarantees a short downtime as few pages are 
to be transferred. On the other hand, the other 2 

conditions just force migration into the stop-and-copy 

stage which might still have many modified pages to be 

copied across resulting in large downtime. 

1) Bounding Total Migration Time (Equation 3): 

Consider the case of an idle VM running no applications. In 

this case the iterative pre-copy stage will terminate after the 

first iteration as there is no memory difference. 

Consequently, the migration sub-system needs only to send 

the entire RAM in the first round. The total migration lower 

bound is thus the time required to send the entire RAM 
coupled with pre- and post-migration overheads. On the other 

hand, consider the case where the entire memory pages are 

being modified as fast as link speed. In this scenario, the 

iterative pre-copy stage will be forced to terminate after 

copying more than 3 times the total amount of RAM 

allocated to the VM. Migration then re-sends the entire 

modified RAM during the stop-and-copy stage. The total 

migration upper bound is thus defined as the time required 

sending 5 times the VM size less 1 page1 plus pre- and 

postmigration overheads.  

 

Overheads + (VMSize / LinkSpeed ) <= TotalMigrationTime 
<= (Overheads + (( 5 * VMSize – 1)  * page ) / LinkSpeed  )                         

 

                                  Equation (3) 

 

2) Bounding Total Downtime (Equation 4): Similarly, the 

total downtime lower bound is defined as the time required 

for the post-migration overhead, assuming that the final stop 

and copy stage does not transfer any pages. This occurs either 

when the VM is idle or the link speed is fast enough to copy 

all dirtied pages in the pre-copy stage. On the other hand, the 

total downtime upper bound is defined as the time required to 

copy the entire RAM in the stop-and-copy stage coupled with 

the post-migration overhead.  

 
Post-migrationOverhead <= TotalDowntime <=  

(Post-migrationOverhead + (VMSize / LinkSpeed))     

                Equation (4) 

 

3.3.4 Difference in Bounds 

 Modelling bounds is useful as it enables us to reason about 

migration times provided that we know the link speed and 

VM memory size. These bounds are the limits in which the 

total migration time and total downtime are guaranteed to lie. 

Given a 1,024 MB VM and 1 Gbps migration link, for 

example, the total migration time has a lower bound of 13 
and upper bound of 50 seconds respectively. Similarly, the 

downtime has a lower bound of .314 and upper bound of 

9.497 seconds respectively. Table I illustrates the migration 

bounds for some common link speeds. While the downtime 

lower limit is fixed (as it is dependent purely on post-

migration overhead) all other bounds vary in accordance to 

link speed due to their correlation with the VM memory size. 

As the table indicates, the bounds vary significantly. For 

bigger VM memory sizes (which is common in current 

installations [16]) we have even larger differences. Thus, 

using bounds is at best an imprecise exercise and does not 

allow for accurate prediction of migration times. Building 
better predictions requires understanding the relationship 

between factors that impact migration performance.  

 

Table I: Migrationbounds.Mt:Total Migration Time 

(Seconds). Dt: Total Downtime (Milliseconds). Lb: Lower 

Bound. Ub: Upper Bound. Vm Size= 1,024 Mb. 

 

Speed MTLB MTUB DTLB DTUB 

100 Mbps 92.2 s 437.1 s 311 ms 90,466.5 ms 

 

1 Gbps 11.7 s 43.95 s 311 ms 9,347.3 ms 

 

 
 

Fig.1Migration Time Lower Bound and Upper Bound in Sec 
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Fig.2 Down Time Lower Bound and Upper Bound in Sec 

 
                 Fig.3   100 Mbps Total Down Time 

 
                  Fig. 4 100 Mbps Total Migration Time 

 

 
                    Fig.5  1 Gbps Total Down Time  

 
                      Fig.6 1 Gbps Total Migration Time 

 

IV. PARAMETERS AFFECTING MIGRATION 
There are several factors that we need to study as a 

prerequisite for accurate migration modelling. In this section, 

we explore these factors and their impact on total migration 

time and downtime. Moreover, stop conditions that may 

force migration to reach its final stages are generally what 

governs migration performance. Obviously, this is 

implementation specific which is exemplified by but not 

limited to Xen support for live migration. Migration link 

bandwidth is perhaps the most influential parameter on 

migration performance. Link capacity is inversely 

proportional to total migration time and downtime. Higher 

speed links allow faster transfers and thus require less time to 
complete. Figure 1 illustrates migration performance for a 

1,024 MB VM running a micro-benchmark that writes to 

memory pages with rates up to 300,000 pages/second on100 

Mbps, 1 Gbps links. It represents the impact of each link 

speed on total migration time and downtime.  
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As link bandwidth increases, the point in the curve 

when migration performance starts to degrade rapidly shifts 

to the right roughly with the same ratio. Page dirty rate is the 

rate at which memory pages in the VM are modified which, 

in turn, directly affects the number of pages that are 

transferred in each pre-copy iteration. Higher page dirty rates 

result in more data being sent per iteration which leads to 

longer total migration time. Furthermore, higher page dirty 

rates results in longer VM downtime as more pages need to 

be sent in the final transfer round in which the VM is 
suspended.  

Figure 1 shows the effect of varying the page dirty 

rate on total migration time and downtime for each link 

speed. The relationship between page the dirty rate and 

migration performance is not linear because of the stop 

conditions. If the page dirty rate is below link capacity, the 

migration sub-system is able to transfer all modified pages in 

a timely fashion, resulting in a low total migration time and 

downtime. On the other hand, if the page dirty rate starts 

approaching link capacity, migration performance degrades 

significantly. Total downtime at low page dirty rates is 
virtually constant and approximately equal to the lower 

bound (Equation 4). This is because the link has enough 

capacity to transfer dirty pages in successive iterations 

leading to a very short stop-and-copy stage. When the page 

dirty rate increases to the point that 29 iterations are not 

sufficient to ensure a short final copy round or when more 

than 3x the VM size have been transferred, migration is 

forced to enter its final stage with a large number of dirty 

pages yet to be sent.  

Consequently, total downtime starts to increase in 

proportion to the increase in the number of modified pages 

that need to be transferred in the stop-and copy stage. Total 
downtime further increases until the defined upper bound in 

which it has to send the entire VM memory. Total migration 

time also increases with an increasing page dirty rate. This is 

attributable to the fact that more modified pages have to be 

sent in each pre-copy round. Moreover, the migration sub-

system has to go through more iteration with the hope to have 

a short final stop-and-copy round. For page dirty rates near 

link speed, total migration time approaches its upper bound 

(Equation 3) as migration stops when 3x VM size has been 

transferred. Then, it starts to fall back towards its lower 

bound.  
For extremely high page dirty rates (compared to 

link speed), migration is forced to reach its final transfer 

stage after 29 iterations having sent virtually no pages.2 It 

then has to transfer the entire RAM in the final iteration. This 

is exemplified clearly for the 100 Mbps link in Figure 4, in 

which the total migration time drops back to its lower bound 

(almost all dirty pages are skipped in every iteration except 

the final one) while having a total downtime (Figure 3) at its 

upper bound (as the entire RAM has to be transferred in the 

stop-and-copy stage). 

The first pre-copy iteration tries to copy across the 

entire VM allocated memory. The duration of this first 
iteration is thus directly proportional to the VM memory size 

and subsequently impacts total migration time. On average, 

total migration time increases linearly with VM size. On the 

other hand, the total downtime for low page dirty rates is 

almost the same regardless of the VM size as the migration 

sub-system succeeds in copying all dirtied pages between 

successive iterations resulting in a short stop-and-copy stage. 

When the link is unable to keep up with the page dirty rate, 

larger VMs suffer longer downtime (linearly proportional to 

the VM size) as there are more distinct physical pages that 

require copying in the stop-and-copy stage. 

 Pre- and post-migration overheads refer to operations that 

are not part of the actual transfer process. These are 

operations related to initialising a container on the destination 

host, mirroring block devices, maintaining free resources, 
reattaching device drivers to the new VM, and advertising 

moved IP addresses. As these overheads are static, they are 

significant especially with higher link speeds. For instance, 

pre-migration setup constitutes around 77% of total migration 

time on a 1Gbps link for a 512 MB idle VM. More 

importantly, post-migration overhead is an order of 

magnitude larger than the time required for the stop-and-copy 

stage. To conclude this section, there are several parameters 

affecting migration performance. These parameters may be 

classified as having either a static or dynamic effect on 

migration performance. Parameters having static effects are 
considered as unavoidable migration overheads. On the other 

hand, parameters having dynamic effects on migration affect 

only the transfer process. Dynamic parameters are typically 

related to the VM specification and applications hosted inside 

it. 

We show that the page dirty rate and link speed are the major 

factors influencing migration times. We also show how 

particular combinations of these factors can extend expected 

total migration time and downtime. Finally, we observe that 

the pre- and post-migration overheads become significant 

compared to the iterative pre-copy and stop-and-copy stages, 

especially for VMs that have low page dirty rates and are 
being migrated over high speed links.  

 

V. CONCLUSION 
In this paper, we studied live migration behaviour in 

precopy migration architectures, specifically using the Xen 

virtualisation platform. We show that the link speed and page 

dirty rate are the major factors impacting migration 

behaviour. These factors have a non-linear effect on 

migration performance largely because of the hard stop 
conditions that force migration to its final stop-and-copy 

stage. In a virtualised environment, administrators can 

dynamically change VM placements in order to plan 

maintenance, balance loads, or save energy. Live migration is 

the tool used.  

 

Future Scope 

The experiments that we have carried out prove that 

the migration link speed is the most influential parameter on 

performance. We have been working on local area networks 

assuming live migration inside one datacentre. However, 
moving workloads between different data centres, especially 

for cloud providers, is also useful. We plan to further utilise 

the models to study migration behaviour on wide area 

networks. 
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