
International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2821-2824 ISSN: 2249-6645

www.ijmer.com 2821 | P a g e

Vidya G. S
1

, Sarath Raj S
2,

Manu T S
3

1, 2, 3(Dept.of Electronics and Communication, TKM Institute of Technology, Affiliated to CUSAT, India.)

Abstract: This paper describes the initial steps in the

development of an object detection system for manipulation

purposes to be embedded in a mobile robot. The goal is to
design a neural network based recognition module. The

neural network module and additional image processing

algorithms which are used to convert the image into useful

information for the neural network and the control of the

whole system is designed using the soft core processor in

the FPGA. The neural network implementation can be

performed using the VHDL coding and processor can be

designed using the Xilinx EDK tool.

Keywords: EDK, embedded systems, FPGA, image

processing, Neural Network, SoPC, visual servoing

I. INTRODUCTION
Image recognition systems are widely used in

different industries such as production plants to detect

faulty components, to select a piece on a conveyor or as

surveillance systems that are capable of detecting intrusion,

differentiating people or observing their motion. Object

positions and environmental conditions have to be acquired

in real-time. The term Visual Servoing refers to a useful

capability for both manipulator arms and mobile robots [1].
Visual Servoing involves moving a robot or some part of a

robot to a desired position using visual feedback [2].

However, fast and computation intensive tasks are

difficult to implement in small and low power consumption

electronic systems required in robot-like systems. The goal

of this research is to develop an efficient hardware/software

implementation of an object recognition system for an

autonomous robot. This recognition system is based on an

artificial neural network. In addition, some image

processing modules to provide the network with useful data

have been designed. Some other works that use neural
network based systems for Visual Servoing can be found in

[3], [4], [5]. However, in general most of such

implementations are PC-based architectures.

The implementation presented here is carried out

in a FPGA (Field Programmable Gate Array). The very

high integration of present FPGAs enable the

accommodation of all the components of a typical

embedded system (processor core, memory blocks,

peripherals, specific hardware,...) on a single chip,

commonly referred to as system-on-a-programmable chip

(SoPC). The design described here is based on such a

SoPC. In particular the neural network module together
with the control of the whole system are implemented as

software in the embedded processor core

II. SYSTEM ARCHITECTURE
 The initial approach to afford the recognition

problem has been limited to the recognition of simple
shapes, but in such a way that it could be extrapolated to

any shape, for example those of hand tools. For the

experiments performed up to now, some different colour

wood pieces (cubes, cylinders, rectangular prisms and

triangular prisms) have been used. Hence, four possible

shapes have to be recognized: square, circle, rectangle and

triangle.

Usually, image processing algorithms are

implemented in software and run on a PC. However, in

applications with high restrictions in response time or low

consumption requirements (like the system described here),

hardware specific implementations are needed . The main
objection of the image recognition techniques for its

realization in hardware is the high complexity of the

existent algorithms. For this reason, in this paper a method

optimized for its hardware implementation is presented.

2.1. IMAGE PRE-PROCESSING

The pre-processing stage converts the images into

useful information for the neural classification system.

Once a binary image is obtained, the amount of information

contained in it is reduced to preserve only the information

considered more relevant for the recognition. An edge
extraction technique grounded on the chain-code algorithm

[6] has been chosen. The bases of the chain-code algorithm

were introduced in 1961 by H. Freeman [7], who described

a method which permits the encoding of arbitrary

geometric configurations, as a way to make it easier for a

digital computer to manipulate them. It is a lossless

compression algorithm for binary images, which provides a

useful way to depict an object and to derive its features for

later applications in pattern recognition.

Chain-codes are used to represent the contour of

an object by means of a sequence of small vectors of unit

length, each one representing the direction of the contour at
that point. The number of possible directions is determined,

being the 8-connected neighborhood and the 4-connected

neighborhood configurations the most commonly used. The

4-connected set of directions, also referred to as external

chain-code or crack code in some sources, is the one

employed in this work (Figure 1).

Figure1: Example of the external chain code of a binary

image

Design of a Neural Network Based Image Recognition System

Using Configurable VLSI

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2821-2824 ISSN: 2249-6645

www.ijmer.com 2822 | P a g e

First of all, the region of the image where the

object lays must be determined, in terms of the density of

white pixels. Then, the origin of the object in the image

must be fixed. In the algorithm presented in this paper, the
origin is considered to be the left-most white pixel of the

first line in the object region. Once the origin is fixed, the

object is outlined in clockwise manner and the directions of

the boundary are stored until the algorithm reaches back the

initial point.

Using this algorithm, each object is represented by

a sequence of numbers, which length is different for each

case, depending on the size of the object in the image and

its shape.

In order to make the lengths equal and to reduce

even more the codification, in such a way that it can be

used as the input for the neural network, the sequence is
normalized by dividing it into a fixed number of smaller

sequences. Each of them is processed to obtain the slope

between its end points. Thus, each object is represented by

a fixed length sequence which contains the slopes of the

contour. In turn, these slopes can only take a definite

number of values, so that the translation to a digital system

is more direct.

2.2. NEURAL CLASSIFICATION

The classification module consists of an artificial

neural network where the inputs are the values provided by
the image pre-processing stage. Based on these data the

neural network classifies the shape of the target object. The

neural network has multi-layer perceptron architecture [8],

consisting of an input layer, a hidden layer and an output

layer.

The number of input neurons has been set to 16,

which forces the sequence obtained from the image

processing stage to be of this length. The hidden layer has

32 neurons with a tan-sigmoid activation function. Lastly,

the output layer consists of 4 output neurons, one for each

possible shape, and no activation function is applied. The

architecture of the neural network is presented in Figure 2.

Figure 2: Architecture of the proposed neural network

The network is trained by means of the back-

propagation algorithm, using the gradient-descendent

method. The training set is made up of 16 sequences

obtained from different images of different object shapes,

along with the corresponding target output for each

sequence. This set is divided into three different subsets:

the 60% of the samples are used for training, the 20% for

validation (useful for early-stopping of the training process)

and the remaining 20% for test (for estimating the network
s ability to generalize). The training algorithm of the

network is performed in Matlab, by means of the Neural

Network Toolbox [9].

III. HARDWARE/SOFTWARE PARTITION
Nowadays, the so called SoPC (system-on-a-

programmable chip) take advantage from the flexibility of

software and the high performance of hardware. Their

proliferation has been possible thanks to the high

integration levels achieved in the microelectronic industry,

which allow the inclusion of a small microprocessor inside

the programmable chip. This fact allows the designing of

efficient heterogeneous hardware/software architectures on

a single chip. Historically, the most common way for the

implementation of neural networks has been a program

running on a personal computer or a workstation. This is

due to the fact that software implementations offer a high
flexibility and give the users the possibility of modifying

the topology of the network, the type of the processing

elements or the learning rules, according to the

requirements of their application. However, biological

neural networks, in which artificial neural networks are

inspired, operate highly in parallel. Hence, implementing

them on a sequential computer does not seem the most

efficient way to do it.

Dedicated hardware implementations, on the other

hand, offer a number of important advantages, because they

exploit the inherent parallelism of neural networks and also

are much faster and robust if compared to software
solutions.

Furthermore, they provide a physically reduced

and low-power solution, useful for applications where

including a personal computer or a workstation might not

be feasible (such as the case of autonomous robots). These

are the main reasons why it has been decided to implement

the recognition algorithms on an embedded system and,

more specifically, the neural network on the hardware

partition of the system.

The architecture is as shown in Figure3..

Figure 3: Internal Architecture of SoPC

The software partition is built on a MicroBlaze

(the softcore processor from Xilinx) [10] and includes the

control of the complete system and, also the image pre-

processing algorithms.

3.1. INTERFACE BETWEEN MODULES

The interface between both partitions is based on

the PLB (Processor Local Bus) bus [11], that provides a

fast and efficient communication mechanism. The

Processor Local Bus (PLB) consists of a bus control unit, a

watchdog timer, and separate address, write and read data

path units with a three-cycle-only arbitration feature. The

PLB supports read and write data transfers between master

and slave devices equipped with a PLB bus interface and

connected through PLB signals. Bus architecture supports
multiple master and slave devices. Each PLB master is

attached to the PLB through separate address, read-data,

PLB BUS

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2821-2824 ISSN: 2249-6645

www.ijmer.com 2823 | P a g e

and write-data buses. PLB slaves are attached to the PLB

through shared, but decoupled, address, read-data, and

write-data buses and a plurality of transfer control and

status signals for each data bus.
The Processor Local Bus (PLB) consists of a bus

control unit, a watchdog timer, and separate address, write

and read data path units with a three-cycle-only arbitration

feature. The PLB supports read and write data transfers

between master and slave devices equipped with a PLB bus

interface and connected through PLB signals. Bus

architecture supports multiple master and slave devices.

Each PLB master is attached to the PLB through separate

address, read-data, and write-data buses. PLB slaves are

attached to the PLB through shared, but decoupled,

address, read-data, and write-data buses and a plurality of

transfer control and status signals for each data bus.
Access to the PLB is granted through a central

arbitration mechanism that allows masters to compete for

bus ownership. This arbitration mechanism is flexible

enough to provide for the implementation of various

priority schemes. Additionally, an arbitration locking

mechanism is provided to support master-driven atomic

operations. PLB arbiters can be implemented on the FPGA

fabric and are available as soft IP cores. The PLB is a fully

synchronous bus.

The PLB arbiter multiplexes signals from masters

onto a shared bus to which all the inputs of the slaves are
connected. The PLB arbiter handles bus arbitration and the

movement of data and control signals between masters and

slaves. The PLB-to-PLB bridge is required when two PLB

segments are connected. The bridge translates PLB

transactions on one side into the PLB transactions of the

other side. The bridge functions as a slave on one PLB side

and a master on the other. For a typical system with two

PLB segments, one bridge is necessary for transactions

originating from the processor. A second bridge is required

if a peripheral on the other side is master capable and wants

to address a peripheral on the processor side. Figure4

provides an example of the PLB connections for a system
with three masters and three slaves.

Figure 4: PLB Interconnection Diagram

3.2 ARCHITECTURE OF THE NEURAL NETWORK

The architecture of the network is the one
presented in Figure 2. In a hardware implemented neural

network, the processing elements (i.e., neurons) have to be

independent and operate in parallel. They should be

designed in such a way that their internal calculations are

optimized, while they should be so simple that the chip area

occupied by them is the minimum possible. Following

these requirements, a very small but high performance

system can be achieved.

The architecture proposed in this paper comprises

the following modules.

• A two-layer processing module: the hidden layer and the

 output layer (the input layer merely transmits the inputs)
• Three ROM modules, which store the network parameters

 (weights) for the hidden layer, the output layer and the

 sigmoid function, respectively.

• Additional components, such as a multiplexer and a block

 that calculates the maximum of its inputs.

• A circuit controller that governs the whole operation of

 the system.

The main component of the processing module is

the neuron, which is just a MAC (multiply-accumulate)

block. The MAC is loaded with an initial value (offset or

bias) and then multiplies each input with its corresponding

weight and accumulates these values to obtain the sum of
all them. It is a two-cycle synchronous component (see

Figure 5). The total number of these MAC blocks is 36 (32

for the hidden layer and 4 for the output layer).

Figure 5: MAC schematic. .

As for the ROM modules, the one that contains the

weights of the first layer (ROM1) has a size of 512 weights

with a word length of 12 bits, whilst the one corresponding

to the second layer (ROM2) contains 128 weights of a word

length of 8 bits. ROM1 is organized in 16 blocks of 32
weights, so that for each of the inputs the corresponding

block of 32 weights is addressed and sent to the first layer

of neurons. In the same way, ROM2 is divided into 32

blocks of 4 weights each. Finally, ROM3 is the memory

that stores the pre-computed sigmoid function and contains

256 values with a word length of 8 bits.

The system controller, whose main component is a

six-bit counter, provides the control signals for the whole

system. Such signals are the reset signals for all the

modules, the signals to enable each block, the address

signals for ROM1and ROM2 and the selection signal for

the multiplexer.
The detailed operation of the whole system is

described next. The 16 input data come serially through the

PLB bus. Each neuron (MAC block) receives the inputs

serially, multiplies each of them with the corresponding

weight (stored in the ROM1 memory) and adds them up.

The neuron needs only one clock cycle per input to process

the MAC operation, because while the accumulate

operation is being done, the next data are already being

multiplied, creating a pipeline. Furthermore, the 32 neurons

of the layer work in parallel. Hence, only 17 clock cycles

(one for each input and one more for the first data, before
starting the pipeline operation) are needed to perform the

calculations of the first layer, in spite of the fact that the

inputs enter the system serially.

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2821-2824 ISSN: 2249-6645

www.ijmer.com 2824 | P a g e

Once the outputs of the first layer are available,

they are used to address ROM3, which contains the

activation function. This memory is the same for all the

neurons of the first layer. The outputs of this block are the
sigmoid functions of their inputs. All the accesses to the

ROM3 are made in parallel, so just a clock cycle is

required. This ROM module provides 32 outputs that act as

the inputs to a 32 to 1 multiplexer. The multiplexer makes

it possible for the inputs to the following layer of neurons

to arrive serially, in such a way that this layer would work

like the first one. Thus, each of the 4 neurons of the last

layer receives the 32 incoming data serially and performs

the MAC operation, needing 33 clock cycles to finish this

task (one for each input and an additional one, as in the

previous layer).

Finally, the result of these MAC operations are
carried to a module that calculates which of them has the

maximum value, needing only one cycle to do so. The

output of this module represents the shape recognized by

the network, codified in 2 bits. This data is sent back to the

software partition through the PLB bus.

The final output showing the recognition of four

basic shapes is as shown in Figure 6, which is obtained

using the Chipscope Pro tool.

Figure 6: Results showing the recognition of four basic

shapes

IV. CONCLUSION AND FUTURE SCOPE
In this paper a prototype of a vision system for a

robotic platform to assist in manipulation activities has

been presented. An FPGA module for embedding the

object recognition module within a robotic mobile platform

is being designed. The FPGA module includes the neural

network and the control and the image processing modules
are built on a Microblaze. More work will be done to

strengthen the overall performance of this system, taking

into account more variability in object shape and colour

(real objects). Up to now, the FPGA module includes the

implementation of the neural network. As further work, the

rest of the image processing algorithms should also be

implemented on the chip. They would be included

preferably on the hardware partition of the SoPC for

performance reasons, but to do so, a previous analysis has

to be made in order to study the feasibility of this option. In

addition, the whole system has to be integrated with the
robotic platform in order to perform the manipulation

activities.

ACKNOWLEDGEMENT

We would like to express my sincere gratitude to

the Principal, Head of the department, all teaching and non
teaching staffs of Electronics and Comunication department

of TKMIT for their guidance and valuable suggestions for

the successful completion of this paper.

REFERENCES
 [1] Maria Isabel de la Fuente1, Javier Echanobe2, Inés

del Campo2, LoretoSusperregui1, Iñaki Maurtua,

Hardware implementation of a Neural-Network

Recognition module for Visual Servoing in a Mobile

Robot. Proceedings of the 6th International

Conference on Hybrid Intelligent Systems (HISá10),

Auckland, New Zealand, Pages 226-232, November

2010.

[2] Wells G., Venailleb C., Torrasa C., Vision-based

robot positioning using Neural Networks, Image

and Vision Computing, Elsevier B.V., Volume 14,

Issue 10, December 1996, Pages 715-732.
[3] Mutlu Avcý, Tulay Yýldýrým, “Generation of

Tangent Hyperbolic Sigmoid Function for

Microcontroller Based Digital Implementation of

Neural Networks”, International XII. Turkish

Symposium on Artificial Intelligence and Neural

Networks, 2003.

[4] Nasri Sulaiman, Zeyad Assi Obaid, M. H.

Marhaban and M. N. Hamidon Design and

Implementation of FPGA-Based Systems - A

Review Malaysia, 43400 UPM Serdang, Selangor

Darul Ehsan, Malaysia.

 [5] Haitham Kareem Ali and Esraa Zeki Mohammed,
Design Artificial Neural Network Using FPGA,

IJCSNS International Journal of Computer

 Science and Network Security, VOL.10 No.8,

August 2010.

[6] Walid Shahab, Hazem Al-Otum, and Farouq Al-

Ghoul, A Modified 2D Chain Code Algorithm for

Object Segmentation and Contour Tracing,The

International Arab Journal of Information

Technology, Vol. 6, No. 3, July 2009.

 [7] Freeman H, On the encoding of arbitrary geometric

configurations. IRE transactions on Electronic
computers.

[8] Omondi A. R., Rajpakse J. C. (Eds.), FPGA

Implementations of NeuralNetworks, (Springer,

2006.)

 [9] Demuth H., Beale M., Hagan M., Neural Network

Toolbox 6 User’s Guide, 2010, The MathWorks, Inc.

 [10] MicroBlaze™ RISC 32-Bit Soft Processor User

Guide, Product Brief, August 21,2002 Xilinx

[11] Processor Local Bus User Guide, Product Brief,

August 21,2002 Xilinx

.

