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Theory of Alfa Ray Production, Quantum Tunneling,
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ABSTRACT: We propose a Theory of Alpha ray production(Radioactive decay), Quantum Tunneling, Redundancy,
Entropy, Event, Cause, Space, Time, Storage ability, Quantum entanglement, Noise, Errors, by a Model that concatenates
and consummates these important variables and provide predictive capacity, Stability analysis, and Solutional behaviour of
the system,

I. INTRODUCTION

What is an event? Or for that matter an ideal event? An event is a singularity or rather a set of singularities or setof
singular points characterizing a mathematical curve, a physical state of affairs, a psychological person or a moral person.
Singularities are turning points and points of inflection: they are bottle necks, foyers and centers; they are points of fusion;
condensation and boiling; points of tears and joy; sickness and health; hope and anxiety; they are so to say “sensitive" points;
such singularities should not be confused or confounded, aggravated or exacerbated with personality of a system expressing
itself; or the individuality and idiosyncrasies of a system which is designated with a proposition. They should also not be
fused with the generalizational concept or universalistic axiomatic predications and postulation alcovishness, or the
dipsomaniac flageolet dirge of a concept. Possible a concept could be signified by a figurative representation or a schematic
configuration. "Singularity is essentially, pre individual, and has no personalized bias in it, or for that matter a prejudice or
pre circumspection of a conceptual scheme. It is in this sense we can define a "singularity” as being neither affirmative nor
non affirmative. it can be positive or negative; it can create or destroy. On the other hand it must be noted that singularity is
different both in its thematic discursive from the run of the mill day to day musings and mundane drooling. There are in that
sense "extra-ordinary".

Each singularity is a source and resource, the origin, reason and raison d’étre of a mathematical series, it could be
any series any type, and that is interpolated or extrapolated to the structural location of the destination of another singularity.
This according to this standpoint, there are different, multifarious, myriad, series in a structure. In the eventuality of the fact
that we conduct an unbiased and prudent examination of the series belonging to different "singularities" we can come to
indubitable conclusion that the "singularity" of one system is different from the "other system™ in the subterranean realm and
ceratoid dualism of comparison and contrast

EPR experiment derived that there exists a communications between two particles. We go a further step to say that
there exists a channel of communication however slovenly, inept, clumpy, between the two singularities. It is also possible
the communication exchange could be one of belligerence, cantankerousness, tempestuousness, astutely truculent, with
ensorcelled frenzy. That does not matter. All we are telling is that singularities communicate with each other.

Now, how do find the reaction of systems to these singularities. You do the same thing a boss does for you.
"Problematize" the events and see how you behave. I will resort to "pressure tactics”. “intimidation of deriding report", or
“cut in the increment" to make you undergo trials, travails and tribulations. i am happy to see if you improve your work; but
may or may not be sad if you succumb to it and hang yourself! We do the same thing with systems. systems show conducive
response, felicitous reciprocation or behave erratically with inner roil, eponymous radicalism without and with blitz
conviction say like a solipsist nature of bellicose and blustering particles, or for that matter coruscation, trepidiational motion
in fluid flows, or seemingly perfidious incendiaries in gormandizing fellow elementary particles, abnormal ebullitions,
surcharges calumniations and unwarranted (you think so but the system does not!) unrighteous fulminations.

So the point that is made here is " like we problematize the "events" to understand the human behaviour we have to
"problematize" the events of systems to understand their behaviour.

This statement is made in connection to the fact that there shall be creation or destruction of particles or complete
obliteration of the systems (blackhole evaporation) or obfuscation of results. Some systems are like “inside traders" they will
not put signature at all! How do you find they did it! Anyway, there are possibilities of a CIA/CBI finding out as they
recently did! So we can do the same thing witn systems to. This is accentuation, corroboration, fortification, .commendatory
note to explain the various coefficients we have used in the model as also the dissipations called for
In the bank example we have clarified that various systems are individually conservative, and their conservativeness extends
holistically too.that one law is universal does not mean there is complete adjudication of nonexistence of totality or global or
holistic figure. Total always exists and “individual” systems always exist, if we do not bring Kant in to picture! For the time
being let us not! Equations would become more eneuretic and frenzied..
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We TAKE In to consideration the following parameter:
(1) Alpharay production(Radioactive decay)
(2) Quantum Tunneling
(3) Redundancy
(4) Entropy
(5) Event
(6) Cause
(7) Space
(8) Time
(9) Storage ability
(10) Quantum entanglement
(11) Noise Errors.

QUANTUM TUNNELING AND ALPHA RAY PRODUCTION(RADIOACTIVE DECAY)
MODULE NUMBERED ONE.
NOTATION:
G153 : CATEGORY ONE OF QUANTUM TUNNELING
G4 - CATEGORY TWO OF QUANTUM TUNNELING
G5 : CATEGORY THREE OF QUANTUM TUNNELING
Ti3 : CATEGORY ONE OF ALPHA RAY PRODUCTION(RADIOACTIVE DECAY)
T4 : CATEGORY TWO OF ALPHA RAY PRODUCTION (RADIOACTIVE DECAY)
Ti5 :CATEGORY THREE OF ALPHA RAY PRODUCTION(RADIOACTIVE DECAY)

ENTROPY AND REDUNDANCY
MODULE NUMBERED TWO:

Gi¢ - CATEGORY ONE OF ENTROPY

Gi7 : CATEGORY TWO OFENTROPY

Gig : CATEGORY THREE OF ENTROPY

T, :CATEGORY ONE OF REDUNDANCY
T,; : CATEGORY TWO OF REDUNDANCY
T, : CATEGORY THREE OF REDUNDANCY

NOISE AND ERROR IN QUANTUM COMPUTATION:
MODULE NUMBERED THREE:

G, : CATEGORY ONE OF ERRORS
G,, :CATEGORY TWO OF ERRORS
G,, : CATEGORY THREE OF ERRORS
Ty, : CATEGORY ONE OF NOISE

T,, :CATEGORY TWO OF NOISE

T,, : CATEGORY THREE OF NOISE

CAUSE AND EVENT:
MODULE NUMBERED FOUR:

G,, : CATEGORY ONE OF CAUSE
G,5 : CATEGORY TWO OFCAUSE
G,s : CATEGORY THREE OF CAUSE
T,, :CATEGORY ONE OF EVENT
T,s :CATEGORY TWO OF EVENT
T,s : CATEGORY THREE OF EVENT

SPACE AND TIME:
MODULE NUMBERED FIVE:

G, : CATEGORY ONE OF TIME
G,9 : CATEGORY TWO OF TIME
G3o :CATEGORY THREE OF TIME
T,s :CATEGORY ONE OF SPACE
T,9 :CATEGORY TWO OF SPACE
T3, :CATEGORY THREE OF SPACE
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STORAGE ABILITY AND ENTANGLEMENT :
MODULE NUMBERED SIX:
G3, : CATEGORY ONE OF ENTANGLEMENT
G33 : CATEGORY TWO OF ENTANGLEMENT
Gs, : CATEGORY THREE OF ENTANGLEMENT
T3, : CATEGORY ONE OF STORAGE ABILITY
T33 : CATEGORY TWO OF STORAGE ABILITY
T3, : CATEGORY THREE OF STORAGE ABILITY

(a13)(1), (a14)(1), (a15)(1). (b13)(1). (b14)(1); (b15)(1) (am)(z); (‘117)(2); (a18)(2) (bm)(z); (b17)(2); (b18)(2):
(azo)B), (a21)(3), (azz)(3) ) (bzo)(g). (b21)(3); (bzz)(3)
(a24)(4), (azs)(4): (a26)(4), (b24)(4), (bzs)(4); (bze)(4); (bzg)(S); (b29)(5); (b30)(5),(a28)(5), (azg)(s); (a30)(5);
(a32)(6). (a33)(6). (a34)(6), (bgz)(6), (b33)(6), (b34)(6)
are Accentuation coefficients

, , NS . ' , ' , , . , ,
(a13)(1), (a14)(1): (a15) , (b13)(1), (b14)(1); (b15) , (am)(z); (a17)(2); (a18)(2); (ble)(z); (b17)(2); (blg)(z)
) (aVZO)(S)I (a'21)(3): (aVZZ)(B): (béo)(g): (bé1)(3)' (béZ)B)
(a’24)(4), (aés)(4): (a'26)(4): (bé4)(4), (bés)(4)' (béﬁ)(4); (béS)(S); (bé9)(5), (béo)(S) (aﬁg)(s); (aﬁg)(s)» (a'30)(5) )

(aéz)(6)r (a§3)(6), (a§4)(6), (béz)@, (b§3)(6), (b§4)(6)
are Dissipation coefficients.

(€Y}

QUANTUM TUNNELING AND ALPHA RAY PRODUCTION(RADIOACTIVE DECAY)
MODULE NUMBERED ONE

The differential system of this model is now (Module Numbered one).
dGB = (a13) V614 — [(@1)D + (a13) P (T34, )] Gy3 -

= (a;)YGy3 — [(ai4)(1) + (a{4)(1)(T14,t)]G14 .

dG—ls = (a15) MGy — [(ais)(l) + (ai's)(l)(th)] Gis -

‘”13 = (01) VT = [(01) P = G VG, O]Ti5 -

‘”“ = () VT3 = [(01)D = GNP G, O]Ty, -

T = )Ty~ [(b1s) " = (b15) V60| Tis

+(a13)( )(Ty,,t) = First augmentation factor .
—(b;3)V(G,t) = First detritions factor.

dGl4

ENTROPY AND REDUNDANCY
MODULE NUMBERED TWO

The differential system of this model is now ( Module numbered two).

dG . p
i = (a16) PGy — [(am)(z) + (a1)@(Ty7, t)]616 .
a2 , p

—L = (a;7) PGy — [(a17)(2) + (a17)(2)(T17,t)]G17 .
dGls

= (a19) PGy — [(ais)(z) + (ails)(z)(Tn:t)]Gls .
‘”16 = (b16)@Ty; — [(b16)@ — (b1e)P((G19),t)]Trs -
‘”” = (b17)PTys — [(b17)@ = (b)) P ((Gro), )] 17 -

dT , "

2 = (byg) DTy — [(b1g) P — (b1) P ((Gro), )| Ths -
+(a16)(2)(T17, t) = First augmentation factor.
—(bys)®((Gyo), t) = First detritions factor.

NOISE AND ERROR IN QUANTUM COMPUTATION:
MODULE NUMBERED THREE

The differential system of this model is now (Module numbered three).

4G , )
22 = (a0) PG,y — [(@20)® + (a50) P (Tyy, )] Gyp -

i , )

l = (a31)® Gy — [(a3)® + (a3)®(Ty1, )]Gy -

dGZZ

T2 = (a)P 6,y — [(a22)® + (a5) P (Ty1, )]Gy -
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dr: , .
=2 = (by) DTy — [(h30)® = (b30) P (Go3, O] Ty -
i , .
Z2 = (by,))®Tyy — [(131)P = (7)) P (G5, O Ty
d;fz (b22)PTy; = [(022)® = (03)® (G5, D] T,

+(ay)® (Tyy,t) = First augmentation factor.
—(by)®(G,3,t) = First detritions factor .

CAUSE AND EVENT:

MODULE NUMBERED FOUR:
The differential system of this model is now (Module numbered Four).

d624 = (az)™MGys — [(aé4)(4) + ((154)(4)(7'25'0]6;24 .
dGZS = (az5) MGy — [(azs)(4) + (azs)(4) (T2, t)] Gos -
dGZG (a26)( )st [(a26)(4) + (a26)(4) (Tys, t)]G26 :
dT24 (b24)(4)T25 [(bé4)(4) - (b£4)(4)((G27)' t)]T24 :
T = o)Wy = [(b35)” = (b35) (G, 0)] s

dT ' "

28 = (bye)DTys — [(b26)® — (b36) P ((Gp7), )| Ty -
+(a24)( )(T,s,t) = First augmentation factor.
—(b54)W((Gyy),t) = First detritions factor .

SPACE AND TIME:

MODULE NUMBERED FIVE

The differential system of this model is now (Module number five).

dGZB = (az5)® 69 — [(a26)® + (az)® (Tz9, 0] Gog .
dng = (a20)® Gyg — [(a29)® + (a39)® (Tyo, )] Grg -
d630 = (az30)®Gy9 — [(a30)® + (az0)® (Tz9, ]G30 -
‘”ﬂ = (b2e) T — [(b3)® = (b3)® ((G32), )]s -
dee

= (by9) S Tyg — [(bé‘;)(s) - (b£9)(5)((631); t)]T29 .

dT ' "

0 = (byg) D Tyg — [(B30)® = (b30)D ((G31), )] Tso -
+(a28)(5)(T29, t) = First augmentation factor .
—(b5g)®((G31),t) = First detritions factor .

STORAGE ABILITY AND ENTANGLEMENT :
MODULE NUMBERED SIX

The differential system of this model is now (Module numbered Six).
d , )
ﬂ = (a32) @ Ga3 — [(a32)© + (a3,)© (T35, )]G -
d , ,
633 = (a33) @ G3; — [(a33)© + (a33)© (T35, )] Gas -
d , )
634 = (a34) @ Ga3 — [(a34)© + (a34)© (T35, )]Gy -
d , )
T3Z = (b3y) T3 — [(b32)(6) — (b32)®((G35), t)]T32 .
d , )
T33 = (b33)©Ts; — [(b33)(6) — (b33)®((G3s), t)]T33 .

dT ' "

2 = (b)) OTyy — [(b34)©® — (b3)© ((G35), )| T4 -
+(a32)( )(Ty3,t) = First augmentation factor.
—(b3,)®((Gs5),t) = First detritions factor .
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HOLISTIC CONCATENATE SYTEMAL EQUATIONS HENCEFORTH REFERRED TO AS “GLOBAL

EQUATIONS”

(1) Alpharay production(Radioactive decay)
(2) Quantum Tunneling

(3) Redundancy
(4) Entropy

(5) Event

(6) Cause

(7) Space

(8) Time

(9) Storage ability

(10) Quantum entanglement

(11) Noise
(12)Errors
49 = (a,5) V6 (ai3)(1)|+(a{3)(1)(T14't)||+(a£6)(2'2')(T17't)||+(a£0)(3'3')(T21’t)| G
o \da3 14— - - o 13 -
‘ ] | +(a24)(4'4'4'4') (Tys, £) | | +(a28)(5'5'5’5’) (Tye, 1) | | +(as )(6666) (T3, ) | |
i " (@) P[+(a1) D (T4, || +(@) @2 (T, D][+(a5) ) (T, D)
& (a14)"VGy3 — S (a444) T G555 TN6665) Ga
] +(a25) (T3s,t) |+(a29) 2 (ng,t)||+(a33) o (T33»t)|_
[ D NG - .
4615 _ (g, Y6, — (a15) |+(ais) (T4, 1) |+(a18)(2'2')(T17't)||+(a22)(3'3')(T21:t)|
ac M5 14 - - — 15
| [+ (@5e) 4444 (Tys, )| [+(az0) 5559 (T, )| +(a5) 550 (T35, )|

Where | (a13) D (Ty4, t)| )

|(a{4)(1)(T14, t)|, (a{s)(l)(TM, t)| are first augmentation coefficients for category 1, 2 and 3

|+(a{6)(2'2') (Ty7, t)| , |+(a{7)(2'2') (Ty7, t)| , |+(a{8)(2'2') (Ty7,t) | are second augmentation coefficient for category 1, 2 and

3
|+(a§0)(3'3') (Ty1, t)|,|+(a§1)(3'3') (To1, )|, | +(a3,) C3(Tyy, t)| are third augmentation coefficient for category 1, 2 and 3
|+(ag4)(4,4.4.4.) (Tys, t)| , +(a§5)(4'4'4'4') (Tys, t) ,|+(a§6)(4'4'4'4') (Tys, t) | are fourth augmentation coefficient for category 1,
2and 3
|+(a§8)(5'5'5'5') (Tyo,t) |,|+(a§9)(5'5'5'5') (Tyo, t)|,|+(a§0)(5'5'5'5') (Tyo, t)| are fifth augmentation coefficient for category 1, 2
and 3
|+(a§2)(6'6'6'6') (Ty3,t) | |+(a§3)(6'6'6'6') (Ts3, t)l ,|+(a§4)(6'6'6'6') (Ts3, t)| are sixth augmentation coefficient for category 1, 2
and 3.
. " 1) D=V G, O] [~B10) @2 G1o, |- (b3)* (G, |
— = (by3)"WT, — - - - Tis .
dt o 14 |—(bz4)(4'4'4'4')(627;t)“—(bzs)(s‘s‘s‘s‘)(%pt)||—(b32)(6’6’6’6‘)(635:t)l 13
it _ o yor B P[=Bi) VG, O] [=Bi) PP (Go, D] |- (b)) (63, 8| :
e - \Pua 13~ YY) - v 1
I _(bzs) (Gy7,8) |—(b29)(5‘5‘5‘5‘) (G, t)“ —(b33)©000) (G, t)l ]
[ D NG - P ]
dTis _ (b )(1)T (b15) _(b15) @,t) |—(b18)(2‘2‘)(G19't)ll—(bzz)(3‘3‘)(523:t)l T
7 - 15 14 — — — — 15 -
| [=(b2) #*44) (Gyy, D) || = (b30) S 555 (Gay, ) || = (b30) G555 (G35, ) ||

Where|—(b;3)® (G, t)],

|—(bi’4)(1)(6, t)l, —(b{s)(l)(G, t)| are first detrition coefficients for category 1, 2 and 3

|—(b{6)(2'2') (Gyo, ) | | — (b))% (G0, t)l,l—(bi'g)(z'z') (Gyo, t)| are second detrition coefficients for category 1, 2 and 3

|—(b§0)(3'3') (Gy3, t)| ,|—(b£1)(3'3') (Gy3, t)l,l—(bgz)(“') (Gy3, t)|are third detrition coefficients for category 1, 2 and 3

[=B3)* 4 (G, )],

RNCYYYS)
—(bys) (Gy7,8)],

|—(b£6)(4'4'4'4') (Gy7,0) | are fourth detrition coefficients for category 1, 2

and 3

|—(b§8)(5'5'5'5')(631, t)| : |—(b£9)(5'5'5'5') (Gs1, t)l , |—(b§0)(5'5'5'5') (G31,0) | are fifth detrition coefficients for category 1, 2 and

3
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|—(b§2)(6'6'6'6')(635, t)| : | —(b33)®000) (G, t)| , |—(b§4)(6'6'6'6') (Gss,t) | are sixth detrition coefficients for category 1, 2 and
3

6 _ ()06 (@16) @ +(a16) @ (Ty7, O)|[+(a]s) W Ty, || +(a50) 339 (T, )|
16 17— —
| [+ @30) 44 (Tyg, ][+ (a30) 559 (T, 0| [+ (@) 5559 (T, 0)] |
d617 — (a;,)® (a17)(2)|+(a17)(2)(T17,t)||+(a14)(1'1')(T14,t)||+(a21)(3'3'3)(T21,t)|
= (a17)"" G — \ ~(4,4,4,4,4)
] +(a25) (Tys,t) |+(a29)(5'5'5'5'5)(T29, t)” +(az3)©0060) (Ty,, t)|
[ ' v NCED) -
dGlg — ()6 (als)(2)|+(a18)(2)(T17't)| +(ajs) " (Tyy, 1) |+(a22)(3'3'3)(T21,t)|
18 17—
i |+(a26)(4'4'4'4'4)(T25,t)||+(a30)(5'5'5'5'5)(T29,t)||+(a34)(6'6'6'6'6)(T33,t)|

Where | +(a;s) P (T, t) | ) |+(a{7)(2)(T17, t)| |+(a{8)(2)(T17, t) | are first augmentation coefficients for category 1, 2 and 3

|+(a{3)(1'1') (Tya, t)| , |+(a{4)(1'1') (Tya, t)| +(a 15) (T14, are second augmentation coefficient for category 1, 2 and 3

|+(a§0)(3'3'3)(T21, t)|,|+(a§1)(3'3'3)(T21, t)|,|+(a22)(3'3'3)(T21, t)lare third augmentation coefficient for category 1, 2 and
3

"N (a4 444 n\(4ee4) T (44,4, 4,4) ; "
|+(a24) ARV (T,e, t) | +(a25) (Tys,t) ,|+(a26) i (Tzs,t)| are fourth augmentation coefficient for category
1,2and 3
|+(a§8)(5'5'5'5'5)(T29,t) | |+(a§9)(5'5'5'5'5)(T29, t)| ,|+(a§0)(5'5'5'5'5)(T29, t)| are fifth augmentation coefficient for category
1,2and 3
|+(a§2)(6'6'6'6'6) (Ty3, t)|, |+(a§3)(6'6'6'6'6) (Ty3, t)| : |+(a§4)(6'6'6'6'6) (T3, t)| are sixth augmentation coefficient for category
1,2and 3 .

i _ g 5o (1) [ =i P Gro, O] [0V G O] 0D G0 |
16 17 — 16
| [=(B3) 4449 Gy, £)| | = (b3e) G555 (Gay, £) ||~ (b32) €405 (G5, )|
dT17 - (b17)(2)|—(b17)(2)(G19; t)| |—(b14)(11)(G t)” (b1)C33)(G,3, t)|
= (b17) Ti6 — N (4,4,4,4,4) m - Ty -
[ [=(bss) (Ga7, D)|| = (b30) 53559 (G5, ) ||~ (b33) @555 (G35, 1) |
[ , m . £ (1,1) - ]
dTlS = (b)) @T, (bls)(z)l—(bls)(z)(Gw;t)l _(bls) G, 1) |‘(b22)(3'3'3')(623,t)| T
= 18 17 — 18 -
| [=(B3) 44449 Gy, O] | = (b30) 5559 (G, )] = (34) 459 (G, 1)

where| —(b16)® (Gyo,8)| ,[=(b77,)@ (Gyo,)| | —(b16) P (Gyo,t)| are first detrition coefficients for category 1, 2 and 3

|—(b{3)(1’1') (@G, t)| ,|—(b{4)(1'1') (G, t)| , —(b{s)m') (G, t)| are second detrition coefficients for category 1,2 and 3
|—(b§0)(3'3'3') (Gys, t)| | —(by) B33 (G, t)|,|—(b£2)8'3'3‘) (G, t)l are third detrition coefficients for category 1,2 and 3

|—(b§4)(4'4'4'4'4) (Gyy,t) | —(bgs)(4'4'4'4'4) (Gyy, t) ,|—(b£6)(4'4'4'4'4) (Gyy, t)| are fourth detrition coefficients for category 1,2
and 3

|—(b§8)(5'5'5'5'5) (Gsy, t)| ,|—(b£9)(5'5'5'5'5)(G31, t)l ,|—(b§0)(5'5'5'5'5)(631, t)| are fifth detrition coefficients for category 1,2

and 3

|—(b§2)(6'6'6'6'6) (Gss, t) |,|—(b§3)(6'6'6'6'6) (Gss, t)l , |—(b§4)(6'6'6'6'6) (Gss, t)| are sixth detrition coefficients for category 1,2
and 3

y o (@30) P +(@30)P Ty, D] [+(a16) 2 (T, ] [ +(@r3) M (T, 1)
20
=(a G m m m G
= (@) [ O T, ][ () 5 (1, O] [ ) 25559 (T, D] | 2
s o (@5)@[+(a30) @ (T, O] +ai7) 22 (T, 0)|| +(a1) W1 (T, 1)
= (@21)" G0 — w \(44444,4) " N(5.55555) " ~(6,6,6.6.6,6) Ga1 -
+(as) (Tzs,t) |+(az9) """ (ng,t)“+(a33) “““ (T33:t)|
[ , - - PINGEED) ]
dGzz = (0,,)6 (azz)(3)|+(a22)(3)(T21,t)||+(a18)(2'2'2)(T17,t)l +(ajs) (Ty4,t) ¢
. 22 21 — 22
[+(a56) 444D (Thg, )| +(as0) S55555) (Tyo, £) ||+ (@) ©00660 (T4, )|
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|+(a§0)(3)(T21, t)|, |+(a§1)(3)(T21, t) | |+(a§2)(3)(T21, t)| are first augmentation coefficients for category 1, 2 and 3

|+(a{6)(2'2'2)(T17, t) |,|+(a{7)(2'2'2)(T17, t)| , |+(a{8)(2'2'2)(T17, t) | are second augmentation coefficients for category 1, 2
and 3

" " " 1,1,1, . . ..
|+(a13)(1'1'1') (Tyq, t)|,|+(a14)(1'1'1') (Tya, t)|, +(a15)( )(TH, t)| are third augmentation coefficients for category 1, 2

and 3

" vy (4,4,4,4,4,4) m R ..
|+(a24)(4'4'4'4'4'4) (Tys, t)| +(azs) (Tys, t) ,|+(a26)(4'4'4'4'4'4) (Tys, t)| are fourth augmentation coefficients for
category 1, 2 and 3
|+(a§8)(5'5'5'5'5'5)(T29, t) |,|+(a§9)(5'5'5'5'5'5)(T29, t)|,|+(a'3'0)(5'5'5'5'5'5)(T29, t) | are fifth augmentation coefficients for
category 1, 2 and 3
|+(a§2)(6'6'6'6'6'6) (Ts3, 1) | , | +(a33) 000660 (Ty, 1) |,|+(a§4)(6'6'6'6'6'6) (Ts3, t)| are sixth augmentation coefficients for
category 1, 2 and 3

40 ()T (b20)P[=03) P (G, O] |- h1) 2 G0, O||- i) G 0] |

— = b20) 11 — - - ~ 20 -

dt _ | —(by,) 44424 (G, t)||—(bzg)(S'S'S'S'S'S)(G31, t)|| —(bs,)©6:6666) (G, t)| |

. o 3P[0 (G35, )] |= (1) 2P (G, O] |- (i) (G, )|

T2 = (821)7 Ty — v \(#44444) " (555555 R T
| _(bzs) (Gy7,1) |—(b29)( ””” )(031' t)” —(b33)(6‘6‘6‘6‘6‘6) (Gss, t)| ]
[ , - - »A(L1,1) 1

Ty _ (b,)OT (bzz)(3)|—(b22)(3)(G23: t) | |— (b1g) **? (G, t)| - (bs5) @G, t) T

o = W) — . - = 22 -
] | —(by) 444D (G, t)”_(b30)(5'5'5'5'5'5)(031' t)” —(b3,) (000500 (G, t)| ]

|—(b§0)(3)(G23, t) | ,|—(b§1)(3)(623, t)| ,|—(b§2)(3)(G23, t)l are first detrition coefficients for category 1, 2 and 3
|—(b{6)(2'2'2)(G19, t)| , |—(b{7)(2'2'2)(G19, t)| , |—(b{8)(2'2'2)(619, t)| are second detrition coefficients for category 1, 2 and 3

|—(b{3)(1'1'1') (G, t)| ,|—(b'1'4)(1'1'1,) (G, t)| , —(b{s)(l'l'l')(G, t)| are third detrition coefficients for category 1,2 and 3

|_(bé'4)(4,4.4.4.4.4)(g27,t) | _(bgs)(4’4'4'4’4'4)(G27,t) ,|—(bé’é)(4'4'4'4'4'4)(627,t)|are fourth detrition coefficients for category
1,2and 3

| =(b35) 55555 (Gay, )], | = (b30) E55555) (Gay, )|, | — (b30) &>555) (G4, 1) | are fifth detrition coefficients for category
1,2and 3
|—(b§2)(6'6'6'6'6'6) (Gss,t) |,|—(b§3)(6'6'6'6'6'6) (Gss, t) |,|—(b§4)(6'6'6'6'6'6) (Gss, t) | are sixth detrition coefficients for category 1,
2and 3 .

Ao _ (g (a20) [ +(@3) D Tys, )] [+(a2) 05 Ty, O] | +(a5) )T, 8)] |
= az4 25 — - ~ - 24
dt | |+(a13)(1'1'1'1)(T14, t) ||+(a16)(2’2’2‘2)(7117' t) | | +(az0) 333 (T, t)| ]
[/ @ INQ) " . ]
dGys = (ay)?G,y — (a3s) |+(azs)  (Tys, 1) |+(a29)(5‘5‘)(T29't)||+(a33)(6‘6)(7133't)| G
ar - a2 24 _ _ _ 25 -
I |+(a14)(1'1'1'1)(T14, t) ||+(a17)(2'2'2'2)(T17, t) | | +(a31) 323 (T, t)| ]
dGy (a36)®|+aze) ® (Tys, ][ +(a30) 5% (Tyo, D] [+(a3) 4 (T3, 1) |
ac (a6)®Gas » @LLD " N22.2,2) " 1(3,333) Gas -
| +(ajs) (Ty4, t) |+(a18) o (T17,t)“+(a22) o (T21't)| ]

Where|(ay,)® (Tys, t)|, (aé’s)m (Tys, )|,] (ape) @ (Tys, t)| are first augmentation coef ficients for category 1,2 and 3

|+(a£8)(5'5') (T, t)|,|+(a£9)(5'5') (T, t)|,|+(a§0)(5'5') (Tyo,t) | are second augmentation coefficient for category 1,2 and 3

|+(a§2)(6'6') (Ts3, t)|,|+(a§3)(6'6') (Ty3, t)|,|+(a§4)(6'6') (Tss3, t)l are third augmentation coef ficient for category 1,2 and 3

| +(ay3) VD (T, £) |;| +(ay,) VD (T, 0) I: +(a{5)(1'1'1'1)
2,and 3

|+(a{6)(2'2'2'2)(T17, t) | |+(a{7)(2'2'2'2)(T17, t) |,|+(a{8)(2'2'2'2)(T17, t)| are fifth augmentation coefficients for category 1,
2,and 3

|+(a§0)(3'3'3'3)(T21, t) | |+(a£1)(3'3'3'3)(T21, t) | |+(a£2)(3'3'3'3)(T21, t)| are sixth augmentation coefficients for category 1,
2,and 3.

(T4, t)| are fourth augmentation coefficients for category 1,
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AT, |02 P =30 Gy, D] [=(b30) ) (G, ]| (B5) 4P (G35, D]
dt (b24)™Tos = " N(1,1,1,1) " N(2.2,2,2) " N(3,3.3,3) Tos -
| |—(b13) (G, f)l |_(b16) e (619;t)||—(b20) o (623;t)| ]
[ \@® ANG) - . ]
dTys (b, )T, — (b3s) | =(b3s)  (Gy7,t) |—(b29)(5’5’)(031't)||—(b33)(6‘6‘)(035;t)| T
dar V2 24 . - n b
| =i AG, 0| [=(bi) 222D (6o, 8)] - (07) 33D (G5, 8)] |
AT _ o oy (b36)@|=(b20)® (Gy7, O] [~ (B30) 5> Gy, ) |- (b31) @) (G5, 1) .
dt (bae) ™25 = _(pr )LD —(r' 2222 _(h" \(3333) 26
(b15) (G, )] |—(big) (G19,)||- (b22) (Gy3, 1) ]

Where | —(by)® (6,7, 1) |, —(bgs)(‘” (Gyy,t) ,|—(b£6)(4) (G, t)l are first detrition coef ficients for category 1,2 and 3
|—(b£8)(5'5') (Gs1, t)| ,| —(by9) %) (Gsy, t)|,|—(b§0)(5'5') (Gs1, t)l are second detrition coef ficients for category 1,2 and 3
|—(b§2)(6'6') (Gss, t)| ,| —(b33)©%) (Gss, t)|,|—(b§4)(6'6') (G5, t) | are third detrition coef ficients for category 1,2 and 3

|—(b1”3)(1'1'1'1)(G, t) |,| — (b)) LLD(G, t)| , _(blus)(l,l,Ll)(G' 0

are fourth detrition coef ficients for category 1,2 and 3

[=(bi6) 22D (619, D)} [~ (b)) #?2P (619, )] |~ (b15) 2**P (1, )|
are fifth detrition coef ficients for category 1,2 and 3

[= (03)6339) (Gys, D} |- (030339 (G, )} |- (b5) G339 (G, )|
are sixth detrition coef ficients for category 1,2 and 3 .

A6 _ (0 o, | @ @m0 U, D[+ @) (T, || H(@3) 0O T D] |
= a28 29 — m ” " 28
dt | | +(ay3) (T, t) ||+(a16)(2'2'2'2'2)(T17' t) | | +(az0) 3333 (T, t)| ]
T - — X :
dGyy ©) (a29)(5)|+(a29)(5)(7'29;t)l +(ays) " (Tys, t) |+(a33)(6‘6‘6)(T33't)|
dar (az9)™ Grg — - — m Gzo
| [+(ai) VD (T, )| +(a17) @222 (T, )| | +(az) @333 (T, £)|
dG (a30)®|+(az0)® (T, t) +(a£6)(4’4’)(7"25't)| +(az4) 00 (Ty3, 1)
30
= (a30)® Gy — PNCEREED - ; Gsp -
dt +(a15) (T14, 8) |+(a18)(2'2'2'2'2)(T17't)||+(a22)(3'3'3'3'3)(T21't)l

Where | +(azg)® (Tyo, t)|,|+(a£9)(5)(T29, t)|,|+(a§0)(5)(T29, t)l are first augmentation coef ficients for category 1,2 and 3
(44)

And |+(az) @) (Tys, ), +(azs )
|+(a§2)(6'6'6) (Ty3,t) | ,|+(a§3)(6'6'6) (T35, t)|,|+(a§4)(6'6'6) (T3, t) | are third augmentation coef ficient for category 1,2 and 3

m 7 » £(1,1,1,1,1)
|+ (@) D (1, )} |+ (@) S (T, )| +(a)s)
1,2,and 3
|+(a{6)(2'2'2'2'2)(T17, t) || +(ay;)@2222(T,,, t) |,|+(a{8)(2'2'2'2'2)(T17, t) | are fifth augmentation coefficients for category
1,2,and 3
|+(a§0)(3'3'3'3'3)(T21, t) |,|+(a§1)(3'3'3'3'3)(T21, t) |,|+(a§2)(3'3'3'3'3)(T21, t)| are sixth augmentation coefficients for category
12,3

(Tys,t) ,|+(a£6)(4'4') (Tys, t)l are second augmentation coef ficient for category 1,2 and

(Ty4,t)| are fourth augmentation coefficients for category

T _ oy yorp,, (b3) = (b)) (61, )] [ 2) 4G, ]| - (b52) OG5, O] |
- 28 29 m m m 28 *
dt | (=) VDG, 0] | = (b16) 222D (G, 8)] |- (bp) 33333 (Gys, D |
[, m v\ (4,4) - ]
ATy = (b )(S)T _ (b29)(5)|—(b29)(5)(G31't)l _(bzs) (Gy7,8) |—(b33)(6‘6‘6)(635't)| T
de 29 28 - = _ 59
| [= (b1 )G, )| = (b1 B222D(Gro, 8)||- (55 B3333 (6,5, )|
AT o o (b30)@|=(b3)® (Gs1, )| [=(b36) ) (Gy7, )| |- (b31) @59 (G35, 1) | ;
—7 = W3p 29 — N (L1111) - - 30
dt —(bys) @, t) |—(b13)(2'2'2'2'2)(G19.t)“-(bzz)(3'3‘3‘3‘3)(623‘t)|_

where |— (byg)® (Gsy, t)| ,| —(by9)®(Gs, t)l ,|—(b§0)(5)(G31, t)l are first detrition coef ficients
for category 1,2 and 3

" n (44, " s , .
|—(b24)(4'4') (Gy7, t)|, —(bZS)( )(627, t) ,|—(b26)(4'4') (Gyy, t)l are second detrition coef ficients for category 1,2 and 3
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|—(b§2)(6'6'6) (Gss, t)| ,| —(b33) 0 (G, t)|,|—(b§4)(6'6'6) (Gss, t)l are third detrition coef ficients for category 1,2 and 3

|—(bi’3)(1'1'1'1'1)(6, t) |,|—(b{4)(1'1'1'1'1)(c, t)| = (bys L) (G, t)| are fourth detrition coefficients for category 1,2, and
3

|—(b{6)(2'2'2'2'2)(619, t) |,|—(b{7)(2'2'2'2'2) (Gyo, t) |,|—(bl"g)(z'z'z'z'Z)(Glg, t)| are fifth detrition coefficients for category 1,2,
and 3

|— (byg) 33333 (6,3, 1) | |— (by1)B3333)(Gys, t) | |— (by,)B3333)(G,s, t)| are sixth detrition coefficients for category 1,2,
and 3.

G _ 0 sog (a32) VH(52) ) (T, O [+a3) 59 (T, O] [+ (@) 49 (T, 0] |
= (as; 33~ - - = 32
dt | +(a5)CLLILD(T, £ ”+(a16)(2'2'2'2'2'2)(T17, t) | | +(ayy) 333333 (Tyy, £) |
[ , ,, - vy (44,4) 1
dGzz (@:)O6,, — (a33)(6)|+(a33)(6)(T33,t)||+(a29)(5'5r5)(T29,t)| +(azs) (T3s,t) G
ar  \Gs3 32 _ - - 23
J+(a14)(1'1'1'1'1'1)(T14,t)”+(a17)(2'2'2'2'2'2)(T17,t)||+(a21)(3'3'3'3'3'3)(T21,t) |
dGs, ) (aé4)(6)|+(a§4)(6) (T3, ) ||+(a§0)(5'5'5) (Tyo,t) | | +(a£6)(4'4'4') (Ts, t)|
dc (@34) ™63 = LD " N222222) "(333333) Gas -
+(a15) (T4, t) |+(a18) ””” (T17,t)||+(a22) “““ (T21!t)|

|+(a§2)(6) (Ts3,t) |,|+(a§3)(6) (Ty3,t) |,|+(a§4)(6) (Ts3, t)l are first augmentation coef ficients for category 1,2 and 3

|+(a§8)(5'5'5)(T29, t) |,|+(a§9)(5'5'5)(T29, t)|,|+(a§0)(5'5'5)(T29, t)l are second augmentation coef ficients for category 1,2 and 3
m vy (4,4,4)
| +(ayy) ) (Tys, 1) | | +(azs)
m ,, " 1,1,1,1,1,1 R -
|+(a13)(1'1'1'1'1'1)(T14, t) |,|+(a14)(1'1'1'1'1'1)(T14, t) | +(a15)( )(T14, t)| - are fourth augmentation coefficients

|+(a/) 22222 (1;,, )| [ +(aj,) Z2222(T;;, 0)} | +(a)g) @222 (Ty,, )| - fifth augmentation coefficients
|+(a30)B33333) (T, )|, [ +(a51) 33333 (T, )| | +(a5,) 333333 (T, )| sixth augmentation coefficients .

(Tys,t) ,|+(a§6)(4'4'4') (Tys, t)l are third augmentation coef ficients for category 1,2 and :

AT _ o o (b52) V[ =(b52) 9 G D[ (b2p)** G, D[ (b2 ) 4G 0] |
— = W3 33 © - - 7 3z
dt |=B1)AH DG, )] | = (b)) 22222 (Gro, £)]| - (bp) B33 (G, 1)
[ , - - v~ (4,4,4,) ]
Tz (b33)©®T: (b33)(6)|—(b33)(6)(G35;t)”— (b29)(5’5'5)(631»t)| - (bys) (Gy7,8) T
Ty 33 32 T 33 -
dt [—(b1) LG, )| | =(b1) #2222 (Gy, O) || (b3)B33339 (Gys, 1) |
dTs, © (b3)@|=(b3) @ (G35,0) || (30)®59 (631, D) || - (b3e) 4 (G, 1)
dt (bsa)™ s = \LLLLLD) "N(22222,2) "(33.3.33.3) Tas-
—(b5s) (G, )| [~ (big) @2222 (G19,D)||- (b5p)B3333 ()

|—(b§2)(6) (G3s,t)|,|—(b§3)(6) (Ggs,t)| ,|—(b§4)(6) (Gss, t)l are first detrition coef ficients for category 1,2 and 3
|—(b£8)(5'5'5)(631, t)| ,| —(byg) > (G, t)l,l—(b;o)(S'S'S)(Gm, t)l are second detrition coef ficients for category 1,2 and 3

|—(b£4)(4'4'4') (Gy7, t)|, _(bgs)(4'4'4')(G27, t) ,|—(b£6)(4'4'4')(627, t)l are third detrition coef ficients for category 1,2 and 3

|—(b{3)(1'1'1'1'1'1) G, 0) |,|—(bi'4)(1'1'1'1'1'1) G, 0) | —(bl”s)(l'l'l'l'l'l)(G, t)| are fourth detrition coefficients for category 1, 2,
and 3

|—(b{6)(2'2'2'2'2'2) (Gio, 1) | |—(bl”7)(2'2'2'2'2'2)(Glg, t) | | —(byg)@22220 (G, t)| are fifth detrition coefficients for category 1,
2,and 3

|— (byg) 333333 (6,3, 1) | |— (byy) 333333 (G, 1) ||— (byy)B333333)(G,,, t)l are sixth detrition coefficients for category 1,

2,and 3
Where we suppose.

AD on @) D @
(A) @)™, (@) ", (a) 7 @)D, (b)) 7, (6) " >0,
i,j =13,14,15
(B)  The functions (a[)m, (b[)m are positive continuous increasing and bounded.
Definition of (p,)®, (r)®:
(D R
(@) (T4, ) < @) < (A3 )@
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B)VGH < @D < @)D < (Bi)®.
©  timp,(@)” (T ) = @)
limG_,w(bi")(l) G, 0= (W
Definition of (A3 )™, (B3 )V :
Where|(A13)®D, (B3 )D, ()@, ()@ are positive constants and [i = 13,14,15),
They satisfy Lipschitz condition:
@) O Ty ) = (@)D (T, O] < (Ryz YO Tyy — Tiylem (M)t
1BHPG 1) — BHDP G, D] < (i3 )DN|G — Gl

With the Lipschitz condition, we place a restriction on the behavior of functions
(@)D (Tyy, ) and(a;) P (Tyy, t) . (T1,, t) and (T4, t) are points belonging to the interval [( &y3 )™, (M5 )] . Itis to be
noted that (a;)" (T, 4, t) is uniformly continuous. In the eventuality of the fact, that if ( #,5 ) = 1 then the function
(@)D (T4, t) , the first augmentation coefficient WOULD be absolutely continuous. .
Definition of (M3 )@, (k3 )® :
(D) (My3)D, (ky3)D, are positive constants
(@™ (bW
(M13)® 7 (My3)D <t
Definition of ( 23 )™, (Q;3)®:
(E) There exists two constants ( P;3 )™ and ( 0,53 )™ which together with ( M3 )®, (ky3)D, (4;3)® and
(By3)® and the constants (a,)@, (a)®, (b)D, (bW, (p)®, ()P, i = 13,14,15,
satisfy the inequalities
(@)® + (@)® + (Az)D+ (P3)® (k)P <1

B + BHP + (B3 )P + (013)D (k3)P]< 1.

1
(My3)® L

_r
(My3)D [

Where we suppose.
@, (@), (@), )@, B) 2, ()P >0, ij=161718.
The functions (al-")(z), (bi")(z) are positive continuous increasing and bounded..
Definition of (p)®, (r;)@:.
(a;)(Z)(Tn' ) < )® < (A )(2) :
B)PGot) s (P < BH® < (Big)®
limTz—mO(ai”)(Z) (Ty7,8) = (p)@.
lim(;—»oo(bi”)m ((G9),t) = ()@
Definition of (A4 )@, (B )@ :
Where| (A1)D, (B )P, ()P, ()@ |are positive constants and [i = 16,17,18]
They satisfy Lipschitz condition:.
(@)@ (17, 1) = (@) P (T17, )] < (ki )P|Ty; — Tyz|e~ (e @
1GHP((619),8) = (B)P((G19), )] < (Kig YD1 (Gro) = (Gro) ||l e™C M)
With the Lipschitz condition, we place a restriction on the behavior of functions (a; ) (T},,t) and(a; )®(T;,t) . (T};,t)
and (T,,, t) are points belonging to the interval [( &y )@, (M4 )®] . Itis to be noted that (a; )? (T}, t) is uniformly
continuous. In the eventuality of the fact, that if ( M, )@ = 1 then the function (a; )®(Ty,,t) , the SECOND
augmentation coefficient would be absolutely continuous. .
Definition of (M )@, (k1)@ -
(F) (M )@, (k16 )@, are positive constants

@)® _pp®

(M16)® (M) <1
Definition of (P;3)®, (03 )@ :
There exists two constants ( P,z )@ and (0,4 )@ which together with ( M5 )@, (k16 )@, (A1s)Pand (B )@ and the
constants (a,)®, (@)@, (b)®, (b)?, )P, )P,i=16,17,18,
satisfy the inequalities .
—H @)@+ @)P + (Ri6)@ + (Pig)@ (Rye)P]< 1,

(M1)® [

! oy ! 5} A -~
(M16)@ [ (b)P + 1)@ + (B )P + (Q16)P (kye)P]< 1.
Where we suppose.
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(G) (ai)(B)’ (a;)(B)i (a;, )(3)5 (bi)(3)l (bl’)(3)l (bL” )(3) > 0: ll] = 20I21I22

The functions (a; )®, (b; )® are positive continuous increasing and bounded.
Definition of (p,)®, (r)®:
(@ ) (Ty, 1) < )P < (A )®
(b )P (63, ) < ()P < (b)® < (By )®.
limg, o (@ )® (Tyy, ) = (p)®
limg_,, (bl )@ (Gy3,t) = (ri)(g)
Definition of (A, )®,( By )@ :

Where |( A2 )®, (B2 )®, )@, (1)@ |are positive constants and [i = 20,21,22]

They satisfy Lipschitz condition:
1(a; )P (T, 1) = (a; )Ty, )] < (kg YO|Tyy — Tpyle™M20 P
5D G5, D) = (B YD (G5, D] < (Rag YD NIGs = G5 [e (o)t

With the Lipschitz condition, we place a restriction on the behavior of functions (a; )®(Ty;,t) and(a; )® (Tyy, t)
. (Ty1,t) And (Ty4, t) are points belonging to the interval [( k4o )®, (M, )®] . Itis to be noted that (a; ) (T4, t) is
uniformly continuous. In the eventuality of the fact, that if ( M,, )®) = 1 then the function (a; )®(T,;,t) , the THIRD
augmentation coefficient, would be absolutely continuous. .
Definition of ( M,y )®), (ko )@ :
(H) (M )®, (kyo )®, are positive constants
@®  _ep®

(Ma0)® 7 (M0)® <t
There exists two constants There exists two constants ( P,, )® and ( Q,, ) which together with
(M )P, (kp )P, (A30)Pand ( By )® and the constants (a,)®, (a)®, ()@, (b)®, (p)®, (1)@, i = 20,21,22,
satisfy the inequalities

1_ ! A =~ ~
(M20)® [@)® +@)® + (Ay)® + (Py)® (k)P <1
1

G| GOD + B + (B)D + (020)® (o)< 1.

Where we suppose.
(I) (ai)(4)l (a;)(4)f (a;,)(4)1 (bi)(4)1 (b;)(4)1 (b;l)(4) > 0! l;] = 24;25;26

) The functions (a; )®, (b, )® are positive continuous increasing and bounded.

Definition of (p)®, (r)®:
(a; )P (Tys,t) < )@ < (Agy )P
BB (G, 1) < )W < (0@ < (B)™.

(K) lime, o (a; ) (Tys, ) = (p)®
limg_ (bg,)m ((027); t) = (ﬁ')m
Definition of (A, )™, (B )™ :
Where |( A, )®, ( By )®, )@, ()™ | are positive constants and [i = 24,25,26].
They satisfy Lipschitz condition:
1@ )P (Tys, €) = (0] YD (T, D < (Rpg )P Tps — Tysle™ (M2 )Pt
1B (62, 8) = B P((G27), )] < (Ray )PII(Gay) = (Gp7) [|le™C M)V
With the Lipschitz condition, we place a restriction on the behavior of functions (a; ) (T,s,t) and(a; ) (Ts, t)
. (Tys, t) and (Tys, t) are points belonging to the interval [( &y )@, (M, )®] . Itis to be noted that (a; )™ (Tys, t) is
uniformly continuous. In the eventuality of the fact, that if ( M,, ) = 4 then the function (a; )* (T;s,t) , the FOURTH
augmentation coefficient WOULD be absolutely continuous. .
Definition of ( M,, )®), (kpy )™ :
(L) (M )®, (fyy )@, are positive constants
(M)

(”-i)(4) (bi)(4)
(M4 )® 7 (Mps )H '
Definition of ( By )@, (054 )@ :
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(N) There exists two constants ( £,, ) and ( 0, )™® which together with ( M, )®, (ky, )@, (A,4)Pand ( By, )®
and the constants (a;)®, (@)™, (b,))®, (b))®, ()@, ()W,i = 24,25,26,
satisfy the inequalities
[(@)® + @)® + (A )P+ (Pyy)P (k)P <1
1 i ~ ~ ~
W[ B)W + (B)® + (B )P+ (Q20)® (k)P < 1.
Where we suppose.
(@), (@)®,(a)®, 1), 3, (b )® >0, ij=282930
(P) The functions (a; ), (b; )® are positive continuous increasing and bounded.
Definition of (p,))®, (;)®:
§ (a; ) (T, 1) < (p)® < (}428 )® -
(b)) ((G1),t) £ ()D < () < (B ).

_r
(Mg )

Q  limpy (@] )® (Tyo,t) = @)
limg_e, (b; ) (631, t) = ()®
Definition of (A, ), (Byg )™ :

Where |( A25)®, (B2 )®, (0)®, (1,)® | are positive constants and [i = 28,29,30]
They satisfy Lipschitz condition:
(@ ) (Ty9, ) = (&) )P (T, D] < (Rgg )Ty — Tyole™(Maa)e

5P ((G31),6) = () ((G31), 8)] < (Rag YOI (Gap) = (Ga)'[Je™ M)
With the Lipschitz condition, we place a restriction on the behavior of functions (a; )® (Ty9,t) and(a; ) (Tye,t) . (Tae, t)
and (Tyo, t) are points belonging to the interval [( &y )®, (M,g )] . Itis to be noted that (a; )™ (Tyo, t) is uniformly
continuous. In the eventuality of the fact, that if ( M,g )® = 5 then the function (a; )® (T, t) , theFIFTH augmentation
coefficient attributable would be absolutely continuous. .
Definition of ( M,g ), (kg )® :

(M5 )®), (kg )®, are positive constants

@® _0p®

(M) 7 (Mpg)® <1

Definition of ( P,g ), (Q,5 )™ :

There exists two constants ( Pg ) and ( 0,5 )& which together with ( Mg ), (ky5 ), (Age) P and ( B, )® and
the constants (@), (a)®, (), (), @), ()™, i =28,29,30,  satisfy the inequalities
1 , R R ~
(M2g)®) [(@)® +(@)® + () + (P )® (kpg )] < 1
1 , ~ N :
T 0 + B + (Byg)® + (Q26)® (Kpg )] <1

Where we suppose.
(@)@, (@)@, (@)@, B, B, (B;)® >0, i,j=323334
(T) The functions (a; )©, (b; ) are positive continuous increasing and bounded.
Definition of (p,)©, (;)®:
) (a; ) O (T33,8) < (p)© < (/432 )© R
(b)) (G35), ) < (1)@ < (b)® < (B3,)©.

L) lime, o (a; )® (T33,0) = (p)©

limg (bg,)(G) ((035); t) = (ri)(G)
Definition of ( A3, )®, (B3, )© :

Where | (A3,)0,(B3,)®, (p)®, 1)® | are positive constants and [i = 32,33,34].
They satisfy Lipschitz condition:
(@) ) O (T35, 0) = (@) O (T3, D] < (g YO |Ts3 — Tag|le™ (M)t
16 )@ (G55), ) = (B ((G35), E)] < (k32 YOI(G5) — (G5 [|le™C a2
With the Lipschitz condition, we place a restriction on the behavior of functions (a; )© (Ty3,t) and(a; ) (T3, t)
. (T33,t) and (Ty3, t) are points belonging to the interval [( k3, )©, ( M3, )®] . Itis to be noted that (a; )© (Ty3, t) is
uniformly continuous. In the eventuality of the fact, that if ( M5, )(® = 6 then the function (a; )© (Ty3,t) , the SIXTH
augmentation coefficient would be absolutely continuous. .
Definition of ( M;, )©, (k3, )© :
(M3,)®, (ks3, )®, are positive constants

@® _pp®
(M32)©® 7 (M35)® '
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Definition of ( P;, )©), (03, )@ :

There exists two constants ( P, )© and ( 05, )® which together with ( M3, )©®, (k3 ), (43,)@and ( B;, ) and the
constants (a;,)®, (a,)®, (b)®, ()@, )@, )®,i=32,33,34,

satisfy the inequalities

1 , . R ~
e L@@+ @)@+ (A) O+ (P)® (k)1 <1

! 73 ! D A ~
(M32)® [ (bi)(6) + (bi)(6) + (Bs )(6) + (Qz )(6) (k32 )(6)] <1.

Theorem 1: if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying the conditions
Definition of G;(0),T;(0) :

G < (Py) VeV G0 =60 > 0]
Ti(0) < (Qu3)WetM)Pe - [1,(0) = TP > 0]

Definition of G;(0),T;(0)
G,(t) € (P )PPt .(0)=6">0
T,(t) < (Q16) PPt T,(0) =T >0,

Gi(t) < (Py )PelMo e G;(0) =G >0
Ti(£) < (Qg0)PeM0)Vt T(0) =T >0,
Definition of G;(0),T;(0):

Gi(t) < (p24 )(4)€(M24 e , | Gl(O) = Gl.o > 0|
T,(t) < (Qg0 )Wem00Vt [T(0) =T >0

Definition of _G;(0), T;(0) :

GO < (P)®e® [G0) =67 > 0]
T:(0) < (Qg)Pe™0)¥t | [1,(0) =T > 0],
Definition of _G;(0), T;(0) :

GO < (Py) P TG0y =67 > 0]

T,(t) < (Q3,)®e2)Pt  [1(0) =T > 0]

Proof: Consider operator A™) defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy

G,(0)=G), T;(0) =T, G? < (P3)P, T < (Qu3)D, .

0<G,(t) —G® < (P )e(Miz) Ve

0<T(6) =T < Q3 ) D)

By

— t ' "

Gi3 () = G5 + [(a13)(1)614 (san) = ((a13)(1) +a13) V(T (san), 5(13))) Gis (5(13))] ds(3) -
— t ' "

Ga(t) = Gl + [ [(014)(1)613 (sas) — ((a14)(1) + (a1) (T4 (s13)), 5(13))) G14(5(13))] dsqs) -
— t ’ "

Gis(8) = G5 + | [(a15)(1)G14 (san) = ((a15)(1) + (a15) P (Tua (s19)), 5(13))) G15(5(13))] ds(3) -
— t ' "

Ti3(t) =TS + fo [(b13)(1)T14 (5(13)) - ((b13)(1) - (b13)(1)(G(S(13)). 5(13))) Ti3 (5(13))] dsqs) -

— t ' "

T, () =T, + fo [(b14)(1)T13 (sam) = ((b14)(1) = (1) (G(sam), 5(13))) T14(5(13))] ds(3) -

p— t r "

Tis(0) = Tfs + fo [(bls)(l)TM (san) — ((b1s)(1) = (b15)V(G(sas), 5(13))) T15(5(13))] ds(13)

Where s(3y is the integrand that is integrated over an interval (0, t).

Proof:

Consider operator A@® defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy

G;(0)=G), T;(0) =T, G) < (Pis )P ,T? < (Q16)?®, .

0 < G,(t) — G < (Pyg )PelMe)™

0<T,() = T < (4 )PeMe)Pt

By

~ t ’ "

Gie () = G + fo [(a16)(2)Gl7 (sae) = ((016)(2) +a16) P (T17 (sa6)), 5(16))) Gie (5(16))] ds(e) -
~ t ’ "

Gi; () = Gy + [(a17)(2)Gl6 (sae)) = ((017)(2) +(a17)P(Ty7 (sae)), 5(17))) Gi7 (5(16))] ds(e) -
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Gig(t) = G + fot [(‘118)(2)617 (sae) = ((‘1’18)(2) + (a18)?(Ti7 (sa6)), 5(16))) Gig (5(16))] dse)
Ti6(t) = T + fot [(b16)(2)Tl7 (5(16)) - ((bi())(z) - (bi’())(z)(G(S(m)); 5(16))) Tie (5(16))] ds(s) -
Ty, () =TY + fot [(b17)(2)Tl6 (5(16)) - ((bi7)(2) - (bI7)(2)(G(S(16))' 5(16))) T17(S(16))] ds(s) -

Tig(t) = Tfs + fot [(b18)(2)T17 (5(16)) - ((bis)(z) - (bga)(z)(G(S(m))' 5(16))) Tig (5(16))] ds(i6)

Where s34 is the integrand that is integrated over an interval (0, t).

Proof:

Consider operator A®) defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy
G(0) =G, T,(0) =T, G? < (P )®, TP < (Q2)®, .

0 < Gi() = G) < (Py )P0Vt

0 < Ty(6) =T < (Qg9 )P M)Vt

By

Gyo (1) = G3p + fot [(azo)(B)Gm (5(20)) - ((aéo)(3) +20)® (To1 (520 S(zo))) G2o (5(20))] ds(20) -
Gy (t) = G3) + fot [(a21)(3)G20 (5(20)) - ((a’21)(3) + (a’2’1)(3)(T21 (5(20))' 5(20))) 621(5(20))] ds(zo) -
Gy (t) = G35 + fot [(azz)(3)G21 (5(20)) - ((aéz)(3) + (alzlz)(3)(T21 (5(20))' 5(20))) Gy (5(20))] ds(o) -
Ty (t) = Ts + fot [(bzo)(B)Tm (5(20)) - ((béo)(” - (blzlo)m(G(S(zo))' 5(20))) Ty (5(20))] ds(z0) -
(@) =T + fot [(b21)(3)T20 (5(20)) - ((blm)e) - (b’2’1)(3)(0(5(20))' 5(20))) Ty (5(20))] ds(z0) -

— t ’ "

T () = Tg; + fo [(bzz)(3)T21 (5(20)) - ((bzz)(3) - (bzz)(”(G(S(zo)), 5(20))) Ty (5(20))] ds (20

Where s,y is the integrand that is integrated over an interval (0, t).

Consider operator A™ defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy

G(0) =G, T,(0) =T, G < (P )V, T < (Q24)®, .
0 < G,(t) — GO < (Pyy )W)Vt

0<T,(t) =T < (Qpy )Pe(Mau o

By

Goa () = G3y + fot [(a24)(4)G25 (s@u) = ((a'24)(4) +a24)® (Tys (s2))s 5(24))) Goa (5(24))] ds(z4) -
G5 (8) = G35 + fot [(azs)(4)G24 (sen) = ((alzs)m + (a5)® (Tos (s24))s 5(24))) 625(5(24))] ds4) -
(a6 (t) = G + fot [(azs)(4) Gas (Sa)) — ((alze)m + (az6) @ (Ts (5(24))»5(24))) Gas (5(24))] ds(ae) -
Ty () = T3y + fot [(b24)(4)T25 (5(24)) - ((blz4)(4) - (b’2’4)(4)(6(5(24)); 5(24))) Tos (5(24))] dsz4)
Ts(t) = Tgs + fot [(bzs)(4)Tz4 (5(24)) - ((blzs)m - (b;s)(4)(6(5(24)); 5(24))) T25(5(24))] ds(z4) -

— t ' "
Ty6(t) = T + fo [(bzs)(4)T25 (5(24)) - ((bze)(4) — (bze)® (6(5(24)), 5(24))) T2 (5(24))] ds (24
Where s (4, is the integrand that is integrated over an interval (0,t).
Consider operator A® defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy

G(0) =GP, Ti(0) = T2, G? < (P )®, TP < (025 )®, .
0<G;(t) - Gio < (ﬁzs )(S)e(Mzs Yt

0STi(t) =T < (Qgp )P e

By

Gog (t) = Gjg + fot [(‘128)(5)629 (sesy) — ((alzs)(s) + a28)® (Tao (S28))» 5(28))) Gog (5(28))] dszg) -
Gao(t) = Gy + fot [(‘129)(5)G28 (sce)) — ((a’29)(5) +(a20) P (Tao (528, 5(28))) Gag (5(28))] ds(zg) -
G3o (t) = G5 + fot [(‘130)(5)629 () — ((a'30)(5) +(a30)® (Tzo(528))s 5(28))) G3o (5(28))] ds(zg) -
Tye (t) = Ty + fot [(bzs)(S)T29 (5(28)) - ((blzs)(s) - (blzls)(s)(G(S(zs)): 5(28))) Tys (5(28))] ds(zg) -
Ty (t) =Tgy + fot [(b29)(5)T28 (5(28)) - ((b’29)(5) - (b,2,9)(5)(G(S(28))' 5(28))) Ty (5(28))] ds(zg) -

o t ’ "
Ty () = TS + fo [(bgo)(S)Tm (ses) — ((b30)(5) — (b30)® (G (s@2s)), 5(28))) Tso (5(28))] ds(zs)
Where s(,g) is the integrand that is integrated over an interval (0, t).

Consider operator A defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy
G;(0)=G), T,(0) =T, G? < (P)® T < (9:2)®,
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0<G,(t) — G < (Pyy )@e(Mz2)t
0 S Ti (t) - TiO S (032 )(6)6(M32 )(6)t .

By

Goo () = 6 + [ [(@3)@ s (s020) — (@320 + @52)® (T (5652)),560)) Gz (50) Az
G5 (t) = G + fot [(a33)(6)632 (5(32)) - ((a’33)(6) + (a’3’3)(6)(7'33 (5(32)); 5(32))) Gs3 (5(32))] dsy) -
G3, (t) = G, + fof [(a34)(6)G33 (5(32)) - ((a'34)(6) + (a34)©(Tss (5(32)),5(32))) 034(5(32))] ds(z) -
TSZ O fOt [(bBZ)(@TBB (5(32)) B ((béZ)(ﬁ) - (bgz)(ﬁ)(G(SGz))' S(32))) T3, (5(32))] ds(zz) -
Tos () = T55 + fﬂt [(b33)(6)T32 (sG2y) = ((bé3)(6) — (b33)9(6(s¢2), S(32))) T33 (5(32))] ds(3z) -

= t ’ "

T34 (t) = T3, + fo [(b34)(6)T33 (5(32)) - ((b34)(6) — (b3)®(G6(s532)), 5(32))) T34(5(32))] ds(sz)

Where s (3, is the integrand that is integrated over an interval (0, t)..

(@) The operator A maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that

t ~ €)]
Gi3(t) < G5 + [(a13)(1) (G104+(P13 YDeHis) 5(13))] dsgz) =

1 0 4 @) P(P1)H)D g ym
(1+ (a13)Pt)GY +W(e( 13) e _ 1) _

From which it follows that
(P13)D+68,

o ol s e I
(G15(®) = Giy)e M)V < EEIS (A )V + Gl )ed T )4 ()™

(M
(G?) is as defined in the statement of theorem 1.
Analogous inequalities hold also for G4 , Gis, Th3, Tis, Tis-
The operator A3 maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that.
t 5 @ (a16)@(P16)? @
Gio () < G + J; [ (@)D (Gl +( P YO 0500 )| dsy) = (1 + (@) Pt)Gly + DL (0T Pt 1)

From which it follows that

(P16)P)+6Y;

_ @ (a16)P 5 (‘_h 5
(Gy6 (t) — GP5)e~(Me) t<ﬁ[((ﬂ6 YD +G2)e 617 >+(P16 YO .

Analogous inequalities hold also for G;; , Gig, Th6, T17, Thg-
(@) The operator A®) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that

¢ 5 3)
G (t) < G + fo [(azo)(3) (Gzol +( Py )(3)3(1‘720) 5(20))] dsg0) =
(@20)) (Py0)® ®
(1 + (a20)(3)t)6§’1 + %(emzo) t_ 1) '

o (M
From which it follows that
(P20)3)+6Y;

3) — ~
(G (t) — Gé’o)e‘m”)(3)t < ((aZO) [(( Py )® + G, )€< 21 > + ( Py )(S)l .

3)

Analogous inequalities hold also for G,; , Gy, T, To1, Toy .
(b) The operator A™ maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that

t = C)]
Gaa(t) < GOy + [(a24)(4) (6205 +(Pyy YW M2t) 5(24))] dsq) =
(@) (P2a) ™ @
(14 (a)®t) G5 + %(6(1‘324) - 1) :

o (M4
From which it follows that
(P24 )H+69s

- (P )™ + G )e 25 +(Py)
(a24) ) ( 69 ) I C)!

_ (©)]
(G (£) = Gy )e~(M2) ™t < @

(G?) is as defined in the statement of theorem 1.
(c) The operator A maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that

t 5 g )
628 (t) = GZOB + fo [(aZB)(S) (Gz()9+(P28 )(5)6( 28) 3(28))] ds(28) =
(5) 5)
(1+ (az)®t)Gh + (oze) (Poo) (e(MZS ®e _ 1) }

(M2g)®)
From which it follows that
(P25)5)+6%q

_ ®) ) ~ (——0—> ~
(Gag () — GIg)e~(M28)™t < Lozm) ((P)® + G )e 629 + (P )®

(M2g)®)

(G?) is as defined in the statement of theorem 1.
(d) The operator A maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that

WWW.ijmer.com 2199 | Page



International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2185-2235 ISSN: 2249-6645

t 5 ®)
632 (t) = 6392 + fo [(a32)(6) (G393 +(P32 )(6)6(M32) 5(32))] dS(32) =
(6) 6)
(1 + (a32)(6)t)6§)3 + M(e(ﬁgz )(6)1: _ 1) )

(M32)®)
From which it follows that
(P32)®)+6%,

6) ~ -y ~
(G3, () — G)e~(M32 YO o La32) (( Py )© + G303)e< 633 > + (P )(é)l

(M32)(®

(G?) is as defined in the statement of theorem 6
Analogous inequalities hold also for G5 , Gyg, Tos, Tos, Tog -
@® ™
(M13)D 7 (my3)D
(P35 )® and (Qy3 )™ large to have.

It is now sufficient to take < 1 and to choose

(P13 )(1)+G]°
@ | % p. N 2
(Mll3)(l) ()@ + ((Pr3)D + Gjo)e J < (P3)W.

(Q13)D+7?

GOSN o ‘( v > 5 <
(M113)D) ((Quz)® +T0)e Y +(013)P[ < (013)V.

In order that the operator A™ transforms the space of sextuples of functions G, , T; satisfying GLOBAL EQUATIONS into
itself.
The operator A™ is a contraction with respect to the metric

d ((Gm,T(l)), (G(2>,T<2))) =
sup{max |Gl.(1)(t) - Gi(z)(t)|e‘m13)(1)t,max |Ti(1)(t) - E(Z)(t)|e‘m13)(1)t} :
. teRy teERy

Indeed if we denote
Definition of G, T :

(G,T)=ADG,T)
It results
|G(1) G(2)| <f (a13)(1) |G(1) Gl(:)|e—(m13)(1)5(13)e(T\Z13)(1)5(13) ds(zy +
f {(a13)(1)|G(1) G(2)| —(m13)(1)5(13)e—(m13)(1)5(13) +
(013)(1)(T(1) 5(13))|G(1) G(Z)|e_m13)(1)5(13)em”)(l)s(m +

2 2 - (€Y} (€8}
()|( 13)(1)(T14 5(13)) - (o )(1)(T1(41)'5(13))| e~ (Mi3)7saz) g (M13) U}ds (3
Where s (43 represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows.
_ 1) 1 ' —~ o~ P
|6 — G@]e~(Pa) Ve < D ((a)® + (@)D + (A1) D + (Pry) D (Fyp)P)d ((G(l),T(l); G(z),T(z)))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows.

Remark 1: The fact that we supposed (a;3)® and (b;3)® depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of
the solution bounded by (P;3) e ™Dt qnd (y5) eVt respectively of R, .

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; ) and (b, )V, i = 13,14,15 depend only on T;, and respectively on G (and not on t) and hypothesis can
replaced by a usual Lipschitz condition..

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0

From 19 to 24 it results

G, (t) = Ge [~ fo{@® =@ YD (T1a(s13))sa3y)}ds ) >0

T, (¢) > T°e( M) 5 0 fort > 0.

Definition of ((M3)®),, (My3)®), and ((My5)®), :

Remark 3: if G;5 is bounded the same property have also Gy, and G5 . indeed if

Grs < (M13)@ it follows L4 < ((F5)0 ), = (a1)V Gy, and by integrating

G = ((M13)(1))2 =Gy + 2(‘114)(1)(( M13)(1))1/(a14)(1)

In the same way , one can obtain

Gis < (My3)@), = G5 + 2(a15) P ((M13) @), / (@;5) ™

If G4 or G5 is bounded, the same property follows for G5, G5 and G5, G4 respectively..

Remark 4: If G5 is bounded, from below, the same property holds for G,, and G,5 . The proof is analogous with the
preceding one. An analogous property is true if G, is bounded from below..
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Remark 5: If T5 is bounded from below and lim,_,., ((b; )V (G(t), t)) = (by)® then T}, — co.
Definition of (m)™® and ¢ :

Indeed let t; be so that fort > t;

(b1)® = (bHD(G(), 1) <&, T3 (1) > M)W

Then 224 > (q,,)D (m)® — &, T,, which leads to

@ (m)@®

Ty = (M) (1 —e51t) + The 51t If we take t such that e—¢1*

((a14)<l>(m)<l>)
2

1 .
5 it results

T, 2

, t= logi By taking now &; sufficiently small one sees that Ty, is unbounded. The same property

holds for T;s iflim,_., (by5)® (G(t),t) = (bys)D
We now state a more precise theorem about the behaviors at infinity of the solutions .

@® _mp®
(M16)P 7 (M16)P
(Pis )® and (0,4 )@ large to have.

< 1 and to choose

It is now sufficient to take

(P16 )(2)+G]°
@)@ | p N 2
(Mlls)(z) (Pie)® + ((Pis )@ + Gjo)e J < (P)@.

(Q16 )(2)+TJQ

e |5 ‘( v > 5 <
(M16)® (( Q16)? + 7}0)9 g +(016)?P[<(016)® .

In order that the operator A@ transforms the space of sextuples of functions G, , T; satisfying .
The operator A is a contraction with respect to the metric
d(((619), (T19)®), ((619)@, (T,9)®) ) =
Sup{mqu |Gl.(1)(t) - Gi(z)(t)|e_(M16)(2)t,mu%x |Ti(1)(t) - E(Z)(t)|e_m16)(2)f} .
i teR4 teR4

Indeed if we denote

Definition of Gyg, Tig : ( Gro, Tig ) = AP (Grg, Tro).

It results

|5(1) (2)| <f (a16)® |G(1) 1(3)|e_m“)(z)sm)e(7"16)(2)5(16) dsque) +
f {(a16)(2)|G(1) G(Z)| —(mls)(z)s(ls)e—(ﬂm)(z)s(m) +

(a)s)@ )(T1(71)'S(16))|G(1) Gl(é)|e_(m16)(2)5(16)e(ml6)(2)5(16) +

2 1) " 2 - @) ()

G )|( 16)(2)(T1(7 ,S16)) — (a16)(2)(T1(7):S(16))| e~ (M16)"s16) ¢ (M1) *ae}ds 1g) -
Where S(16) represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows.

|(G19) D = (G15)@ e~ (M) Pt <

m ((@16)? + (a16)® + (A16)® + (Pis) P (1) ?)d (((G19)(1), (T1)™; (G19)®, (T19)(2))) :

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows.

Remark 1: The fact that we supposed (a;js)® and (b;)@ depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of
the solution bounded by (B,s)@eM10®t and ( Q)@ eM1)®t respectively of R,

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; )® and (b; )@, i = 16,17,18 depend only on T, and respectively on (G;4)(and not on t) and hypothesis can
replaced by a usual Lipschitz condition..

Remark 2: There does not exist any t where G; (t) = 0and T; (t) =0
From 19 to 24 it results

G; (t) > G?e[—fé{(aé)(”—(a! YA(T17(s16))5(16))}d516)| >0

T, (©) = Te(-00®) > 0 for t > 0.

Definition of ((My6)®),, (My6)@), and ((M;6)@), :

Remark 3: if Gy is bounded the same property have also G, and Gyg . indeed if
Gig < (Mye)@ it follows S22 < (M) ), = (a17)@Gy; and by integrating
Gy < (( M16)(2))2 =Gy + 2(“17)(2)(( M16)(2))1/(a17)(2)

In the same way , one can obtain

Gig < (Ms)@), = G5 +2(a15) @ (M) @), /(a16)?®
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If G;; or G5 is bounded, the same property follows for G;¢ , Gig and Gy4 , Gy respectively..

Remark 4: If G4 is bounded, from below, the same property holds for G;; and G;5 . The proof is analogous with the
preceding one. An analogous property is true if G, is bounded from below..

Remark 5: If T, is bounded from below and lim,_,., ((b; )® ((G9) (1), 1)) = (b;;)@ then T;; — oo.

Definition of (m)® and ¢, :

Indeed let t, be so that fort > t,

(b17)(2) — ()P ((G19) (), 1) < &5, Ty () > (M)@ .

Then L2 > (a,,)® (m)@ — &,T,, which leads to

@ ()@ .
Ty, = (M) (1 —e®2%) + T e %2 If we take t such that e~%2¢t = % it results .

(a17)<2>(m)<2>)
Ty 2 ( 2

holds for Tyg if lim,_., (b15)® ((G16)(®),t) = (b15)?
We now state a more precise theorem about the behaviors at infinity of the solutions .

, t= logg By taking now e, sufficiently small one sees that T;, is unbounded. The same property

@® _0p®
(M20)® 7 (M30)®
(P )® and (Qy )@ large to have.

It is now sufficient to take < 1 and to choose

(P20 )(3)+G]°
@® | 3 p g P
(1;20)(3) (Pyo)® + ((Py)® + Gjo)e J < (Py)®.

(Q20 )(3)+T0

(1(;2[3;2) (( Q20)® + To)e ( —fo—> +(Q20)®[<(02)® .

In order that the operator A®) transforms the space of sextuples of functions G, ,T; into itself.
The operator A®) is a contraction with respect to the metric

d (((62)®, (1:)D), ((62)P, (Ty3)) ) =
- ®) - (©)]
suplmax [6:7(®) = 67 Ol max [0 = T @03

Indeed if we denote
Definition of Gy3, T3 :( (G23), (To3) ) = ‘ﬂ(3)((G23); (T23))-
It results
|G(1) G(Z)| <f (az)® |G(1) Gz(f)|e—(mzo)@s(zo)e(ﬂzo)a)s(zo) ds ) +
f {(azo)(3)|G(1) G(Z)| —(ﬂzo)ms(zo)e—(mzo)@s(zo) +
(@)D (T, 500)) 68 = 62|20 Vs Fan) Vs 4

(2)|( 20)(3)(T21 /S20) —(azo)(3)(T21 ,S@oy)| e~ (M20)Ps a0y o (M) )5(20)}d5(20)
Where s, represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows.
|6 — G@]e~M20)Pt <

m((azo)@) + (a20)® + (Az0)® + (P2)® (he20)®)d (((G23)(1). (T23)W; (G35)@, (T23)(2)))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows.

Remark 1: The fact that we supposed (a,)® and (by,)® depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of
the solution bounded by ( P,)®e ™20t and (,)®e ™20t respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; )® and (b; )®,i = 20,21,22 depend only on T, and respectively on (G,3)(and not on t) and hypothesis can
replaced by a usual Lipschitz condition..

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0

From 19 to 24 it results

G (t) > Gioe[—fot{(a;)m—(a; (721 (520))5 20))}d5 20| >0

T, () = T0e(-00®) > 0 fort > 0.

Definition of ((M9)®),, (M)®), and ((Mz0)®), :

Remark 3: if G, is bounded, the same property have also G,; and G,, . indeed if
Gyo < (My)® it follows d(% < ((My0)®), = (a21)® G,y and by integrating
Go1 < (My0)®), = Gy +2(ap1)®(M0)®), /(a21)®
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In the same way , one can obtain

Goz < (My0)®), = G +2(az2) P ((M30)®), / (az2)®

If G,; or G, isbounded, the same property follows for G,, , G,, and G, , G, respectively..

Remark 4: If G,, is bounded, from below, the same property holds for G,; and G,, . The proof is analogous with the
preceding one. An analogous property is true if G,; is bounded from below..

Remark 5: If T,, is bounded from below and lim,_,, ((b; )® ((G3)(£),t)) = (by1)® then T,; — oo.

Definition of (m)® and &5 :

Indeed let t; be so that for t > t4

(b21)(3) — (b )P ((Gy3) (1), 1) < &3, Ty (£) > (M) .

Then £2L > (a,,)® (m)® — £,T,, which leads to

Bm)® .
T, = (M) (1 —e~83t) + T e~%3 If we take t such that e~#3¢t = % it results

((a21)<32)(m)(3>)

T = , t= loggi By taking now &5 sufficiently small one sees that T,; is unbounded. The same property
3

holds for Ty, iflim,_,q, (b5,)® ((G23)(t); t) = (b)®
We now state a more precise theorem about the behaviors at infinity of the solutions .

(al) Yo ™
20)® 7 (12)®
(P )® and (Qyq )@ Iarge to have.

It is now sufficient to take < 1 and to choose

(P24 )(4)+G]°
@® | = 5 LG 5
= (P)® + ((Py )(4)"‘6}0)9 ‘I S (Py)®.

(M4)™®

(Q24 )(4)+T0

<§;§i§2> ((Qa)® +T°)e ( " >+(Qz4 Y| < (0 )@ .

In order that the operator A™ transforms the space of sextuples of functions G , T; satisfying IN to itself.
The operator A® is a contraction with respect to the metric

d ((G2)®, T:)ND), (6P, (Ty)?)) =
_ 4) _ )
S?;Lp{TtTELD%J-C |Gl.(1)(t) - Gl.(z)(t)|e (124)" t,ﬁgif |Ti(1)(t) - 7}(2)@)|e (F20) Pty

Indeed if we denote
Definition of (G,;), (T37) : ( (Gy7), (Ty7) ) = AW ((G), (T37))
It results
|G(1) G(z)| = f (a24)(4) |G(1) Gz(?|e_m“)@)*“)emz‘*)“)sa‘*) ds(s +

f{(a24)(4)|6(1) G(Z)l ~(M2)Ps(24) o =(M24) D5 24) 4

(@) P (T2, 50|65y — 6Ly |le~ P20 Psene(MaDsan 4
2 1 % 2 - ® O]
62(4)|( 24)(4)(T2(5),s(24))—(a24)(4)(T2(5),s(24))| e~ (M24)"5) g (M24) *eN}ds (a4
Where s (4, represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows.
|(Go7)® — (027)(2)|€_m24)(4)t =

m((aﬂ)m + (a20)® + (A)® + (Po) @ () ®)d (((G27)(1). (T:1)W; (6;71)@, (T27)(2)))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows.

Remark 1: The fact that we supposed (a,)™ and (b,,)™ depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of
the solution bounded by ( B,,)@e™20®t gnd (,,)®e ™20t respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; )® and (b; )®,i = 24,25,26 depend only on T, and respectively on (G,;)(and not on t) and hypothesis can
replaced by a usual Lipschitz condition..

Remark 2: There does not exist any t where G; (t) = 0and T; (t) =0

From 19 to 24 it results

G (t) > Gioe[—fot{(a;)(d‘)—(a; YD (T2 (s 24))5 245 24 | >0

T, () = T0e(-00®) > 0 fort > 0.

Definition of ((M,4)®),, (Mz)®), and ((M4)®), :

Remark 3: if G,, is bounded, the same property have also G,s and G, . indeed if

WWW.ijmer.com 2203 | Page



International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2185-2235 ISSN: 2249-6645

Goa < (Myy)@ it follows L2285 < (M) ), = (a25)® G5 and by integrating

Gas < ((M24)(4))2 =Ggs + 2(“25)(4)(( M24)(4))1/(‘1 )@

In the same way , one can obtain

Ga6 < ((ﬁ24)(4))3 = Gje + 2(“26)(4)((’M24)(4))2/(‘1’26)(4)

If G,5 or G, is bounded, the same property follows for G,, , G, and G,, , G, respectively..

Remark 4: If G,, is bounded, from below, the same property holds for G,s and G, . The proof is analogous with the
preceding one. An analogous property is true if G,z is bounded from below..

Remark 5: If T,, is bounded from below and lim,_,., ((b;, )™® ((G,;)(t),t)) = (bys)® then T,s — oo.

Definition of (m)® and ¢, :

Indeed let t, be so that fort > t,

(bzs)(4) - (b”)(4)((627)(t) t) < &, Tps (£) > (M@,

Then £ > (a,:)® (m)® — &, T, which leads to
@) (m)® .
Tys = (M) (1 —e#4t) + T e+t If we take t such that e =4t = % it results
(az5) Mm@ 2 : . .
Tys = (f) t =log = By taking now ¢, sufficiently small one sees that T, is unbounded. The same property
4

holds for Tyg if lim,_e, (b26)® ((G27)(t), t) = (b3e)®
We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS inequalities hold also
for Gy, G3g, Tog, Tag, T30

@)® _ep®
(M28)®) 7 (Mg )
(P5 )® and (Qyg )® large to have

< 1 and to choose

It is now sufficient to take

[ (P28 )(5)+G]°
@® | % 5 T 5
e [(Pee)® + (P )® +G0)e V5 < (P)®.

(028)3)+1)

(1(;21;;2) (( Q28 )(5) + To)e ( K > + (028 )(5) = (028 )(5) )

In order that the operator A®) transforms the space of sextuples of functions G, , T; into itself.
The operator A®) is a contraction with respect to the metric

d (((G:)®, 1:)D), ((6:), (T3)?)) =
sup{max |6V (£) — G ()|e~ 20t max [TV (¢) — T2 (£)]e =2t}
. teRy teRy

Indeed if we denote

Definition of (G31), (T51) 1 ((Gs1), (T51) ) = A ((G31), (T31))

It results

|G~(1) G(Z)| <f (aze)® |G(1) Gz(g)|e—(ﬂzs)(S)S(zs)e(ﬂzs)(s)S(zs) ds(g) +
[ (@)@ |Gy — G2 |leM20)sam o= (Mo sy
(azs)(s)(Tz(;)'5(28))|G(1) G(2)| ~(Mi28) s ag) g (M20) Vscag) 4

2 1) _ ®)
G( )|( 28)(5)(T2(9 ,S28)) _(azs)(s)(ng Sesy)l € (M2) 528 o (F0)” e }ds (zg)
Where S(28) represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows.

|(Gs)® — (631)(2)|€_m28)(5)t =

m((azs)(s) + (a28)® + (Aze)® + (Pas)® (k) ®)d (((631)(1). (T:0)W; (6@, (T31)(2)))

And analogous inequalities for G; and T;. Taking into account the hypothesis (35,35,36) the result follows.

Remark 1: The fact that we supposed (a,5)® and (bg)® depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of
the solution bounded by ( Pyg)®e ™28t and (,4)® e ™28t respectively of R, .

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; )® and (b; )®,i = 28,29,30 depend only on T,, and respectively on (Gs;)(and not on t) and hypothesis can
replaced by a usual Lipschitz condition..

Remark 2: There does not exist any t where G; (t) = 0and T; (t) =0

From GLOBAL EQUATIONS it results
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G, (t) = Gioe[—fot{(a;)(s)—(a;’ )(5)(T29(5(28))v5(28))}d5(28)] >0

T, () = T0e-0®) > 0 fort > 0.

Definition of ((ﬁzs)(s))l' ((’1\7[28)(5))2 and ((Wzs)(s))3 :

Remark 3: if Gy is bounded the same property have also G,q and Gs, . indeed if
Gag < (Mag)® it follows L22 < (M) ), — (a20)® Gyq and by integrating

Gae < (( Mzs)(s))z =G + 2(a29)(5)(( Mzs)(s))l/(a 9)®

In the same way , one can obtain

G3p < ((’Mzs)(s))3 =G + 2(a30)(5)((’1\7128)(5))2/((1'30)(5)

If G, or G, isbounded, the same property follows for G,g , G3o and G,g , G,9 respectively..

Remark 4: If G, is bounded, from below, the same property holds for G,q and G, . The proof is analogous with the
preceding one. An analogous property is true if G,q is bounded from below..

Remark 5: If T,g is bounded from below and lim,_,., ((b; )® ((G31)(t),t)) = (b39)® then Tpq — oo.

Definition of (m)® and & :

Indeed let t; be so that for t > ¢

(bzg)(s) - (b”)(s)((Gm)(t) t) < &, Tog () > (M),

Then £ > (q,0)® (m)® — £, Ty, which leads to
Em)®
Tyg = (M) (1—e~5t) + The *st If we take t such that e~#5t = % it results
(a29) ) (m)® 2 , . .
T, = (f) t= log; By taking now &5 sufficiently small one sees that T, is unbounded. The same property

holds for Tsg iflim, ., (b30)® ((G31) (), t) = (b30)®
We now state a more precise theorem about the behaviors at infinity of the solutions
Analogous inequalities hold also for Gs; , Gz, T35, T3, T34

@®  _o®
. ~ (M32)© 7 (M35)®)
(P, )® and (Q3, )® large to have.

< 1 and to choose

It is now sufficient to take

(P32)©)+6?
@)® | = 5 T 5
37)©® (P)® + ((P32)® + Gjo)e g S (Pp)®.

(032)®+1)

b)©® ( G ) A A
(M32)(© (( Q32 )@ + To)e L +(03)®<(032)® .

In order that the operator A® transforms the space of sextuples of functions G, ,T; into itself.
The operator A is a contraction with respect to the metric

d (((635)®, (T3)D), ((G35), (T35)) ) =
sup{max |Gi(1)(t) — Gi(z)(t)le_(M32)(6)t,max |Ti(1)(t) - E(Z)(t)|e_(M32)(6)f}
. teRy tER

Indeed if we denote

Definition of (Gss), (T5s) : ( (Gss), (Tss) ) = A©((G3s), (Ts5))

It results

|65’ - ¢ <f (az2)® |65 - Gg)|6_(%2)(6)5(32)6m32)(6)s(32) ds(zz) +
f {(a 32)(6)|G(1) G(Z)| —(7‘732)(6)3(32)6—(7\732)(6)3(32) +

(@52) (T, 5632)) 655 — 62| ~(M32)Ds(32) g (M32) Vscaz) 4

@ —(M32)® 3)(6)
G (a5)© (T35 5(32))‘(“32)(6)(T3 ,S(3y)| e~ (M32) 756 e (Ms2) s Y 3
Where S(32) represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows.

|(G35)® — (635)(2)|€_m32)(6)t =

1 ' —~ P ~
W((agz)(@ + (a3)® + (A5) @ + (P3) @ (ke32)@)d (((G35)(1). (T35)™; (G35)@, (T35)(2)))
And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows.

Remark 1: The fact that we supposed (as,)® and (b3,)® depending also on t can be considered as not conformal with the
reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of

the solution bounded by ( Ps,)©e M2t and (,,)©e ™20t respectively of R, .
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If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to consider
that (a; )® and (b; )©,i = 32,33,34 depend only on Ts; and respectively on (Gs5)(and not on t) and hypothesis can
replaced by a usual Lipschitz condition..

Remark 2: There does not existany t where G; (t) =0and T;(t) =0

From 69 to 32 it results

G, (t) > Gioe[—fot{(aé)(s)—(a;' )©(T33(s32))532)) M5 32) | >0

T, (t) = T > 0 fort > 0.

Definition of ((,M32)(6))1' ((ﬁ32)(6))2 and ((ﬁ32)(6))3 :

Remark 3: if G, is bounded, the same property have also G;; and G, . indeed if
Gz, < (M3,)® it follows dl% < ((M3,)®), — (as3)® G35 and by integrating
G33 < ((,M32)(6))2 =G$s + 2(“33)(6)((ﬁ32)(6))1/(a;3)(6)

In the same way , one can obtain

G3q < ((/M32)(6))3 =G3, + 2(a34)(6)((ﬁ32)(6))2/(a;4)(6)

If G35 or G, is bounded, the same property follows for G;, , G4 and Gs, , G5 respectively..
Remark 4: If G;, is bounded, from below, the same property holds for G55 and G5, . The proof is analogous with the
preceding one. An analogous property is true if G35 is bounded from below..

Remark 5: If T;, is bounded from below and lim,_,., ((b; )® ((G35)(t),t)) = (b33)©® then T35 — oo,
Definition of (m)® and & :
Indeed let t, be so that for t > t,

(b33)® — (bg,)(6)((G35)(t): t) < &, T5y (£) > (M)©,
Then =2 > (a33)® (m)® — &,T; which leads to

®)(m)®
Ty3 = (M) (1 —e=6t) + The 26t If we take t such that e~¢6! = % it results
6
(a33)®(m)© 2 . .. .
T3 = (T) t =log o By taking now &g sufficiently small one sees that Ts3 is unbounded. The same property

holds for Ty, if lim, .., (b34)® ((G35)(2), t(2), t) = (b34)®
We now state a more precise theorem about the behaviors at infinity of the solutions.
Behavior of the solutions
_If we denote and define
Definition of (a,)®, (0,)®, (1)), (1)@ :
(a) o)W, (az)fl) ,(1)® ) (r,)® four constants satisfying
—(o)® < —(a1,3)(1) + (a1,4)(1) - (a1”3)(1)(T14 6+ §914)(1)(T14 ) £ — (o)W
—(12)® < = (b13)® + (b1)D = (b13) P (G, 1) — (b1) P (G, 1) < —(1)D .
Definition of (v;)®, (v,)®, ()@, (u)®,v®,u®
By (v))™® >0, (v,)® < 0 and respectively (u;)® > 0, (u,)™® < 0 the roots of the equations (a14)(1)(v(1))2 +
() Vv = (ag)® = 0.and (b)) P (u®)" + (@) Pu® — (i) = 0,
Definition of (¥,)®,, (%)@, (@)@, @)™ :
By (1) >0, (#,)™ < 0and respectively ()™ >0, (@,)¥ < 0 the roots of the equations (al4)(1)(v(1))2 +
(0)Pv®D = (a)® = 0 and (b)) + () Du® ~ b = 0.
M_ m)D, (m)D, (u)D, ()@, (vp) @ -
(b) If we define (m)™®, (m)@, (u)®, (u)® by
(mz)(l) = (Vo)(l): (m1)(1) = (V1)(1): if (Vo)(l) < (V1)(1)
(my)D = )W, (m)D = @)D, if (v)® < ()P < (@)D,
GO
and |(vp)® = ﬁ
(m)® = w)®,(m)O® = )@, if F)P < )V .
and analogously
(Ilz)(l) = (uo)(l): (H1)(1) = (u1)(1): if (uo)(l) < (u1)(1)
)™ = W), ()P = @)D, if w)® < (w)® < (@)D,
Jbp

and|(uy)® = ™

()™ = @)D, ()P = W)™, if @)™ < (ue)™® where (u)®, ()
are defined respectively.
Then the solution satisfies the inequalities

62 e(EDV-01)M)t < G () < 6 eV
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where (p,)™ is defined
Glge((sl)(l) P13) M)t < Gi4 (1) < G1 Wt

mp® )(1

(a15) 6Py sDW—¢ )(1) t —(S)WDt 0 ,—(5)Dt
( [e(@ PP — 0P [ 60 < 6150 < ooy

(mly)“)((51)“)—@13)<1)—(52)<1>)
e—(als)(l)t] + Glose—(a1s)(1)f) .

To ®ROWE < T (0) < TY e((Rl)(“+(r13)(1>)t

The RVt < T (8) S—% T8 e(RDD+r1)D)e

(11 )<1) (1)
(b15) DTy (R )(l)t —(by5)@ )t] 0 ,—(by5)Dt
OD(RHD (b D) [e Y e +Tise™ 715770 < Tis(t) <
(a15) D15 [ (RDOW+13)D)e _ —(Rz)(l)t] 0 ,—(Ry)Mt
D@D+ DR ™) L ¢ +Tise

Definition of ()@, (5,)®, (R)W, (R,)V:-
Where (5)® = (a33)® (m,)® — (aj3)®
(52)(1) = (als)m - (p15)(1)
(Rl)(l) = (b13)(1)(li2)(1) - (bi3)(1)
(R)D = (b15)™W = (115)™.

Behavior of the solutions
_If we denote and define.
Definition of (6,)?,(6,)®,(t)?,(1,)@ :
6,)?,(0,)?, (1))@, (1,)® four constants satisfying.

—(0,)® < _(a,,16)(2) + (a,,17)(2) - (Q;6)(2)(T17 )+ (a’1’7”)(2)(T17 0 < —(0)®@ .
—(1)@ < =(b16)@ + (by7)? — (b16)(2)((619): t) - (b17)(2)((G19)' t) < —(1)®.

Definition of (v;)@®, (v;)®, (u))@, ()@ :.

By (v))® >0, (v,)® < 0 and respectively (u,)® > 0, (u,)® < 0 the roots.

of the equations (a;7)@(v®)” + (6,)Pv® — (@) =0.

and (1)@ ) + (1)@u® — (by)@ = 0 and.

Definition of (¥,)®,, (#,)®, (1,)@, (11,)® .

By ()@ >0, (v,)® < 0and respectively (i;)® >0, (i1,)® < 0 the.
roots of the equations (a,;)@ (v®)” + (6) @v® — (a;6)® = 0.

and (by7)® (@) + (1)Pu® ~ (0y)® = 0.

Definition of (m;)®, (m,)@, (u)@, (uy)@® :-.

If we define (m; )@, (m)@, ()@, (1)@ by.

(mz)(z) = (Vo)(z)'(ml)(z) = (Vl)(z): if (Vo)(z) < (Vl)(z) :

(my)@ = ()@, (m)P = [@)P,if ()P < ()@ < (@)@,

0
and |(vy)® =g% :
17

(mz)(z) = (Vl)(z): (m1)(2) = (Vo)(z): if (171)(2) < (Vo)(z) .

and analogously

(/12)(2) = (uo)(z): (#1)(2) = (u1)(2): if (uo)(z) < (u1)(2)

W)@ = W)@, ()@ = @)P,if W)® < (uy)® < (@)@,

0
and|(uy)® =% .
17

(1) = (u1_)(2), (Ii_1)_(2) = (7_10)(2); if (@)® < (u))® .
Then the solution satisfies the inequalities

G, e(EDP-010®) < G, (1) < G e®DPt,
()@ is defined.

0 5@ — @) 5@
WG16Q(( VW =16) Nt < et

(a18)GY6 [ (DD -p16)@ —5)® —(5)@

(6P -@16)P)t _ o=(2) t]+Go a— ()@t

( Mm@ (DD -@16)D~(52)D) 18
e—(aw)(z)t] + G?Be—(ala)(z)t)
|T0 Rt < Ty (0) < T106e((R1)(2)+(r16)(2))f |

R)® TO. o(® @ @
™ )(Z)T e(R¥t < NG < (2) e(®RDP+(r16) D)
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(b13) P16 RH@ A 0 —(b )@
DD (R)D—(b5) D) [e( D — el t] + Tige 1807 < Tya(t) <

@70
(#2)(2)((Rl(){zzl)gi(rlgﬁz)+(R2)(2)) [e((Rl)(2)+(r16)(2))t — e_(Rz)(z)c] + T108 e—(Rz)(Z)t )
Definition of ($;)@, (S)@, (R, (R)@:-.
Where (5,)@ = (a;6)@ (m,)® — (a36)@
(52)(2) = (als)(z) - (pw)(z) .
(Rl)(z) = (b16)(2)(ﬂz)(1) - (bi())(z)
(Rz)(z) = (bis)(z) - (rw)(z)-

Behavior of the solutions

_If we denote and define

Definition of (01)(3) ) (02)(3) ) (T1)(3) ) (Tz)(3) .

@ ), (0,)®, (@), (1,)® four constants satisfying

—(02)® < —(az0)® + (a21)® = (a30) P (Ty1, ©) + (a3) P (Tyy , ©) < —(07)®
—(1)® < =(b30)® + (b21)® = (b30)P (G, 1) = (21)® ((G3), ) < = (1)@ .
Definition of (Vl)(3)' (Vz)m' (u1)(3)' (uz)(3) .

(b) By (v;)® >0,(1,)® < 0and respectively (u;)® >0, (u,)® < 0 theroots of the equations (a21)(3)(v(3))2 +

(01)®V® — (a)® =0
and (b,1)®u®)” + (1)@u® = (by0)® = 0 and
By (#,)® >0, (#,)® < 0 and respectively (;)® >0, (%i,)® < 0 the
roots of the equations (a21)(3)(v(3))2 + (6,) VP — (a)® =0
and (b,))® () + (@)U = (b)) =0,
Definition of (m;)®, (m,)®, (1)@, (ux)® :-
(© Ifwe define (m)®, (my)®, (u)®, (1)@ by
(mz)(3) = (Vo)(3)' (m1)(3) = (V1)(3): if (Vo)(3) < (Vl)(3)
(my))® = W)@, (m)® = @)@, if )P < W)@ < (7)®,

0
and |(v)® = %
21

(mz)(3) = (Vl)(3)'(m1)(3) = (Vo)(3): if (171)(3) < (Vo)(3) :
and analogously
12)® = @)@, ()P = W)@, if (w)® < (u)®

_ . _ 3
(12)® = W)@, (u)® = @)D, if @)@ < wWe)® < @)®, and|(u))® = %

(#2)(3) = (ul)(3)' (Ml)(3) = (uo)(g): if (ﬁl)(s) < (uo)(3)
Then the solution satisfies the inequalities

69 e(EP-0200P) < 6, (1) < 69, eVt
1, )(3) is defined .

$1YB@) _(pr0)3¢ 5@t
—(m 5@ Gzo ((( 1)) (P20)*) < Gy (B) < )(3) G e ) .
(a22)®6Y [ ((51)(3) (PZO)(g))t _(52)(3)t] 0 ,—(S2)®t (a22)’ Gz
e —e + Gyre 2 < Gp(t) < -
((mll)“z()(sl)@)—(pzo)<3)7<SZ()<)3>) 2 2(0) = (0P - ®)
—(az2)®t] 0 o—(az)®t
e + Gy ).
T e®DPt < Ty () < Tzoe((Rl)(3)+(Tzo)(3))t
( )(3) — = THe®Pt < T, (1) = w® )(3) TS e(FD®+G20))e |
"1
(b22) )7 ® ARNG)! b3
(Hl)(3)((123:)(3)_2((;,'22)(3)) [e(Rl) f—em(2) t] + The () < T, (1) <
(a22)P1dy INO) @) —(R)® 0 —(RN®
(12)® (R B +(r20) B +(R2)3)) e (BT — () t] +Tne ) -

Definition of (5,)®, (5,)®, (R)®, (R,)®:-
Where (5)® = (a30)® (m,)® — (az)®
(52)(3) = (azz)(g) - (Pzz)(B)
(Rl)(g) = (bzo)(g)(#z)(g) - (béo)m
(Rz)(g) = (béz)(g) - (rzz)(B)-
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Behavior of the solutions

If we denote and define

Definition of (,)¥,(5,)®,(1))®, (1,)® :

(d) ()@, (0)P,(t)W, (7,)® four constants satisfying

—(02)™® < —(a2)™ + (az5)® — (a24) P (T, 1) + (a35) P (Tp5, 1) < —(0)@
~(@)@ < =(b2)™ + (b35)® = (02)P((G27), ) = (b25) ((G27), £) < ()@
Definition of (v;)™, ()@, ()™, (u)®,v®,u® :

2
(e) By (v)® >0, ()™ < 0and respectively (u;)® > 0, (u;)™® < 0the roots of the equations (azs)®(v®)" +
(a)Pv® — (a,9)® = 0

and (bys)®(u®)” + (1) @u® — (b)® = 0 and
Definition of (7,)®,, (1,)®, (i1,)™, (1)@ :
By (7)™ > 0,(#,)® < 0and respectively (ii;)® >0, (i1,)® < 0the
roots of the equations (azs)(“)(v(“))z + (0,)Pv® — (@)@ =0
and (bz5)® (u®)” + (@) Pu® — (b)® = 0
Definition of (m;)®, ()™, ()™, ()™, (W)™ -
(f) 1f we define (m)™® , (my)™®, (u)®, (u)® by
(My)® = W)@, ()™ = W)W, if ()@ < (v)®

(m)® = (v)®, (m)® = @)D, if W)@ < ()@ < (T)W,

0
and |(v))® = %
25

(mz)(4) = (V4)(4): (m1)(4) = (Vo)m: if (174)(4) < (Vo)(4)
and analogously
012)(4) = (uo)(4): (M1)(4) = (u1)(4): if (uo)(4) < (u1)(4)

(12)® = @)@, ()@ = @)™, if w)® < )™ < @)™,

0
and |(ug)® = ;2—04

()™ = W)®, ()™ = ()@, if @)® < (up)® where (u)®, (@)*
are defined by 59 and 64 respectively

Then the solution satisfies the inequalities
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G, e(EDY-w20)t < G, (1) < 69DVt
where (p,)® is defined .

(€O (©)] )
Ghe e(EDW-020M)t < ¢ () < G et

(m @ )(4

(a26)P 63, [ (DD =(2) @)t _(52)(4)t] 0 ,—(S)®¢ (a26)® 69, [ @
3 < < . St _
((m1)<4)((sl)<4>—(p24)<4>—(52)(4>) ¢ ¢ * e = el = G o |

e—(a26)4t+ G260e—(a26')4t

T2043(R1)(4)t STu() < Tz(zte((Rl)G)Jr(r“)G))t

(11 )<4> THe®™t < Ty (6) S ® (4) T, e (R W +2) )t

(b26) ™1, R)®¢ —(byg) @t 0 ,—(bye) @t
WD (RDB (b)) [e( R ] + Tpgee ST =

(aze) T, [ (RY@+(r2) D)t _ _(RZ)(4)t] 0 ,—(R)®¢
EDD (RO +(r20) P+ RH®) 1 € + Tye

Definition of (51)(4)' (52)(4)' (Rl)(4)' (Rz)(4)1'
Where (S)® = (a24)® (my)™® — (az4)®
($2)® = (az)™ — (P26)™
(R = (by)® (1)@ — (b24)™
(R)™ = (bz6)™® — (16)™

Behavior of the solutions

If we denote and define

Definition of (0,)®, (6,)®, (1)), (1,)® :

@) (), (0)®, (1), (1,)® four constants satisfying

—(02)® < —=(az5)® + (a20)® = (a26)® (Tp9 , ) + (A29) P (T3, £) < —(07)®
~(1)® < =(026)® + (b29)® = (b2)®((G31), ) = (b29) P ((G51),8) < =(x))®
Definition of (v;)®, (1,)®, (u)®, (u,)®,v®,u® :

2
(h) By (v{)® >0,(v,)® < 0and respectively (u;)® > 0, (1;)®® < 0the roots of the equations (a,9)®(v®)" +
(0)OVE — (a)® =0

and (b20)® (u®)’ + (2)Ou® — (by)® = 0 and
Definition of (7,)®,, (#,)®, (i1))®, (1,)® :
By (7,)® >0, (#,)® < 0 and respectively (ii;)® > 0, (1,)® < 0the
roots of the equations (azg)(S)(v(S))z + (0) OV — (a)® = 0

2
and (b9)® (u®)” + (1) u® = (by)® = 0

WWW.ijmer.com 2210 | Page



International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2185-2235 ISSN: 2249-6645

Definition of (m;)®, (m,)®, (1)), (u)®, (vy)® -
(i) If we define (m;)®, (m)®, ()™, (1) by
(mz)(s) = (Vo)(s): (m1)(5) = (V1)(5)' if (Vo)(S) < (V1)(5)

(my)® = (1), (MmN = )P, if () < V® < (1),

and |(vp)® = @

el

(m)® = ), (M) = W)®, if @) < (v)®
and analogously
1) = W)™, (u)® = W)®, if we)® < (u)®

(”2)(5) = (ul)(s)' (Hl)(s) = (ﬁl)(s) Jif (u1)(s) < (uo)(S) < (1_‘1)(5);

() T
and| (1)~ = ¢
2

O

(12)® = W)®, () = (w)®,if @) < (up)® where (u)®, (@)
are defined respectively
Then the solution satisfies the inequalities
Ggse((Sl)(s)—(st)(s))t < Gy (t) < G2()83(51)(5)t

where (p,)® is defined .

5)_ %) (5)
g G VTN < Gy (1) < 5 Gl 0
( (a30)®)65p [e((sl)(s)—(st)(s))t — o)t ] +6Y e 6% <6, (1) < (4306 [e(sl)(s)t _
MG () —(28) O ~(52)®) 30 = BT = ) B (SO —(a30)®)
e—(a30)5t+ G300e—(a30°)5¢
Tzoge(Rl)(S)f < Tye(t) < TZOBe((R1)(5)+(rzs)(5))t
(1 )(5) — 5 The ™™ < Thg (1) S )® (5) pe (T +20))e

(b30)®) 155 RS ARG 0 —(be)®
(#1)(5)((Rl)(s)—(béo)(s)) [e( DT — g7 (s0) t] + T30€ (bs0)™t = T30 (t) =<
(a30) 1Sy TING TSN MWEIN O 0 —(R)O)s

IR P oo [e(( DO+e) D) _ o= (R2) ]+T30€ (Ry)

Definition of (5,)®, (5,)®, (R))®, (R,)®):-
Where (8)® = (a2)® (m2)® — (az5)®

(52)(5) = (‘130)(5) - (Pgo)(s)
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(R1)(5) = (bzs)(s)(#z)(s) - (bés)(S)
(R)® = (b30)® — (130)®

Behavior of the solutions

_If we denote and define

Definition of (0,)®, (6,)©®, (1))@, (1,)® :

() (@)@, (0)®,(t)®,(7,)® four constants satisfying

—(02)® < —(a3)® + (a33)© = (a32) @ (T3, 1) + (a33) @ (T3, 8) < —()©
—(1)® < =(b32) @ + (b33)© = (b32) @ ((G35), t) = (b33) @ ((G35),t) < —(7)©
Definition of (v1)®, (»,)®, (1)@, (1)@, v®,u® :

(k) By (v{)® >0,(1,)® < 0and respectively (u;)® > 0, (u,)® < 0 the roots of the equations (az3)® (V(G))z +
(0)Ov® — (az)® =0

and (b33)© (u®)” + () Ou® — (b3,)® = 0 and
Definition of (,)©,, (,)®, (i1,)®, (11,)® :
By (7,)® >0, (#,)©® < 0 and respectively (ii;)® >0, (i1,)©® < 0 the
roots of the equations (a33)(6)(v(6))2 + (03)@v® — (a;,)® =0
and (bs3)©(u®)” + (@) ©u® = (b3)® = 0
Definition of (m;)®, (m,)®, (u)®, (1)@, (vp)© :-
(I) If we define (m;)®, (my)®, (1)@, ()@ by
(M) = ()@, (m)® = ()®@, if (W)@ < (v)®

(m)® = )@, ()@ = @)@, if )@ < (v))® < @)@,

G3
G

|bJc>

and |(v,)© =

wo
w

(mz)(6) = (Vl)(G): (m1)(6) = (Vo)(ﬁ): if (171)(6) < (Vo)(6)
and analogously
(Mz)(6) = (uo)(ﬁ): (M1)(6) = (u1)(6): if (uo)(é) < (u1)(6)

U2)© = W)@, (1)@ = @)@ ,if w)® < (ue)® < (@)@,

TO
and|(uy)® = %

()@ = )@, (1) ® = ()@, if @)@ < (ue)® where (uy)®, (i1;)®

are defined respectively
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Then the solution satisfies the inequalities
69, e(EDO-02) )t < G (1) < 69,

where (p,)© is defined.

®)_ ©) (6)
WGSZe((SI) @32))t < Gas(t) < )(6) I
( (a34) 64y [6((51)(6)—(p32)(6))t — e~ ] +6Ye 2% < 6. (D) < (@31)©64, [e(smé)t -
m)© (DO -32)O-(5)®) 3 = BN ) ©((51)©®—(a3)®)

e—(a34)6t+ G340e—(a34))6t

T3023(R1)(6)t < Ty (t) < T3029((R1)(6)+(r32)(6))t

9, e (RD@+rs2) @)t

—L_79 e Rt < Ty, (£) <

(11 )<6> (6)
s 2[Rt e—(bén@t] + T8 et < T, (6) <
(u1)(6)((R1)(6)—(bé4)(6)) 34 = 34 =
(a30)O1, R©® +(r32) )t _ _—(Ry) Ot 0 —(Ry)©)¢
(MZ)(6)((Rl)(6)+(r3z)(6)+(RZ)(6)) [e(( 1) (r32) ) —e (R2) ] + T34e (R2)

Definition of (5;)®, (5,)®, (R))®, (R,)©:-
Where (5))© = (a32)© (m2)©® — (a3,)®
(5)® = (a3)© — (3)®
(R)® = (b3)®@ (1)@ — (b3,)®
(R)® = (b3)® — (13)© .
Proof : From GLOBAL EQUATIONS we obtain

dv( )

= (ay3)" - ((a13)(1) - (a14)(1) + (a13)® (T, t)) = (a1)® (T14, VD — (a1) Pv®

Deflnltlon of v :- y =218
I — 014

It follows

dv®

- ((al‘*)(l)(v(l))z + (a) Vv — (a13)(1)) <

From which one obtains

- ((a14)(1)(v(1))2 + (o) MV — (a13)(1))

Definition of ()@, (vy)® :-

() For0 < |(v)® = T < ()W < @)W

-~

(1,1)(1).'.(5)(1) (Vz)(l)e [—(a 14)(1)((1/1)(1)—(1/0)(1)) t]
Y E TR T R

Y- ®
D -(®

V(l)(t) > (C)(l) _

it follows (vp)® < v (1) < (v)©.

In the same manner , we get
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TD+O)D 7y We [~ @D(EDD-T2D) ]

©W = TV -(we)®
O Wel @D D) ] '

€N oY
vi(t) < " wo)W-®

From which we deduce (v,)® < v (t) < (#,)®

0

Gi3
0

Gis

(b) If 0< ()P < (V)P == < (7,)D we find like in the previous case,

@)D+ Dy De [—(a 10 (v M- D) t]

< v <
140 We[~@D(eDD-02)V) ] v =

(V1)(1) <

@D +O)D @) De [-@1D(@n®-H D) ¢|
1+(O)De [@1D (M- W)

< @)W,

0
(© If 0< @)W < @)D <|(w)® =2, we obtain
14

DD+ D) De [~ 10D (@nW-D) ]
14O W@ D (DD -2 M) ]

(v)® < vW(p) < < ()@

And so with the notation of the first part of condition (c) , we have

Definition of vV (¢) :-

G13(t)
(m)® < v(®) < (m)®, | vV () = 2=
G14(t)

In a completely analogous way, we obtain

Definition of u™®(¢t) :-

()P < uD () < ()@, |u®@) = T13(®)
T14(t)

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.
Particular case :

If (aj3)® = (ay,) @D, then (6))® = (6,)® and in this case (v,)® = (#,)@ if in addition (vy)® = (v;)® then
v (1) = (1))@ and as a consequence Gy (t) = (Vo) PG4 (t) this also defines (v,)® for the special case

Analogously if (b13)® = (b1,)D, then (t))® = (1,)® and then

(u)® = (@) Pif in addition (uy)® = (u)® then Ti5(t) = (ug) P Ty, (t) This is an important consequence of the
relation between (v;)® and (v,)®, and definition of (uy)®..

we obtain
dv® , / " "
— = (16)? — ((‘116)(2) = (a)® + (‘116)(2)(T17't)) — (@)@ (Tyi7, v @ — (a;,)Pv® .
Definition of v® :- v® = 6|
Definition of ek
It follows

dv®

2
— <~ ((@)P(O) + @)Pv® - (a,)@),

2
~(@NPP) + @)V ~ (:)®) <
From which one obtains

Definition of (#,)®, (v,)® :-
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0
(d) For0 < (v))@ =2 < (1)@ < (7@
17

V@ () > DD+ @y @@ P(CDP-00@) ] ©® = 0P=00®
T @e[fen®(vn@-00@) ’ w9 @-@
it follows (v)® < v () < (v)@ .
In the same manner , we get
V@ (e) < TDD+©)D @) @[NP (EDD-2@) ] ©)® = WP-00®
= L+ (@@ ~@P([TO-GD) ] ’ ()P -)@

From which we deduce (v,)® < v®(t) < (#,)®.

0
) If 0< ()P < ()® = % < (1)@ we find like in the previous case,
1

7
)P+ D ry)@e[~@NP (1D -02@)¢]
1+(0)@e [~@1@ (1P -w)@)¢]

()@ < < v@() <

T+ )@~ @P(EDD-2D) ]
1+©)@e [~@1@(T1P-2@)¢]

< @)@

0
(M If 0< @)@ < @)P < (v)@ =ZE , we obtain
17

T)O+©D @y @@ (TDP-2P) ]

@) < 4@ (p) <
)™ = v = 140 @[~ @NB(EDD-T@) ]

< ()@

And so with the notation of the first part of condition (c) , we have .

Definition of v®(t) :-

(m)® < VO () < ()@, [vP() = 220}
17

In a completely analogous way, we obtain

Definition of u®(t) :-

W)@ < WO < @@, [u@@ =29]
17

Particular case :

If (ajs)® = (a;;)@, then (6,)@ = (6,)@ and in this case (v;)® = (¥,)@ if in addition (vy)® = (v;)@ then
v@ (1) = (1))@ and as a consequence Gy (t) = (Vo) @Gy, (1)

Analogously if (b1s)® = (b1;)@, then (1;)® = (1,)@ and then

(u)@® = (@) @if in addition (uy)@® = (u)@ then Ti4(t) = (ug) @ Ty, (¢) This is an important consequence of the
relation between (v;)@ and (,)@.

From GLOBAL EQUATIONS we obtain

dv® / / " "
— = (a0)® - ((azo)(g) — (a30)® + (az0)® (T, t)) = (a21) P (1, VP = (a,))Ov .

Definition of v® :- v® = gﬂ
21

It follows
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2 dv(S) 2
- ((a21)(3)(v(3)) +(0) v — (azo)(3)) S—s- ((‘121)(3)(‘/(3)) + ()P — (azo)m);

From which one obtains

et _
(@) For0 < (v)® = ﬁ <(v)® < (1)@

v(3)(t) > (Vl)(3)+(C)(3)(vz)(3)e[_(“21)(3)(("1)(3)_("0)(3))t] (C)(3) — w1)®—y®
- 14(0)®e["@2P (DD -0 @) ] ' )P -2)®

it follows (v))® < v®(t) < (v))®.

In the same manner , we get

V(1) < T+ @y P~ @DP(EDO-02®) ] € = TP
B 1+l @2@(EDO-2)®) ] ’ v0)®-)®

Definition of (¥,)® :-

From which we deduce (vy)® < v®(t) < (#,)®.

0
() If 0<()® < )® = g% < (1)@ we find like in the previous case,
21

)+ By @el~@DP (D -02)®) ]

< V() <
1+(C)(3)g[_(azl)(3)((V1)(3)_(V2)(3)) t] < v ( ) <

(n)® <

T OB @y~ @DP (TP -2®) ]
14O @~ @2DP(EDE-T2)P)) ]

< )

0
(© 1f0< @)® < @m)P < (v)® =2, we obtain
21

TP+ @@ "@2O(TDP-2®) ]

B3 <« 43 <
)™ = v = 14O @~ @2D® (D -T2 P)) ¢]

< ()@

And so with the notation of the first part of condition (c) , we have

Definition of v® (¢) :-

m)® < v () < ()@, |vO(e) = 2L
21

In a completely analogous way, we obtain

Definition of u®(¢t) :-

1)® < u®© < W, [uP© =23
21

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.
Particular case :

If (ay0)® = (ay)®, then (6,)® = (6,)® and in this case (v;)® = (¥,)® if in addition (vy)® = (v;)® then
v®(t) = (v,)® and as a consequence G,o (t) = (vo) G,y (1)

Analogously if (byy)® = (byy)®,then ()@ = (1,)® and then
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(u)® = (@) @if in addition (ug)® = (uy)® then Ty () = (uy)® Ty, (t) This is an important consequence of the
relation between (v;)® and (7,)®.

From GLOBAL EQUATIONS we obtain

dv® ’ ' ” ”
P (a)® — ((a24)(4) — (a25)® + (az) ¥ (Tys, t)) — (a35) P (Tys, VP — (apg) Pv®
Definition of v :- y@ = G4
G5
It follows

dv@®

2 2
~ (@) (@) + (@)D = (0,)®) £ 2= < = (@)D (VD) + (6)Dv® = (@) @)
From which one obtains

Definition of (7,)®, (vy)® :-

63 _
(d) For0 <|(v)® = ﬁ < (v)® < ()W

DD HO® @702 P (DD -0 D) ]

©® = vDW-@e)®
440 Wel~@2P(EDW-00®) ] '

@ -
vim = v0®—)®

it follows (v))® < v®(t) < (v))@

In the same manner , we get

FD+OW @2V (-2 D)
41 (OB~ @29) P (ED®-®) ] '

_ @W-®W

€3] =
vi(t) < D)@

(5)(4)

From which we deduce (vy)® <v®(t) < ()@
0
(e) F 0< (W)® < ()@ = % < (1)™ we find like in the previous case,

w)®+OD ) Pe [7(‘125)(4)((”)(4)7(”2)(4)) t]

@ <
)™ < 14O @ el ~@2 )P (DB -02)®) (]

< v <

TOO+O® @y ®el- @2 (T -2®) ]
1+ We[~@29)(TDD-2®) ]

< (@)W,

0
) fFo<)® < @)W <|()@® = % , we obtain
25

TP +O® () De [—(uzs)(4)((71)(4)—(72)(4)) ]

@ < @ () <
()™ < VD) < 1+(OWel~@2) P (DO -F2®) ]

< (vp)®

And so with the notation of the first part of condition (c) , we have

Definition of v (t) :-

(m)® < v (©) < )@, | VO () = 25
25

In a completely analogous way, we obtain
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Definition of u® (t) :-

T4 (t)
(MZ)(4) < u(4)(t) < (#1)(4)1 u(4)(t) - Tz:(t)

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.
Particular case :

If (a24)® = (a,5)®, then (0,)® = (6,)® and in this case (v;)® = (#,)® if in addition (vy)® = (v;)® then
v () = (v,)® and as a consequence Gy, (t) = (Vo)W G, (t) this also defines (vy)™“ for the special case .

Analogously if (by,)® = (bys)®, then (1)@ = (1,)™® and then

(u)® = (i1,) @if in addition (uy)® = (u)™@ then Ty, (t) = (uy) @ Tys (t) This is an important consequence of the
relation between (v;)® and (¥;)®, and definition of (u,)™.

From GLOBAL EQUATIONS we obtain

dv(® / / " "
:u = (azs)(s) - ((azg)(s) - (a29)(5) + (azg)(s)(ng, t)) - (a29)(5)(T29' t)V(s) - (‘129)(5)1/(5)
Definition of v :- v = &8
Go9
It follows

dv®)

2 2
~ (@)@ ()" + @) = (0)®) £ 2= < = (@) (V)" + (6) S — (a59)®)
From which one obtains

Definition of (7,)®, (v,)® :-

G _
(8) For0<|(v)® =2 < ()® < ()

1O+ ) ®e @2 (P -0 )]
54(0)®e @290 DO-00®) ]

_ vD®-®

) o -™)
vi(t) = " w)®-®

, (C)(S)

it follows (v)® < vO(t) < (v))®

In the same manner , we get

TOO () @y e~ @2P(TDO-2®)) ]
54(0)®)e[@2O (DO -T2 ]

_ 0)®-®

©) Y-
vi(t) < " 0O -w)®

, (C‘)(S)

From which we deduce (vy)® < v®(t) < (175)®

0
(h) f 0< ()® < ()® = % < (#,)® we find like in the previous case,
29

WO+ O~ @2 (D=2 ]

< v0) () <
14(0)®e["@2)®(0 DD -02)®) ] v =

(n)® <

TO+O® @y el @2P (TDO-2)®) ]
11O e~ @29P (DO -T)) ]

< @H)®.
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0

(i) 1f0<@)® < @) <|w)® =28, we obtain

Gy

©

TO OO @O~ @2O (DO -2®) ]

(5) (5)
v S v(t) <
)™ = © = 1+(@(5)e[—(a29)(5)((71)(5)—(72)(5))t]

< ()®

And so with the notation of the first part of condition (c) , we have

Definition of v (t) :-

(m)® < vO® < m)®, [vO©) = 25

Gpo(t)

In a completely analogous way, we obtain

Definition of u®(¢t) :-

(1) < u® @) < ()@, | u® () = 2L

T29(t)

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.

Particular case :

If (azg)® = (a30)®, then (6,)® = (0,)® and in this case (v;)® = (#;,)® if in addition (vy)® = (v5)® then
vOI (1) = (v))® and as a consequence Gyg (t) = (Vo) ®) Gy (t) this also defines (v,)® for the special case .

Analogously if (byg)® = (bye)®,then (1,)® = (1,)® and then

(u)® = (1) ®if in addition (1) = (u)® then Tog(t) = (uy)® Ty (t) This is an important consequence of the
relation between (v;)® and (#;,)®, and definition of (1,)®.

we obtain
dv(® ' ' o Y

pra (az)® — ((a32)(6) — (a33)® + (az)© (T3, t)) — (a33)© (T35, Ov(© — (a33)Ov®
Definition of v(® :- y©® = &2

- ((a33)(6)(v(6))2 + () Ov® — (agz)(G)) <

G33

It follows

dv(®)

s - ((a33)(6)(v(6))2 + (0)Ov® — (a32)(6))

From which one obtains

Definition of (7,)®, (v,)(© :-

)

v () >

0
G3

For 0 < |(v9)® = =2 < (1)©® < ()©®

G3

w

(1,1)(6)+(C)(6) (Vz)((’)e [—(a33)(6) ((Vl)(é)—(vo)(é)) f]
1+(C)(6)e [—(a 33)(6)((V 1)(6)_(1/0)(6)) t]

(6) _()(®
© — v -0
© ) O -z)®

it follows (v5)® < v®(t) < (v;)©®
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In the same manner , we get

TDO+(0)O (77)© |~ @33) O (TDO-T2®) ]
14+(6)©)e [—(a33)(6)((71)(6)—(72)(6)) t]

©© = DO —()®

6 -
vi(t) < T W) ©-)®

From which we deduce (v,)® < v©(t) < (#,)©®

0
(k) 1f 0< ()@ < (v)® = % < (#,)® we find like in the previous case,
33

w1)®+()O (vy)®e [—(a33)(6)((1/1)(6)—(1/2)(6)) t]
14(0)®)[~@33) O (DO -02)) <]

v)® < < vO@) <

T+ O @y ©e [~ @3 O (TDO-2®) ]
14(0)®)[~@3) (DO -2 @) ¢]

< (171)(6) .

0
) f0<)®<@@)® <|(v)® = % , we obtain

w

T+ O () ©e [~ @3 (TDO -2 @) ]
14(0)®)[~@33) (DO -2 @) ¢]

v)©@ < vO() < < ()@

And so with the notation of the first part of condition (c) , we have

Definition of v©(t) :-

(m)® < vO@®) < ()@, [vO0) =25
33

In a completely analogous way, we obtain

Definition of u(®(t) :-

(1) < uO© < @)®, [uO@) =20
33

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.

Particular case :

If (a3,)©® = (a33)®, then (6,)©® = (6,)©® and in this case (v;)® = (¥,)® if in addition (vy)©® = (v;)® then
v® (1) = (v5)© and as a consequence G, (t) = (Vo) ©® G353 (t) this also defines (v)© for the special case .

Analogously if (b3,)® = (b33)®, then (1,)© = (1,)© and then

(u)® = (1) @if in addition (uy)® = (u)® then Ty, (t) = (up) @ Ts3(t) This is an important consequence of the
relation between (v;)® and (¥,)(®, and definition of (1,)®..

We can prove the following

Theorem 3: If (a; )P and (b, )™ are independent on ¢ , and the conditions

(a13) P (a12)® = (a13) P (a;9)® < 0

(a13) P (a1)® = (a13)® (a1)® + (a13)P (P13)® + (@1) P @12 + 13) P (1) >0
(b13) P (b1)® = (b13) P (b)) >0,

(b13) P (b1) D — (b13) P (b1) P — (b13) P (11)D = (1) P (11)D + (r3) P ()@ <0
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with (p13)®, (r4)® as defined, then the system.

If (a; )Pand (b; )® are independent on t, and the conditions .

(a16) @ (a17)@ = (a16)P (a;7)@ <0 .

(a16)? (@17)® = (a16) P (@17) @ + (a16) P 16) @ + (017) P @17)P + (p16) @ (p17)? >0 .
(b16) P (b17)® = (b16) P (b1,)@ >0, .

(b16) @ (b17)® = (b16) P (b17)@ — (b16) P (117)P® = (b17)P (117)@ + (16) P (1)@ < 0
with (pi6)?, (11,)® as defined are satisfied , then the system.

If (a; )P and (b; )® are independent on ¢ , and the conditions

(a20)®(a21)® = (a20)® (a,1)® <0

(a20)® (21)® = (a20)®(@21)® + (a20)® 20)® + (a21) 021)® + 020)® P21)® > 0
(b20)® (b21)® = (b20)® (b)) >0,

(b20)® (021)P = (b20)® (51)® = (b29) P (11)® = (b31) P (121)® + (1) (1))@ < 0
with (py0)®, (1,)® as defined are satisfied , then the system.

If (a; Y®and (b; )™® are independent on t , and the conditions

(a24)® (a25)® — (a24)® (a5)™® < 0

(a2)® (a25)® = (@20)® (@25)™ + (a24)® (020)™® + (a25) @ (P25)® + (P22) @ (p25)® > 0
(b24)® (bp5)™® = (b2) @ (b5)® >0,

(bé4)(4) (bés)m - (b24)(4) (bzs)(4) - (bé4)(4) (Tzs)(4) - (blzs)m (7”25)(4) + (7"24)(4) (7"25)(4) <0
with (p4)@W, (155)@ as defined are satisfied , then the system,

If (a; )®and (b; )™ are independent on t , and the conditions

(a28)® (a29)® = (a28)® (a29)® < 0

(a26)®(a20)® = (a28) (A20)® + (a28)® (026)® + (@20)F (026)® + (P25)® (020)® > 0
(b28) ™ (b20)® = (b33) ) (b9)® >0,

(bés)(s)(bé9)(5) - (b28)(5)(b29)(5) - (blzs)(s)(rm)(s) - (b’29)(5)(rz9)(5) + (Tzs)(s) (Tz9)(5) <0
with (,5)®, (159)® as defined satisfied , then the system,

If (a; )©and (b; )© are independent on t , and the conditions

(a32) @ (a33)® — (a3,)®(a33)® <0

(a32)®(@33)©@ = (a3) @ (a33)®@ + (a32) @ (P32)® + (a33) @ (P33)©@ + (032) @ (p33)® > 0
(b32)© (b33)© = (b32)® (b33)® >0,

(b32)® (b33)© = (b32) @ (b33)® — (b3) @ (135)©@ — (b33) @ (r33) @ + (13,) @ (r33) @ < 0

with (ps3;)®, (133)® as defined are satisfied , then the system.
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(a13) PGy — [(a13)® + (a13)P(T1)]Gi3 = 0.

0.

(a14)(1)613 - [(a'14)(1) + (a'1’4)(1)(T14)]G14
(a15) P61y = [(a15)D + (a35) P (T14)]Gis = 0.

(b13) DTy = [(b13)® = (b13) V(@) 1Ty = 0.

(b1)VTy3 = [(b1)® = (1) (@) ]Ty4 = 0.

(b15) DTy — [(b15)® — (bys) P (6) ]Tys = 0.

has a unique positive solution , which is an equilibrium solution for the system.
(@16)? 617 = [(16)® + (a16) P (T17)]Gr6 = 0.

(1) PGy — [(@1)P + (a17)P(T17)]6y; = 0.

(@19)® 617 — [(m19)® + (a19)? (T17)]G1g = 0.

(b16) DT = [(b16)® = (b16) P (G19) IT16 = 0.

(b17)PTi6 = [(b17)@ = (b17) P (G1) 1T1y

(b1g)PTy; — [(b1g)® — (b1) P (Gy9) 1Tig = 0.

0.

has a unique positive solution , which is an equilibrium solution for .
(a20)P a1 = [(a20)® + (a20)® (T21)] G = 0.
(a21) PGz = [(@20)® + (a2)P (121)] Gy = 0.
(a22)PGy1 = [(a22)® + (az2)P (121)] G = 0.
(bzo)(3)T21 - [(béo)(3) - (bgo)(g)(023) 1T =
(b21)(3)T20 - [(b,21)(3) - (bgl)(g)(623) 1Ty = 0.

(bzz)(3)T21 - [(béz)(3) - (bgz)(g)(023) 1T, = 0.

has a unique positive solution , which is an equilibrium solution.

|
o

0

(a20) PG5 — [(@24)™ + (@24)® (T25)] G4

(az5)PGry — [(a35)™ + (a35) ™ (T25)]Gos = 0
(a26)®Gos — [(@26)™ + (a26)™ (T25)]Gp6 = 0

(b)) P Tys = [(2)® = (02)®((G27)) 1Ta = 0
(bzs)(4)T24 - [(b’zs)“) - (bgs)(4)((627)) 1To5s =0

(b26)PTos — [(b26)® — (b36) P ((G27)) 1Ty = 0

has a unique positive solution , which is an equilibrium solution for the system
(a28) ™G9 — [(a26)® + (a2) (T29)]Gg = 0
(‘129)(5)628 - [(ayzg)(s) + (agg)(S)(ng)]ng =0
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(a30)® Gy9 — [(@30)® + (a30)®(T29)]G3p = 0

I
o

(by) DTy — [(b26) — (b2g) P (G31) 1Tog =

(bzg)(S)Tzs - [(bég)(s) - (b;9)(5)(G31) ]T29 =0

I
o

(b30)(5)T29 - [(béo)(s) - (bgo)(s)(Gm) ]T30 =

has a unique positive solution , which is an equilibrium solution for the system
(a32) @G5 — [(a32)® + (a3,) @ (T33)]G3, = 0

(az3)® Gy — [(a,33)(6) + (a;3)(6)(T33)]G33 =0

(a34)© G5 — [(a34)® + (a34) @ (T33)]G34 = 0
(b32)©Ts3 = [(b32) @ — (b32) @ (G35) 1T5, = 0
(b33)©Ts; = [(b33)© — (b33) @ (G35) ITs3 = 0
(b34)(6)T33 - [(bé4)(6) - (b§4)(6) (G35) T34 = 0
has a unique positive solution , which is an equilibrium solution for the system

(a) Indeed the first two equations have a nontrivial solution G;5, Gy, if

F(T) =
(@13)P(a1)® = (a13) P (a1) D + (a13) P (a7) P (T1) + (a1) P (a73) P (Ty) + (a13) P (Thy) (a1) P (Thy) =0 .

(@) Indeed the first two equations have a nontrivial solution G4, G;; if

F(Ty) =
(a16) P (a17)® — (a16) P (a17)@ + (a16) P (a17) P (T17) + (a17) P (a16) P (T17) + (a16) P (T17) (a17) P (T;) =0 .

(@) Indeed the first two equations have a nontrivial solution G,,, G,; if

F(Ty3) =
(a20)®(a31)® = (@20)® (a21)® + (a20)® (az1)® (To1) + (@21)® (@20) ) (T21) + (a20) P (Ty1) (a2) P (Ty1) =0 .

(a) Indeed the first two equations have a nontrivial solution Gy4, G55 if
F(Ty7) = (a24)® (a25)® = (a24)® (@25)® + (@2)® (a25)® (Tzs) + (a25) W (a50) @ (T25) + (@2)® (Ty5) (@25) P (T35) = 0
(a) Indeed the first two equations have a nontrivial solution G,g, G, if
F(T31) = (a28)® (a20)® = (a26)™(a20)® + (a28)® (a29) ) (T29) + (a29) (a28)® (Ta9) + (a28) ™ (T29)(a29) ™ (To9) = 0 .
(a) Indeed the first two equations have a nontrivial solution Gs;, G33 if
F(Ts5) = (a3,)® (a33)© — (a32)® (@33)©@ + (@32) @ (a33) @ (T33) + (a33) @ (@32) @ (T33) + (a32) @ (T33) (a33) @ (T33) = 0

Definition_and uniqueness of Ty, :-
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After hypothesis £(0) < 0, f(o0) > 0 and the functions (a; ) (Ty,) being increasing, it follows that there exists a unique
Ty, for which f(Ty,) = 0. With this value , we obtain from the three first equations

(a15) D614
[(a15) D +(a15) D (114)[*

(a13)WG1q

Gi3 = — z ,
13 [(@13)D+(a13)D(T1y)]

Gis =

Definition_and uniqueness of Ty, :-

After hypothesis £(0) < 0, f(o0) > 0 and the functions (a; )®(T;,) being increasing, it follows that there exists a unique
Ty, for which f(Ty;) = 0. With this value , we obtain from the three first equations .

(a18)PG17
[(a18)@+(aip) @ (T1,)]*

_ (a16) PGy
[(a16)P+@a1e)@(1i7)]

Gie Gig =

Definition_and uniqueness of T;; :-

After hypothesis £(0) <0, f(c0) > 0 and the functions (a; ) (T,;) being increasing, it follows that there exists a unique
T;; for which f(T5;) = 0. With this value , we obtain from the three first equations

(a22)®6y4
[(a22)®+(az)®(151)]

_ (a20)® 64
[(@20)®+(az0)®(131)]

Gy Gy, =

Definition and uniqueness of T,; :-

After hypothesis f(0) < 0, f() > 0 and the functions (a;' Y#®(T,s) being increasing, it follows that there exists a unique
Tys for which f(T;5) = 0. With this value , we obtain from the three first equations

(az6)™Gys
[(a26)®+(aze)® (155)]*

(a24)6ys

G = 7 7T )
2 [(@24)® +(az0) D (T35)]

Gy =

Definition and uniqueness of Ty :-

After hypothesis f(0) < 0, f() > 0 and the functions (a;' )®)(T,q) being increasing, it follows that there exists a unique
T4 for which f(T5y) = 0. With this value , we obtain from the three first equations

(a30)® 69
[(a30)®)+(az0)®(T39)]*

_ (a28)®6Gz9
[(a2e)P+(az0)®(135)] '

Gag Gz =

Definition and uniqueness of T5; :-

After hypothesis f(0) < 0, f() > 0 and the functions (a: )©)(T;3) being increasing, it follows that there exists a unique
T3; for which f(T53) = 0. With this value , we obtain from the three first equations

(a34)® 633
[(a34)® +(a34) O (T33)]

_ (a32)®633
[(a32)®+(a3)®(1353)] '

G, G3y =

(e) By the same argument, the equations 92,93 admit solutions Gys, G4 if

@(G) = (b13) P (b1)® = (by3) ™ (b)) —

[(B13)P (b)) + (b1) P (b13) P (@) +(b13) V(G (1) P (6) = 0

Where in G(G;3, G14,Gys), Gi3, Gis must be replaced by their values from 96. It is easy to see that ¢ is a decreasing function
in G, taking into account the hypothesis ¢@(0) > 0, () < 0 it follows that there exists a unique Gy, such that ¢(G*) =
0.

(f) By the same argument, the equations 92,93 admit solutions G4, G7 if
@(Gr9) = (b16) P (b17)@ = (b16) P (by7)@ —

[(b16)P (b17) P (G19) + (b17)P (b16) P (G19) |+ (16) P (G19) (b17)P (G9) = 0 .
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Where in (G19) (Gyg, G17, G1g), G16, G1g Must be replaced by their values from 96. It is easy to see that ¢ is a decreasing
function in G, taking into account the hypothesis @(0) > 0, ¢() < 0 it follows that there exists a unique Gj, such that
¢((G9)") = 0.

(g) By the same argument, the concatenated equations admit solutions G,,, G, if

@(Gy3) = (béo)(3)(bél)(3) - (bzo)(g)(bm)m -

[(020)® (521)® (G3) + (021)P (b20)® (G23) ] +(b20)® (G23) (b31) P (G23) = 0

Where in G,5(G,q, Go1, G2 ), Gog, Go; Must be replaced by their values from 96. It is easy to see that ¢ is a decreasing
function in G,; taking into account the hypothesis ¢(0) > 0, () < 0 it follows that there exists a unique G;; such that
9((Gz3)") = 0.

(h) By the same argument, the equations of modules admit solutions G4, G5 if

9(G7) = (b34) W (by5)™® — (b24)® (b25)® —

[(b'24)(4) (b25) ™ (Gy7) + (bas)™ (b)) (G27)]+(b;4)(4) (G27)(b35) P (Gy7) =0

Where in (G37)(Gyy, G2, Gog), Gog, Gog Must be replaced by their values from 96. It is easy to see that @ is a decreasing
function in G,5 taking into account the hypothesis @(0) > 0,¢() < 0 it follows that there exists a unique G, such that

9((Gy7)) = 0.

(i) By the same argument, the equations (modules) admit solutions G,g, G5q if

@(Gsy) = (b,ZB)(S)(b,Z‘B)(S) - (bzs)(s)(bm)(s) -
[(028) 5 (b26) ) (G31) + (b29)® (b2) (G31)]+(b25) ) (G31) (b39)®(G31) = 0

Where in (G31)(Gag, Ga9, G3g), Gog, Gz must be replaced by their values from 96. It is easy to see that ¢ is a decreasing
function in G,q taking into account the hypothesis ¢(0) > 0, (o) < 0 it follows that there exists a unique G54 such that

»((G31)") = 0.

(j) By the same argument, the equations (modules) admit solutions Gs,, G5 if

@(Gss) = (béz)(G) (bé3)(6) - (b32)(6) (b33)(6) -
[(béz)(6) (b33)©(G35) + (b33) @ (b3)® (G35)]+(b§2)(6) (G35)(b33)®@(G35) = 0

Where in (G35)(Gsy, G33, G34), G35, G4 must be replaced by their values It is easy to see that @ is a decreasing function in
G55 taking into account the hypothesis @(0) > 0, ¢ () < 0 it follows that there exists a unique G33 such that ¢ (G*) =
0.

Finally we obtain the unique solution of 89 to 94

Gy givenby @ (G*) = 0, T}, given by f(T},) = 0 and

G* — (a13)(1)["f4 G* — (a15)(1)GI4

B3 7 @) D+@®(r1)] ' T T [(15)D+ahs) D (1))
T* = (b13)(1)T1*4 T* = (bls)(l)Tf4

1B T (o D=-0®DG0] 15 T () D=5 G

Obviously, these values represent an equilibrium solution .

Finally we obtain the unique solution .
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Gi; givenby @((G,9)*) = 0, Tj7 givenby f(Ty7) = 0 and.

« (a16)PG1, Gro = (a18)?G1,
16 7 @10 @P+@10)@D(Ti7)] ' 8 7 [@19)@P+@19)@(Tiy)]
T = (b16) DT}, TH = (b18) AT},
16 7 1)@ -01)@P(G19)0] ' 1B T (0@ -b1)@ (619)0)]

Obviously, these values represent an equilibrium solution.

Finally we obtain the unique solution

Gz*l giVen by ¢((Gz3)*) =0 ’ TZ*l giVen be(T2*1) =0 and

Gi = (220063 G = (a22)65
20 7 [(az)®+@0)®(T31)] 7 22T [(ap)®+(az)®(T5)]
. (b20)3T5, o (b22)3)T3y

T5 , T

T [0200®-30)®(G23")] T [0 ®- 2P (623)]
Obviously, these values represent an equilibrium solution .
Finally we obtain the unique solution

G35 givenby ¢(G,7) = 0, Ty givenby f(T,s) = 0 and

G, = (a20)®635 Gi = (a26)® G35

2T (@) ®+@z)®(135)] 1 T2 T [(ape) P +(az6) D (155)] ¢
T = (b24)BT55 T = (b26) T35

24 T ) D= D((G27))] 7 T2 T (o) D —(b26) D (G27)M)]

Obviously, these values represent an equilibrium solution .
Finally we obtain the unique solution
G3o givenby p((G31)") = 0, T3, givenby f(T5,) = 0 and

(a30)®639

(a28) 639 —
[(a30)®+(a30)®(T55)]

(28 = [ara® (i) + 030

(b28) T3 X (b30)T39

[(b28)5)~(b25)5) ((G31)")] » Tso [(b30) ) —(b30) ) ((G31)")]

Te =
Obviously, these values represent an equilibrium solution.
Finally we obtain the unique solution

G33 givenby ¢((G35)") = 0, T3; given by f(T53) = O and

(a34)© 633

(a32)® 633 —
[(a34)®+(a34)®(133)]

G* — - - , G*
32 7 (a3 ©+(a3)©)(T33)] 34

(b32)O)T33
[(b32)©® —(b32)©) ((635)")]

(b34)©OT33
[(b34)©)—(b34) ) ((635)")]

* —_ * —_
T32 = ’ T34 -

Obviously, these values represent an equilibrium solution .

ASYMPTOTIC STABILITY ANALYSIS
Theorem 4: If the conditions of the previous theorem are satisfied and if the functions (a; )’ and (b; )V’ Belong to
CW(R,) then the above equilibrium point is asymptotically stable.

Proof:_Denote
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Definition of G;, T; :-
Gi:Gi*+Gi ’T'l‘=7'l‘*+’]rl‘

a(b )

a(arHD .
%(TM) = (%4)(1) (G )= Sij

Then taking into account equations (global) and neglecting the terms of power 2, we obtain .

dG;lB = —((@1)® + (P13)P) G5 + (@13)VGr4 — (q13) V613 Ty -
dG;H = —((a14)(1) + (p14)(1))((314 + (1) Y Gy3 — (1) VG Ty
dﬁls = ((a15)(1) + (Pls)m)(@w + (a15)(1)@14 - (‘hs)( )615T14 :
dT—la = —((b13)(1) - (T13)(1))T13 + (b13)(1)T14 + Z} 13(5(13)(1)T13(G )
dj_tm - _((b,14)(1) - (T14)(1))T14 + (b1)VTys + 2}213 (5(14)(1)T1*4 Gj) '
dj—tls = —((b15)® — (i) V)5 + (1) DTy + X1245(s05)(h 15 G ) -

If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b; )® Belong to C? ( R,) then the
above equilibrium point is asymptotically stable.

Denote
Definition of G;, T; :-.
Gl=G7+Gl lTi=Ti*+']ri'

3(;, )( )

a(a1)® .,
T (1) = (@)@, 2= (o)) =53 -

taking into account equations (global)and neglecting the terms of power 2, we obtain .

dG

= ~((@16)® + (016)?) G + (016) PGy — (q16) PG Ty -

dG

— = ~((@)® + (017)?) Gy + (a17) PGy — (1) PG Ty

dG

el ~((a18)® + (018)?) G + (a18) PGy — (q15) P Gig Ty -

dT

= ~((b16)® ~ (r16)P) Ty + (b16) P17 + 2216 (516)() Ti6 G ) -
dT

= ~((01)® = () P)Ty7 + (1) PTi6 + 2216 (5077 Ti7 G ) -
dT / :
d_tw = _((b18)(2) - (718)(2))T18 + (byg) DTy, + 2}216(5(18)0)T18(G']') :

If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b; )® Belong to C®( R,) then the
above equilibrium point is asymptotically stabl

_Denote
Definition of G;, T; :-
Gi:Gi*-I-Gi ,7'1:7—'1*""]:[‘1

9 (az)® a(b )

(T51) = (q2)® ((623) )=s .
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Then taking into account equations (global) and neglecting the terms of power 2, we obtain .

dG ' .
720 = —((a20)® + (020)) G0 + (a20) PGy = (420)P G5, Ty -
dG : *
dt21 = —((a2)® + (021)®) Gy + (a21)PGyp — (q51)PG31 Ty .
dG ! *
dtzz = —((a22)® + (022)®) Gy + (a22) PGy — (q52)PG3, Ty .
daT ! *
dtzo = _((bzo)(S) - (Tzo)(g))Tzo + ()P T, + z"JZiZO(S(ZO)(J)TZO(G'l') )
daT ! *
dt21 = _((b21)(3) - (T21)(3))T21 + (b21)(3)T20 + z:Jzizo(s(zl)(j)TZl(G'j) )
dT : S
2 = —((02)P = () ®) Tz + (b2) DTy + X200 (502 T2 G;) -

If the conditions of the previous theorem are satisfied and if the functions (a;' ) and (bl'-' )@ Belong to C®(R,) then
the above equilibrium point is asymptotically stabl

_Denote.
Definition of G;, T; :-
G =G + G T =T+ T,

a(b )

2 (75) = (g2)® , 2222 ((Gr) ) =5y

Then taking into account equations (global) and neglecting the terms of power 2, we obtain,

dG ' Gop + Gys — 24 1
e —((@2)® + 020) )Gy + (a20) PG5 — (24) P G354 Ts .
dG : + - 5T
dtzs = —((a25)™® + (025)) G5 + (a25) M Gy — (G25) ¥ G35 Tos -
dG ' + - 26
dt26 = —((a26)™ + (026)®) G + (a26) P G5 — (426) P G56Ts -
dT , Ty + e
724 = —((b20)™® — (1) @) T4 + (b)) P Ts 12224(5(24)(1')T24 f) '
dT : + 5 G
dtzs = —((b25)® = (1)) T + (bys) VT4 + X724 (525)() T35 Gy ) -
dT , + 6@,
dt26 = —((b2)™® = (r26) ) Ty + (b)) P To5 + X284 (526)5) T36 G ) -

If the conditions of the previous theorem are satisfied and if the functions (a;' )® and (b;i )®) Belong to C®®(R,) then
the above equilibrium point is asymptotically stable

Denote.
Definition of G;, T; :-
Gi:Gi*+Gi I’I'lZ’I'l*-I-’]I‘l

a(b )( )

a(aze) (ng) = (g29)® , —=—((G3)*) = Sij -

Then taking into account equations (global) and neglecting the terms of power 2, we obtain,

dG : .

d:ZS = —((a20)® + (P28)®) Gzg + (a28) P Gpg — (G26) P G35 To .
dG : .

d:zg = —((a20)® + (29)®)Gy9 + (a39) P Gzg — (420) G54y .
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d:zﬂ = —((@30)® + (030)®) Gp + (a30)® G — (q30) G35 T -

d?zri = —((b26)® = (r26) )Ty + (bpg) ' Tpq + Y %26 (searn T2 Gy ) -

dlfzg = —((b20)® = (120) ) T39 + (b29) P Toq + X 28(5(29)(1)7'29@ ).

dlf% = _((béo)(s) - (r30)(5))T30 + (b3o)(5)T29 + 213228(5(30)(])7'3*0 Gj) )

If the conditions of the previous theorem are satisfied and if the functions (a;' )® and (b;l )® Belong to C®(R,) then
the above equilibrium point is asymptotically stable

Denote.
Definition of G;, T; :-
GiZGi*-l_Gi ,TiZ’Fi*‘l"]ri
9a3)® .., ap; )®
%%—@9=%J@-——4mw>—%.
33

Then taking into account equations(global) and neglecting the terms of power 2, we obtain,

4G
—2= —((a52)©@ + (32) @) G, + (a32) @G35 — (432) @G5, T3 -
4G
i = _((a33)(6) + (P33)(6))G33 + (a33) Gy — (q33) @G35 T;3 .
4G
—t= _((034)(6) + (P34)(6))G34 + (a31)©G33 — (q34) @63, T3 .
dT
2 = —((b3)® = (r3) @) T3, + (b32)©Ta3 + D 32(5(32)(;)T32@ )
dT
8 = —((b33)©® = (133)©@) T3 + (b33) @ T, + Z} 32(5(33)(;)T33@ ).
dT
d_34 = —((034)® — (r34) @) T34 + (b3) T3 + Z} 32(5(34)(;)7134(GI ).

The characteristic equation of this system is

(DD + (b15)® = (s ) D)(DD + (a15)D + (p15) ™)

[(((/1)(1) + (@13)® + 13)P) (1) V65 + (@)D (@1) P61 )]

(((/1)(1) + (1) = (1)) saaanTi +(b14)(1)5(13),(14)T1*4)

+ (((/1)(1) + (a1)® + (P14)(1))(CI13)(1)G1*3 + (a13)(1)(q14)(1)6{‘4)

(((/1)(1) + (b13)® = (113) V) say,anTia + (b14)(1)5(13),(13)T1*3)

(WD) + (@)D + @) + @)@ + @) V) DHD)

(WD) + (B + (Bi)® = (1) + (3)D) WD)

+ (((/1)(1))2 + (@) + (@1)P + (1) P + (p1)D) (A)(D) (415) PG5
(DD + (a13)D + (013)Y) ((@15) P (q14) P61y + (a1) P (a15) P (q13)P613)
(((/1)(1) +(b13)® = (1) P)saay a5 T +(b14)(1)5(13),(15)T1*3)} =0
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+

(D + B1)? = (1) D) (DD + (@19)P + 16)P)

(O + @) + B1)®) @) P67 + (@) (016) PG )|

(@D + 510 = (10 @)san,anTir +B1)Psae,anTir)

+ (WD + @) + (1) P)(16) D6 + (a16) P (@) PG )

(@D + 510 = (1) P)sun,a6 7 + (bi7)Psae,a6)Tis)

(WD) + (@)@ + (@)@ + @)@ + @17)@) D)

(W) + (11 + Bi)D = (1)@ + (37)@) D)

+((WD)* + (@)@ + (@)? + P1e)® + P)®) WD) (415) PGy
+HDP + (@19)P + (P16)@) (1) P (@17)PGi7 + (a17)P (a16) P (q16) P Gig)

(((/1)(2) + (b16)® = (16)?)sa7),am Ti7 +(b17)(2)s(16),(18)T1*6)} =0

+

(D + B30 = E)PN(DP + (@) + (p22))

(WD + @) + @20)®) @2)P 631 + (021D (020065 )|

(WD + B2 = 2)P)s@n,en T +b2)Psen,enT)

+ (O + @) + P2)P)@20) D63 + (a20)@ (420651 )

(DD + G200 = (20))s20,00) T + (b21) D520, 20)To0)

(W) + (@)@ + @)D + P2)® + 2)@) WD)

(W) + (B)P + Bi)® — (20)® + () P) D)

+ (WD) + (@)@ + @) + 000 + 0:)P) WD) (422)P6
DD + (@20)® + (020?) ((@22) P (020651 + (@) (@22) P (200D G3o)

(((/1)(3) + (b20)® = (120)®) 521y, T51 +(b21)(3)5(20),(22)T2*0)} =0

+

((/1)(4) + (bye)™® — (7”26)(4)){((/1)(4) + (az)® + (Pze)(4))
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(@@ + @)@ + P2)®) (@25)P 635 + (@5)P (2634 )|

((W® + B2 = (2)®)s28),2)Tss +(bas) P52, 2)T5s )

+ (O + @)™ + B25)P) @2) D634 + (a20)@ (425)PG55)

(DD + 20 = (120®) 525,20 T55 + (b25) D5 201,251

((W®)* + (@)D + @)@ + P2)® + (25)®) WD)

(WD) + ((b2)® + (b35)® = ()@ + (1)) WP

+ (@) + (@)@ + @)™ + @200 + @25)®) D)D) (426)® G
DD + (@)@ + 020) ((226)® (25)® G55 + (a25) P (a26) P (020) G54)

(((/1)(4) + (b,24)(4) - (T24)(4))5(25),(26)T2*5 +(b25)(4)5(24),(26)T2*4)} =0

+.

(@ + B50) = () D) (DD + (@)@ + (30))

(DD + @) + ©26))(@20)® G5 + (@20)® (426) G35 )|

(DD + (B2)® = (12)) 5029, 29) T +(b29)D 523,20 T )

+ (WP + (@) + (926)P) (@2)® G35 + (426) (420) P63

((W® + B2) = (26) )50, T + (b29) P52, Tso )

(W) + (@)@ + (@) + P2)® + (P20)@) D)

(W) + (B + (b30)® — () + (120)®) W)

+(WD) + (@)@ + @)@ + @)@ + P26)®) D) (30) PG
(DD + (@2)® + 026)®) ((@30)P (0200 G5 + (a29) (a30)® (426) G35

(((/1)(5) + (b26)® = (128)®)5(29),30) T +(b29)(5)s(28),(30)T2*8)} =0

+
((/1)(6) + (b3)® — (7”34)(6)){((/1)(6) + (a34)© + (P34)(6))
[(((/1)(6) +(a32)@ + (132) @) (433) PG5 + (a33) @ (q32) @65, )]

(((/1)(6) + (b32)® = (r3)©) 533,33 T3 +(b33)(6)5(32),(33)T3*3)
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+ (D + @5)® + 03)@) @52) 63 + () (435)© G5

(W@ + B32)® = (353,60 Ts + (b33) @5 T )

((W®)* + (@)@ + (@)@ + P32)@ + (1)) W)

((W®)" + (B5)® + (bi)® = (3)@ + (1) @) D©)

+((D®) + (@)@ + @)@ + P32)® + 3)@) W) (434)© G
+H((D@ + (@3)@ + (032)@) ((a34)@ (433)© G35 + (a33)@ (a34) @ (432) @63,

(((/1)(6) + (b32) @ = (13)©) 533,30 T3 +(b33)(6)5(32),(34)T3*2)} =0

And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and this proves the
theorem.
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