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Abstract: In quantum physics, in order to quantize a gauge theory, like for example Yang-Mills theory, Chern-Simons or BF
model, one method is to perform a gauge fixing. This is done in the BRST and Batalin-Vilkovisky formulation. Another is to
factor out the symmetry by dispensing with vector potentials altogether (they're not physically observable anyway) and work
directly with Wilson loops, Wilson lines contracted with other charged fields at its endpoints and spin networks Presently
renormalization prescriptions of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix have been investigated by
many authors like Yong Zhou. Based on one prescription which is formulated by comparing with the fictitious case of no
mixing of quark generations, they have proposed the substantive limits, singular pauses, general rests, logical attributes and
real relations therefore a new prescription intermodal manifestation which can make the physical amplitude involving
quark's mixing gauge independent and ultraviolet finite. Compared with the previous prescriptions this prescription is very
simple and suitable for actual calculations. Through analytical calculations we also give a strong Proof for the important
hypothesis that in order to keep the CKM matrix gauge independent the unitarity of the CKM matrix must be preserved.
Mass-shell renormalization of fermion mixing matrices have also been delineated and investigated upon by K.-P.O
Diener, B.A Kniehl wherein they consider favorable extensions of the standard model (SM) where the lepton sector contains
Majorana neutrinos with vanishing left-handed mass terms, thus allowing for the see-saw mechanism to operate, and
propose physical on-mass-shell (OS) renormalization conditions for the lepton mixing matrices that comply with ultraviolet
finiteness, gauge-parameter independence, and (pseudo)unitarity This is an important result that motivated us to draw up
the consolidation of some of the most important variables in Fermion and graviton vertices.. A crucial feature is that the
texture zero in the neutrino mass matrix is preserved by renormalization, which is not automatically the case for possible
generalizations of existing renormalization prescriptions for the Cabibbo—Kobayashi-Maskawa (CKM) quark mixing matrix
in the SM. Our renormalization prescription also applies to the special case of the SM and leads to a physical OS definition
of the renormalized CKM matrix. A consummate and link model is built for the variables like gravity, matter field, virtual
photons and other important variables. Nevertheless the stormy petrel Neutrino seems to rule the roost with its own
disnormative prescriptions for itself. Rich IN ITS twists and turns, the Model seems to offer a parade of variables bent on
aggrandizement agenda.

. Introduction:
Ward-Takahashi identity

In quantum field theory, a Ward-Takahashi identity is an identity between correlation functions that follows from
the global or gauged symmetries of the theory, and which remains valid after renormalization.

The Ward-Takahashi identity of quantum electrodynamics was originally used by John Clive Ward and Yasushi
Takahashi to relate the wave function renormalization of the electron to its vertex renormalization factor F1(0), guaranteeing
the cancellation of the ultraviolet divergence to all orders of perturbation theory. Later uses include the extension of the
proof of Goldstone's theorem to all orders of perturbation theory.

The Ward-Takahashi identity is a quantum version of the classical Noether's theorem, and any symmetry in a
quantum field theory can lead to an equation of motion for correlation functions..

The Ward-Takahashi identity applies to correlation functions in momentum space, which do not necessarily have all their
external momenta on-shell. Let

MK P Pri @1 Gn) = u(R)MU(K p1e - Priqr - -+ )

be a QED correlation function involving an external photon with momentum k (where E.ﬂ-(k) is the polarization vector of
the photon), n initial-state electrons with momenta 1 * * * Pn, and n final-state electrons with momenta 41 * * * Un.

Also define Mﬂto be the simpler amplitude that is obtained by removing the photon with momentum k from original
amplitude. Then the Ward-Takahashi identity reads

ey MP(Kipy - Pas - Q) = —EZ[Mu(pr--pn;ql---(qz-—ff:)---qn}

—Ma(m---(pz-+fc)---pn;m---w
where —e is the charge of the electron. Note that if has its external electrons on-shell, then the amplitudes on the right-
hand side of this identity each had one external particle off-shell, and therefore they do not contribute to S-matrix elements.

The Ward identity
The Ward identity is a specialization of the Ward-Takahashi identity to S-matrix elements, which describe physically

— I8
possible scattering processes and thus have all their external particles on-shell. Again let M (k) = €p (k)M (k)
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be the amplitude for some QED process involving an external photon with momentum k, where E.ﬂ-(k)
vector of the photon. Then the Ward identity reads:
ke, M* (k) = 0
Physically, what this identity means is the longitudinal polarization of the photon which arises in the & gauge is unphysical
and disappears from the S-matrix.

is the polarization

Il.  Some Reviews:

Flavor Changing Fermion-Graviton Vertices (SEE FOR DETAILS G. Degrassi, E. Gabrielli, L. Trentadue-
emphasis mine)Authors study the flavor-changing quark-graviton vertex that is induced at the one-loop level when
gravitational interactions are coupled to the standard model. Because of the conservation of the energy-momentum tensor the
corresponding form factors turn out to be finite and gauge-invariant. Analytical expressions of the form factors are provided
at leading order in the external masses. Authors show that flavor-changing interactions in gravity are local if the graviton is
strictly massless while if the graviton has a small mass long-range interactions inducing a flavor-changing contribution in the
Newton potential appear. Flavor-changing processes with massive spin-2 particles are also briefly discussed in the paper. .
These results can be generalized to the case of the lepton-graviton coupling.

Examples of its use include constraining the tensor structure of the vacuum polarization and of the electron vertex
function in QED. Gauge dependence of the on-shell renormalized mixing matrices WAS STUDIED BY Youichi Yamada It
was recently pointed out that the on-shell renormalization of the CabibboKobayashi-Maskawa (CKM) matrix in the method
by Denner and Sack causes a gauge parameter dependence of the amplitudes. Authors analyze the gauge dependence of the
on-shell renormalization of the mixing matrices both for fermions and scalars in general cases, at the one-loop level. It is also
shown that this gauge dependence can be avoided by fixing the counterterm for the mixing matrices in terms of the off-
diagonal wave function corrections for fermions and scalars after a rearrangement, in a similar manner to the pinch technique
for gauge bosons. Particles in the same representation under unbroken symmetries can mix with each other. The neutral
gauge bosons, quarks, and massive neutrinos in the Standard Model (SM) are well-known examples. New particles in
extensions of the Standard Model also show the mixings. For example, in the minimal supersymmetric (SUSY) standard
model (MSSM), a very promising extension, super partners of most SM particles show the mixing .The mixing of particles is
expressed in terms of the mixing matrix, which represents the relations between the gauge eigenstates and the mass
eigenstates of the particles. The mixing matrices always appear at the couplings of these particles in the mass eigenbasis.
Because of the fact that mass eigenstates at the tree-level mix with each other by radiative corrections, (it calls for) the
mixing matrices have to be renormalized to obtain ultraviolet (UV) finite amplitudes. Denner and Sack have proposed a
simple scheme to renormalize the mixing matrix of Dirac fermions at the one-loop level, which is usually called the on-shell
renormalization scheme. They have required the counterterm for the renormalized mixing matrix to completely absorb the
anti-Hermitian part of the wave function correction 6Zijfor the external on-shell fields*

1. GRAVITY AND MATTER FIELDS:
MODULE NUMBERED ONE NOTATION :
Gi3 : CATEGORY ONE OF GRAVITY
G4 : CATEGORY TWO OFGRAVITY
G5 : CATEGORY THREE OF GRAVITY
T,; : CATEGORY ONE OF MATTER FILEDS
T;, : CATEGORY TWO OF MATTER FIELDS
T;5 :CATEGORY THREE OF MATTER FIELDS

GRAVITON FIELD AND CONSERVED MATTER ENERGY MOMENTUM TENSOR(LIKE IN A BANK THE RULE
THAT ASSETS AND LIABILITIES ARE EQUIVALENT IS APPLIED TO THE IBNDIVIDUAL SYSTEMS, THE
CONSERVATION OF ENERGY MOMENTUM TENSOR IS APPLICABLE TO VARIOUS SYSTEMS AND THE
CLASSIFICATION IS BASED ON THE CHARACTERSITICS OF THE SYSTEMS TO WHICH THE CONSERVATION
PRINCIPLE IS APPLIED):

MODULE NUMBERED TWO:

Gi¢ : CATEGORY ONE OF GRAVITON FIELD

Gi; : CATEGORY TWO OF GRAVITON FIELD

Gig : CATEGORY THREE OF GRAVITON FIELD

Ty : CATEGORY ONE OF CONSERVED MATTER-ENERGY-MOMENTUM TENSOR(WE ARE HERE SPEAKING
OF SYSTEMS TO WHICH IT IS APPLICABLE. PLEASEE THE BANK EXAMPLE GIVEN ABOVE)

T;; : CATEGORY TWO OF CONSERVED MATTER-ENERGY-MOMENTUM TENSOR

Tig : CATEGORY THREE OF CONSERVED MATTER-ENERGY-MOMENTUM TENSOR

VIRTUAL PHOTONS AND GRAVITON PHOTON VERTEX:
MODULE NUMBERED THREE:
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G, : CATEGORY ONE OF VIRTUAL PHOTONS(WE HERE SPEAK OF THE CHARACTERISED SYSTEMS FOR
WHICH QUANTUM GAUGE THEORY IS APPLICABLE)
G,; :CATEGORY TWO OF VIRTUAL PHOTONS
G,, : CATEGORY THREE OF VIRTUAL PHOTONS
T,, : CATEGORY ONE OF GRAVITON ELECTRON VERTEX
T,; :CATEGORY TWO OF GRAVITON ELECTRON VERTEX
T,, : CATEGORY THREE OF GRAVITON ELECTRON VERTEX

QUANTUM FIELD THEORY(AGAIN,PARAMETRICIZED SYSTEMS TO WHICH QFT COULD BE APPLIED
IS TAKEN IN TO CONSIDERATION AND RENORMALIZATION THEORY(BASED ON CERTAIN
VARAIBLES OF THE SYSTEM WHICH CONSEQUENTIALLY CLSSIFIABLE ON PARAMETERS)

: MODULE NUMBERED FOUR:

G,, : CATEGORY ONE OF QUANTUM FIELD THEORY (EVALUATIVE PARAMETRICIZATION OF SITUATIONAL
ORIENTATIONS AND ESSENTIAL COGNITIVE ORIENTATION AND CHOICE VARIABLES OF THE SYSTEM TO
WHICH QFT IS APPLICABLE)

G5 : CATEGORY TWO OF QUANTUM FIELD THEORY

G, : CATEGORY THREE OF QUANTUM FIELD THEORY

T,, :CATEGORY ONE OF RENORMALIZATION THEORY

T,5 :CATEGORY TWO OF RENORMALIZATION THEORY (SYSTEMIC INSTRUMENTAL CHARACTERISATIONS
AND ACTION ORIENTATIONS AND FUYNCTIONAL IMPERATIVES OF CHANGE MANIFESTED THEREIN )

T,¢ : CATEGORY THREE OF QUANTUM FIELD THEORY

VIRTUAL ELECTRONS AND GRAVITON PHOTON VERTEX
MODULE NUMBERED FIVE:

G,s : CATEGORY ONE OF VIRTUAL ELECTRONS

G,9 : CATEGORY TWO OFVIRTUAL ELECTRONS

G3o :CATEGORY THREE OF VIRTUAL ELECTRONS

T,g :CATEGORY ONE OF GRAVITON PHOTON VERTEX
T,9 :CATEGORY TWO OF GRAVITON PHOTON VERTEX
T3, :CATEGORY THREE OF GRAVITON PHOTON VERTEX

QUANTUM CORRECTIONS TO ON SHELL MATRIX (VIRTUAKL GRAVITONS ARE NOT INCLUDED IN
THE LOOPS) AND WARD IDENTITIES FROM MATTER ENERGY MOMENTUM CONSERVATION(LOT OF
SYSTEMS CONSERVE THE MASS ENERGY AND THE CLASSIFICATION IS BASED ON THE
PARAMETRICIZATION OF THE SYSTEMS)

MODULE NUMBERED SIX:

Gs, : CATEGORY ONE OF QUANTUM CORRECTION TO SHELL MATRIX

G5 : CATEGORY TWO OF QUANTUM CORRECTIONS TO SHELL MATRIX

Gs, : CATEGORY THREE OFQUANTUM CORRECTIONS TO SHELL MATRIX

Ty, : CATEGORY ONE OF WARD IDENTITIES FROM MASS-ENERGY-MOMENTUM CONSERVATION(AGAIN
WE RECAPITUALTE THE BANK EXAMPLES THERE ARE MILLIONS OF SYSTEMS FOR WHICH THE
CONSERVATION HOLDS AND WE ARE CLASSIFYING THE SYSTEMS AND WARD IDENTITIES THEREOF)

T;; : CATEGORY TWO OF WARD IDENTITIES

T,, : CATEGORY THREE OF WARD IDENTITIES

CHARGED WEAK CURRENTS AND ONE LOOP FLAVOUR CHANGING NEUTRAL CURRENTS(FCNC) IN

THE FERMION PORTFOLIO:
MODULE NUMBERED SEVEN

Gz : CATEGORY ONE OF CHARGED WEAK CURRENTS

G37 : CATEGORY TWO OF CHARGED WEAK CURRENTS

Gsg : CATEGORY THREE OF CHARGED WEAK CURRENTS (ENERGY EXCITATION OF THE VACUUM AND
CONCOMITANT GENERATION OF ENERGY DIFFERENTIAL-TIME LAG OR INSTANTANEOUSNESSMIGHT
EXISTS WHEREBY ACCENTUATION AND ATTRITIONS MODEL MAY ASSUME ZERO POSITIONS IS AN
EXAMPLE)

T3¢ : CATEGORY ONE OF FCNC IN THE FERMIONS SECTOR

T3, : CATEGORY TWO OF FCNCIN THE FERMIONS SECTOR

Tz : CATEGORY THREE OF FCNC IN THE FERMIONS SECTOR
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(alz)(l), (a14)(1), ((115)(1). (b13)(1). (b14)(1). (b15)(1) (alﬁ)(Z)' (‘117)(2); (a18)(2) (blé)(z)' (b17)(2)' (b18)(2):

(azo)(g), (a21)(3), (azz)m ) (bzo)(3). (b21)(3). (bzz)(3)
(a24)(4), (a25)(4), ((126)(4). (b24)(4). (bzs)(4). (b26)(4): (bza)(s). (b29)(5), (b3o)(5) ,(‘128)(5)» (azg)(s)» (asp )(5);

(a32)(6), (a33)(6), (a34)(6). (bgz)(6). (bgg)(ﬁ); (b34)(6)
are Accentuation coefficients

@)D, @)D, @)D, GO, G, Gi)Y, @)@, @)D, @)?, i@, ki), i)
, (azo)(S), (a21)(3), (azz)(g). (bzo)(g). (b21)(3); (bzz)(3)
(a24)®, (a35)®, (a26) ™, (b24)™, (by5) ™, (b36) ™, (b3), (b39)®, (b3¢)® (az28)®, (a39)®, (azp)® ,

(a32)®, (a33) @, (a34)®@, (b32)©@, (b33)®, (b34)©
are Dissipation coefficients*

GRAVITY AND MATTER FIELDS:
MODULE NUMBERED ONE

The differential system of this model is now (Module Numbered one)*1

dG ’ "

— = (a,3) V6, — [(a13)(1) + (a13) P (T, t)]G13 *
dG ’ "

—u ((114)(1)6;13 [(a14)(1) + (a1) P (T, t)]G14 *3
dG15

= (a15) MGy — [(ais)(l) + (ais)(l)(TM: t)]G15 *
d“ = (b13) VT — [(b1)D = (b13) (G, )] Ty5 *
dTH = (b)) )T13 [(b,14)(1) — (b)), t)]T14 *6

d:tls - (b15)(1)T14 [(bis)(l) - (bils)(l)(G, t)]Tls *7

+(ay3) W (Ty4, t) = First augmentation factor *8

—(b13)P(G,t) = First detritions factor*

GRAVITON FIELD AND CONSERVED MATTER ENERGY MOMENTUM TENSOR(LIKE IN A BANK THE
RULE THAT ASSETS AND LIABILITIES ARE EQUIVALENT IS APPLIED TO THE IBNDIVIDUAL SYSTEMS,
THE CONSERVATION OF ENERGY MOMENTUM TENSOR IS APPLICABLE TO VARIOUS SYSTEMS AND
THE CLASSIFICATION IS BASED ON THE CHARACTERSITICS OF THE SYSTEMS TO WHICH THE
CONSERVATION PRINCIPLE IS APPLIED):

MODULE NUMBERED TWO:

The differential system of this model is now ( Module numbered two)*9

dG ’ "

=L = (a16)P6y7 — [(a16)@ + (a16) P (T17,0)] Gy *
dG ’ "

= = (a17) PGy — [(@1)P + (a17)P(Ty7,D)] 6y *
d(ﬂ

= (a15) P67 — [(a15)@ + (a1) P (Ty7, )]Gy *
d ) "
T16 = (bye)?Ty; — [(bm)(z) — (b16)P((Gyo), t)]T16 *
d ) ”
Tl7 = (b)) DTy — [(b17)(2) — (b17)P((Gy), t)]T17 *14

d ’ "
s _ ()T — [(B)® — Be)(Gao), )]Tig 15

+(ajs) P (T;;,t) = First augmentation factor *16
—(b15)?((Gyo),t) = First detritions factor *17

VIRTUAL PHOTONS AND GRAVITON PHOTON VERTEX:
MODULE NUMBERED THREE

The differential system of this model is now (Module numbered three)*18
da ' "
i = (a20)®Gy1 — [(a30)® + (a30)® (T, )]Gy *

i ) P

22 = (ay) PGy — [(@2)® + (a31) P (Tyy, )]G,y *20
i ) p

T2 = (a) PG,y — [(a22)® + (a35) P (Ty, )]G,y *21
i ) p

220 = (byg) DTy — [(h20)® = (b30) P (Go3, )] Ty *22
i ) P

22 = (b )Ty — [(131)® = (b)) P (Go3, O)|Tyy *23
dTZZ

= (b)) Ty — [(b32)® = (b3) P (Gy3, V)| Ty, *24
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+(azy)® (T, t) = First augmentation factor*
—(b30)®(G,3,t) = First detritions factor *25
QUANTUM FIELD THEORY(AGAIN,PARAMETRICIZED SYSTEMS TO WHICH QFT COULD BE APPLIED
IS TAKEN IN TO CONSIDERATION AND RENORMALIZATION THEORY(BASED ON CERTAIN
VARAIBLES OF THE SYSTEM WHICH CONSEQUENTIALLY CLSSIFIABLE ON PARAMETERS)
: MODULE NUMBERED FOUR
The differential system of this model is now (Module numbered Four)*26

G ) p
—2 = (ag)WGy5 — [(a24)(4) + (az)™® (Tzs;t)]Gm *27

“25 = (a25) @Gy — [(@3s)® + (a55) @ (Tys, )] G5 *28
d626 = (aze) ¥ G5 — [(a,26)(4) + (a;6)(4)(T25,t)]G26 *29
d ’ "

24— (hy) D Tys — [(03)@ — (b)) @ ((Gy), )] Tos *
des

= (by5) DTy, — [(35)™® — (bs) P ((G27), )] Tys *31

djjﬁ (b26)®Tys — [(br6)® — (b36) P ((G27), t)] Ty *32
+(az4) W (Tys,t) = First augmentation factor*33
—(b34)®((Gy7),t) = First detritions factor *34

VIRTUAL ELECTRONS AND GRAVITON PHOTON VERTEX
MODULE NUMBERED FIVE

The differential system of this model is now (Module number five)*35
dczs = (azs)( )G29 [(aés)(s) + (agg)(s)(ng,t)]ng *

dczg = (a0)®Gyg — [(a,29)(5) + (a39) (T, t)]G29 *

d[ﬂ = (a30)( )G29 [(0,30)(5) + (a;o)(s)(Tzwt)]Gw *

‘”28 = (bye) Ty — [(b3)® = (b30) P ((G31), )] Tg *

‘”29 = (b39)®Ts — [(b39)® = (b3)® ((G31), )Ty *

d ’ "
§3° (b30) s = [(B30)® = (b3) P ((G31), )]T5 *

+(a34)® (Ty,t) = First augmentation factor *42
—(b3g)®((G31),t) = First detritions factor *43

QUANTUM CORRECTIONS TO ON SHELL MATRIX (VIRTUAKL GRAVITONS ARE NOT INCLUDED IN
THE LOOPS) AND WARD IDENTITIES FROM MATTER ENERGY MOMENTUM CONSERVATION(LOT OF
SYSTEMS CONSERVE THE MASS ENERGY AND THE CLASSIFICATION IS BASED ON THE
PARAMETRICIZATION OF THE SYSTEMS)

MODULE NUMBERED SIX:

The differential system of this model is now (Module numbered Six)*44
45

dG ’ "
T2 = (a3,)® 63 — [(a5)©@ + (a3) @ (Ta3, )]Gy *

dG ’ "

=2 = (a33)® 63, — [(a33)@ + (a33) @ (Tas, )]Gz *
d , .y
ﬁ = (a34) @ Ga3 — [(a34)© + (a34)© (T35, )] Gay *
dT ’ "

2 = (byy)OTy; — [(53,)© — (b3) @ ((Gas), )T, *
i , P

S = (bay)OTy, — [(b33)© — (b33)© ((G3s),t)|Ts5 *50
dT34

a = (b3s)©T33 — [(b§4)(6) - (b§4)(6)((635). t)]T34 *51
+(az,)© (Ts3,t) = First augmentation factor*52

CHARGED WEAK CURRENTS AND ONE LOOP FLAVOUR CHANGING NEUTRAL CURRENTS(FCNC) IN
THE FERMION PORTFOLIO:

MODULE NUMBERED SEVEN

The differential system of this model is now (SEVENTH MODULE)*53

dG , "
=3 (a36)( )637 [(a36)(7) + ((136)(7) (T7, t)]G36 *54
dG , "
=2 = (a37) P Gse — [(a3)? + (a3,) 7 (T35, )] Gs; *55
dG38

— = (‘138)(7)637 [(aés)m + (aé'g)m (Ts7, t)]G38 *56
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(b36) P Ty; — [(36)7 — (b36) P ((G30), )| T3 *57
(b37) DTy — [(b37)7 — (b37) P ((G30), )| T3 *58

dT3¢ _
a
dT37 _
a

59

dT3g

8 = (bag) P Tyy — [(b36) 7 — (b36) P ((G39), )] T35 *60
+(ass) 7 (T3, t) = First augmentation factor *61
—(b36) P ((G3o),t) = First detritions factor

FIRST MODULE CONCATENATION:

[ (a’13)(1)| +(ai3) (T, t)||+(a,1,6)(2'2') (Ty7, t)” +(az0) %3 (T, t)| 1

dgtm = (a13) MGy — |+(a;4)(4'4'4'4') (Tis, t)||+(a;8)(5'5'5'5') (Tyo, t)||+(a’3’2)(6'6'6'6‘) (T3, t)| Gi3
| [+(@3)? (T, D) |
[ (@) V@) O, O +@ )P (T, O] +(az) G (T, 0] |
d;:‘tm = (a1) MGy — |+(a;5)(4'4'4'4')(T25,t)”+(a;9)(5'5'5'5')(T29, t)”+(a’3:3)(6’6'6'6‘)(T33;t)| Gig

i [+ @) ?(T5,, 0 ]
[ (@is) V| +(ai5) D (T, ][ +(a15) @2 (T17, O)|[+(a5) 33 (T, D] ]
1555 — (a,5)0 Gy — | [F (@) 4 Ts, 0] [ +(230) 5559 Wy, O] +@5) 49 (T3, 0] | 6,

[+(a5) (T, 0

Where | (a13) V(T t)| | (a1) VO (Ty,, t)|,|(a'1'5)(1)(T14, t)| are first augmentation coefficients for category 1, 2 and 3

|+(a'1'6)(2'2') (Ty7, t)| : |+(a'1'7)(2'2') (Ty7, t)| , |+(a'1'8)(2'2') (Ty7, t)l are second augmentation coefficient for category 1, 2 and
3
|+(a;0)(3'3') (Ty1, t)|,|+(a;1)(3'3') (Ty1,t) | | +(az) B3 (Tyy, t)| are third augmentation coefficient for category 1, 2 and 3

|+(a;4)(4'4'4'4') (Tys, t)| , |+(a;5)(4'4'4'4') (Tys, t)| ,|+(a'2'6)(4'4'4'4') (Tys, t)| are fourth augmentation coefficient for category 1,
2and 3

|+(a;8)(5'5'5'5')(T29,t) |,|+(a;9)(5'5'5'5')(T29, t)|,|+(a§0)(5'5'5'5')(T29,t)| are fifth augmentation coefficient for category 1, 2
and 3

"

|+(a32)(6'6'6'6') (Ty3,t) | |+(a§3)(6'6'6'6') (Ts3, t)l ,|+(a§4)(6-6-6-6-) (Ts3, t)| are sixth augmentation coefficient for category 1, 2
and 3
|+(@30) 7 (Ty7, O] +(@i)? Ty, )| +(a3e) P (T5;, ) JARESEVENTHAUGMENTATION COEFFICIENTS

(b1) V= b1) VG, O] [~ B3 (o, O] |- (30)* G, D] ]
U8 () DT, — | [FO2H G, D)~ (020) 5555 (G, O] |- (b32) 55 (G5, )] | 3,
| |_(b§6)(7') (Gzo, 1) | |
[ (1) D= 01DV G, D] [~ (b1 P (G0, ||~ (03:)%* (63, )| |
% = (b)) VT35 — |_(b;5)(4'4'4'4')(027;t)“—(b’2’9)(5‘5‘5‘5‘)(G31't)”—(bga)(6‘6’6’6’)(6351t)liTm
| |—(b’3’7)(7‘) (Gso, t)l J
[ (1) P[=(b1) DG, O] [~ (b16)* (Gro, O] |- (052) P (63, 1)
Z8 = (b19) VT — | [ by 44 Gy, D[~ (03) 5555 (Gay, D[~ (03 E555) (G35, )] | Tis
|_(b;8)(7') (Gso, t)l

Where | —(b13)M(G,t) | ,|—(b{4)(1)(6, t)l,l—(b{s)(l)(G, t)|are first detritions coefficients for category 1, 2 and 3
|—(b'1'6)(2'2') (Gyo, ) | | —(b17)?2) (G, t)l,l—(bfg)(z'z') (Gyo, t)| are second detritions coefficients for category 1, 2 and 3
|—(b§0)(3r39 (Gy3, t)| | —(b31)B3)(Gy3, t)l,l—(bgz)(“') (Gy3,t) | are third detritions coefficients for category 1, 2 and 3

|—(b§4)(4r4'4'4')(627, t)|,|—(b'2'5)(4'4'4'4') (G,7, t)l,l—(bgé)(‘*""‘*"*') (627,t)|are fourth detritions coefficients for category 1, 2
and 3
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|—(b'2'8)(5'5'5'5')(631,t)| ,|—(b'2'9)(5'5'5'5')(631,t)| ,|—(b'3'0)(5'5'5'5')(631,t)| are fifth detritions coefficients for category 1, 2
and 3
|—(b§2)(6'6'6'6')(635,t)| ,|—(b'3'3)(6'6'6'6') (G35,t)| ,|—(b'3'4)(6'6'6'6') (G3S,t)| are sixth detritions coefficients for category 1, 2
and 3
|=(036)7 (G309, ||~ (536)7? (G35, ) ||~ (b36) 77 (Gso, t) ]ARE SEVENTH DETRITION COEFFICIENTS
*62

(b1) V[~ (1) D (G, O] [~ (b15) 22 (Gro, D] |- (B52) ) (G5, )|
[ 3™ Gy, D] [F 05) ) (G, O] [~ (b)) (G35, D] |
Where | —(b13)V(G, ) | ,|—(b{4)(1)(G, t)|,|—(b;'5)(1)(G, t) | are first detrition coefficients for category 1, 2 and 3
|—(b'1'6)(2'2') (Gyo, t) | | —(b17)?2) (G, t)|,|—(b{8)(2'2') (Gyo, t)l are second detritions coefficients for category 1, 2 and 3
|—(b'2'0)(3'3') (Gys, t)| | —(b31)33) (G, t)|,|—(b;2)(3'3') (Gys, t) | are third detritions coefficients for category 1, 2 and 3

|—(b'2'4)(4'4'4'4')(627, t)|,|—(b'2'5)(4'4'4'4') (G, t)|,|—(b;6)(4'4'4'4') (627,t)|are fourth detritions coefficients for category 1, 2
and 3
|—(b'2'8)(5'5'5'5')(631,t)| ,|—(b'2'9)(5'5'5'5')(G31,t)| ,|—(b'3'0)(5'5'5'5')(631,t)| are fifth detritions coefficients for category 1, 2
and 3
|—(b'3'2)(6'6'6'6')(G35,t)| ,|—(b'3'3)(6'6'6'6') (G3s,t)| ,|—(b§4)(6'6'6'6') (G3s,t)| are sixth detritions coefficients for category 1, 2

and 3 *64
SECOND MODULE CONCATENATION:*65

(@16)@|+(a16) @ (Ti7, )| [+ (@1) (T, O |[+(a50) 33D (11, )| ]

(a16)@G,7 — |+(a;4)(4'4'4'4'4) (Tzs, t)”+(a;8)(5'5'5'5'5)(T29' t)||+(a’3:2)(6’6‘6‘6‘6) (T3, t)| iGls *66

_ [+(a36)77 (T3, 1) |

[ (@) P +(a1)? (17, )]+ (@) O (T, O | +(@5) P33 (T, 1) ]

L = (ay7)@ Gy - |+(a;5)<4'4'4'4'4>(7"25,t)||+(a£9>(5'5'5'55)(r29,t)||+(a’3’3><6-6'6'6'6><T33,t)licn *67
+(a§7)(7'7') (Ts7,1) J

(a16) @[+ (a1) P (Ty7, )| [+ (a15) ) (T, O |[+(a5) 3P (11, 1) ]

(019) P61y — | [+(aze) @44 (Tys, £)]| +(as0) S5559 (Tyo, ) || +(a34) ©5559) (T3, 1) | iGls *68

! |+(az) 77 (T35, 0)| |
Where | +(a16) P (T, 1) | ) |+(a'1'7)(2)(T17, t)|,|+(a'1'8)(2)(T17, t) | are first augmentation coefficients for category 1, 2 and 3

*63

dT:
715 = (b15)(1)T14 -

dGie _
dt

dGig _
dat

|+(a'1'3)(1'1') (Tya, t)| , |+(a'1'4)(1'1') (Tya, t)| , |+(a'1'5)(1'1') (Ty4, t)| are second augmentation coefficient for category 1, 2 and 3

|+(a§0)(3'3'3)(T21,t)|,|+(a§1)(3'3'3)(T21, t)|,|+(a'2'2)(3'3'3)(Tz1,t)| are third augmentation coefficient for category 1, 2 and
3

|+(a§4)(4'4'4'4'4) (Tys, t) |,|+(a;5)(4'4'4'4'4) (Tys, t) |,|+(a'2'6)(4'4'4'4'4) (Tzs,t)| are fourth augmentation coefficient for category
1,2and 3

"

|+(a28)(5'5'5'5'5)(T29,t) | |+(a§9)(5'5'5'5'5)(T29, t)l ,|+(a§0)(5'5'5'5'5)(T29, t)| are fifth augmentation coefficient for category
1,2and 3

|+(a§2)(6'6'6'6'6) (Ts3, t)|, |+(a§3)(6'6'6'6'6) (T33,t)| ,|+(a§4)(6'6'6'6'6) (Ty3, t)| are sixth augmentation coefficient for category
1,2and 3 *69

70
|+(@30) 77 (T4, O |+ (@5) 77 (T7, ) [+ (a3s) 77 (T, £) |ARE SEVENTH DETRITION COEFFICIENTS*71

[ 010 @[=(016) @ (G1o, D] [~ (b13) TP (G, D] |- (h30)#*3) (63, 1) 1|
(b1)PTi7 = | [=(05) @444 Gy, D] |- (b35) 5559 (Gay, 1) || - (D5) 906 (Ga, 0)] | Tis *72
|—(b§6)(7'7) (Gso, t)l

dT1e _
.
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[ i) P[=01)P (G19, ] [~B1) TG, D[ 0555365, 8)|
dT17 (b17)( )T16 |— (bgs)(4'4'4'4'4) (Gy7,8) ||- (bgg)(s,s,s,s,s)(Gm' t) ||— (bg3)(6'6'6'6‘6) (G5, t) | Ty7 *73
|—(b§7)(7'7) (G3o, f)l
(b16) V[ =(b1)® (619, )] [~ (b15) T (G, )] |- (b32) 33 (Gy3,0)|
= )T ~ | 205 ®H4 Gy, O)[- (B50) 55559 (G, O [- (B3 ©5909) (G, 0)] | Tis *74
|=(b3) 77 (G3o, )|

where| (b16)(2)(G19,t)| |—(b17)(2)(G19,t)| |—(b18)(2)(G19,t)| are first detrition coefficients for category 1, 2 and 3
|—(b13)(1'1') (G, t)| | — (1), t)| ,|—(b15)(1'1') (G, t)l are second detrition coefficients for category 1,2 and 3
|—(b'2'0)(3'3'3') (Gys, t)| | —(b3,)B33) (G, t)|,|—(b;2)(3'3'3') (Gys, t)l are third detrition coefficients for category 1,2 and 3
|—(b'2'4)(4'4'4'4'4) (Gy7, 1) |,|—(b'2'5)(4'4'4'4'4) (Gy7,0) |,|—(b'z'ﬁ)(4'4'4'4'4)(627, t)| are fourth detritions coefficients for category 1,2
and 3

|—(b'2'8)(5'5'5'5'5) (Gsq, t)| ,|—(b'2'9)(5'5'5'5'5)(G31, t)| ,|—(b'3'0)(5'5'5'5'5)(631, t)| are fifth detritions coefficients for category 1,2
and 3

|—(b'3'2)(6'6'6'6'6) (Gss,t) |,|—(b'3'3)(6'6'6'6'6) (Gss, t)| ,|—(b§4)(6'6'6'6'6) (Gss, t)| are sixth detritions coefficients for category 1,2
and 3

|—(b'3'6)(7'7) (Gsq,t) |—(b'3'6)(7'7) (Gsq, t) | —(b36) 77 (Gs, t) |are seventh detrition coef ficients

THIRD MODULE CONCATENATION:*75

(@20) P +(a50)® Ty, O)|| +(a1) 22 (117, D] [+ (@) I (T, )] |
20 — (ay0) DGy — | [H@@D) D (T, 0| +(az0) 55559 (T, 0] +(a3) @000 (I35, 8] | 6, #7
+(aze) 777 (T35, 1) |
(a’21)(3)|+(a;1)(3)(T21,t) +(aj;)@*2(Ty, t)||+(a )(1‘1‘1‘)(T14,t)|
dGn = (a21)® Gy — |+(a;5)(4'4'4'4'4'4)(T25,t)||+(a;9)(5'5'5'5'5'5)(T29 t)||+(a33)(6‘6‘6‘6‘6‘6)(T33,t)| Gy *77
|+(a D777 (Ty, t)l |
(azz)(3)|+(a22)(3)(7’21,t)||+(a 8)##2(Ty, t)”+(a 5) (T, t)l
dGZZ = (a)® Gy — |+(a )(4'4'4'4'4'4)(7’25,t)||+(a30)(5'5'5'5'5'5)(T29 t)“+(a34)(6‘6‘6‘6‘6‘6)(T33 t)l Gy *78
|+(a 8)7 77 (T, t)l |

|+(a;0)(3)(T21,t)| |+(a;1)(3)(T21,t)| |+(a'2'2)(3)(Tz1,t)| are first augmentation coefficients for category 1, 2 and 3

|+(a )(222)(T17,t)| |+(a 7)(222)(T17,t)| |+(a18)(222)(T17,t)| are second augmentation coefficients for category 1, 2
and 3

|+(a )(1“)(T14,t)| |+(a 4)(1“)(T14,1t)| |+(a15)(1'1'1')(T14,t)| are third augmentation coefficients for category 1, 2
and 3

|+(a ) GAAAED (T, t)| |+(a G )daaasd) (T, t)l |+(a )(4'4'4'4'4'4)(T25,t)| are fourth augmentation coefficients for
category 1, 2 and 3

|+(a§8)(5'5'5'5'5'5)(T29,t) |,|+(a;9)(5'5'5'5'5'5)(T29,t)|,|+(a§0)(5'5'5'5'5'5)(T29,t)l are fifth augmentation coefficients for
category 1, 2 and 3

|+(a§2)(6'6'6'6'6'6)(T33,t)|,|+(a§3)(6'6'6'6'6'6)(T33,t) |,|+(a§4)(6'6'6'6'6'6)(T33,t)l are sixth augmentation coefficients for
category 1, 2and 3 *79

80
|+(a§6)(7-7-7-) (Ty7, t)|+(a§7)(7-7-7-) (Ts7, t)|+(a'3'8)(7-7-7-) (Ty7,t) |are seventh augmentation coefficient*81
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(b20)P[=(b3)® (G5, D] |- B36) 777 (610, O] |- 1) MG, )|
deo (bzo)( )T21 |—(bg4)(4'4'4'4'4'4)(G27,t)”—(b;B)(S'S'S'S'S'S)(Gm,t)||— (bgz)(6,6,6,6,6,6)(635’t)| Ty *82
|- (62)777) (G, )] |
(b3 P[=(03)® (Gz3, D] |- (1) 222 (G0, 0)| |- (b1 (G, )]
dTZl = (b)) Ty — |—(b 5) A6y, t)” (by9)®55555) (G, t)” (b33) 006560 (Gys, t)| T, *83
|‘ (b37)"77 (G, t)| |
(52) [~ (03)® (Gy3, )] |- (B1p) 222 (G160, D |- B15) 126, )|
= 0Py = [—(03)* 44 (G, )] |- (b3) 55559 (631, 0] [- (b3 ©6056 (G, )] | oo *84
| (b35) 777 (G, t)| |

|—(b20)(3)(6‘23,t)| |—(b21)(3)(G23,t)| |—(b22)(3)(G23,t)| are first detritions coefficients for category 1, 2 and 3
|—(b16)(2'2'2)(619, t)| : |—(b17)(2'2'2)(G19, t)| , |—(b18)(2'2'2)(619, t)l are second detritions coefficients for category 1, 2 and

|—(b'1'3)(1'1'1') (G, t)| ,|—(b'1'4)(1'1'1') (G, t)| | =(b1s) LG, £) | are third detrition coefficients for category 1,2 and 3
|—(b'2'4)(4'4'4'4'4'4) (Gy7,t) |,|—(b'2'5)(4'4'4'4'4'4) (G, t) |,|—(b;'6)(4'4'4'4'4'4) (Gyy, t)| are fourth  detritions coefficients for
category 1, 2 and 3

|—(b g) 55555 (Gy t)| |—(b2 )BS5555) (G, t)|,|—(b§0)(5'5'5'5'5'5) (Gs1, t)| are fifth  detritions coefficients for
category 1, 2 and 3

|—(b'3'2)(6'6'6'6'6'6) (Gss,t) |,|—(b'3'3)(6'6'6'6'6'6) (Gss, t) |,|—(b§4)(6'6'6'6'6'6) (G3S,t)| are sixth detritions coefficients for category
1,2and 3 *85

|— (b36) 777 (639, t) | - (b37) 777 (G, 1) | - (b33) 777 (G39, 1) |are seventh detritions coefficients

FOURTH MODULE CONCATENATION:*86

[ (a20) @]+ @ (Tys, O|[+(a36) 5% (T, 0) || +(a3) @ (T3, 8)| |

= (a2) MGy — |+(a 3) (T, t)||+(a 6) #2231y, t)”+(a )(3’3‘3‘3)(T21,t)| iGz4 *87
|+(a )7 77T (T, t)l |

(a25)(4)|+(a25)(4)(7’25, t)||+(a29)(5 5 (Tyo, t)“+(a 3) 0 (T4, t)l 1

dst = (a5) Gy, — |+(a HALLD (T, t)||+(a )(2'2'2'2)(T17't)||+(a21)(3'3'3'3)(T21’t)liczs .88
[+(az) 7777 (T35, )| |

(azs)(4)|+(aze)(4)(T25;t)||+(a3o)(5 5)(T29,t)“+(a 1)) (Tys, t)l 1

dci = (az6) ¥ Gy5 — |+(a YALLD(T,, t)||+(a g) @222 (Ty;, t)||+(a )B333)(Ty,, t)l |G,s +89

[+ (@) 777 T, 0] |

dGz4

Where | (az4)® (Tys,t) | ,| (ay5) @D (Tys, t)l,l (az6)® (Tys, t)l are first augmentation coef ficients for category 1,2 and 3

|+(a§8)(5'5') (T, t)|,|+(a;9)(5'5') (T, t)|,|+(a'3'0)(5'5') (Tyo,t) | are second augmentation coefficient for category 1,2 and 3

|+(a§2)(6'6') (Ts3, t)|,|+(a§3)(6'6') (Ty3, t)|,|+(a'3'4)(6'6') (Tss3, t)l are third augmentation coef ficient for category 1,2 and 3

|+(a'1'3)(1'1'1'1)(T14,t) |,|+(a'1'4)(1'1'1'1)(T14,t) |,|+(a'1'5)(1'1'1'1)(T14, t)| are fourth augmentation coefficients for category 1,
2,and 3

|+(a'1'6)(2'2'2'2)(T17,t) | |+(a'1'7)(2'2'2'2)(T17,t) |,|+(a'1'8)(2'2'2'2)(T17,t)| are fifth augmentation coefficients for category 1,
2,and 3

|+(a§0)(3r3'3'3)(T21,t) | |+(a;1)(3'3'3'3)(T21, t) | |+(a'2'2)(3'3'3'3)(T21, t)| are sixth augmentation coefficients for category 1,
2,and 3

|+(a ) TTTT(T,,, t)|+(a ) TTTT(T,,, t)|+(a36)(7 777 (Tyy, t) IARE SEVENTH augmentation coefficients*90
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91
*92
[(02) W[~ (030 (G, D] [~ (b3) &> (G2, D] |- (b3) ) (G5, D) |
= ) O = | [Z01) DG, 0] [= (1) 22D (Guo, O][- (03003239 (G, )] |Tos #93
| =3 7777) (G3o, £)] |
_(blzs)(4)|—(b,2,5)(4) (G, t)| |—(b’2’9)(5'5') (G31,8) | |— (b33) %) (Gss, t)| 1
e = 0V = | [C0 DG, 0] [ (1P Gy, O] [- (030339 (G, )] | Tos #94
[~ (377777 (Go, )| _
(b26)(4)|_(b26)(4)(G27't)| |—(b30)(5 5)(G31;t)|| (bs )(6'6')(G3s;t)| ]I
des = (byg)DTys — |—(b15)(1'1'1'1)(G, t)| |—(b @222 (G, t)”—(bzz)(3'3'3'3)(623,t)| [T,, *95
|—(b 8) 7777 (G, t)l J

Where | —(by)® (627, t)| |—(b25)(4) (G, t)| |—(b26)(4) (G, t)l are first detrition coef ficients for category 1,2 and 3
|—(b28)(5'5') (Gs1, t)| ,| —(b39) ) (Gsy, t)|,|—(b30)(5'5') (Gs1, t)l are second detrition coef ficients for category 1,2 and 3
|—(b§2)(6'6') (Gss, t)| | —(b33) %) (Gss, t)|,|—(b§4)(6'6') (G5, t) | are third detrition coef ficients for category 1,2 and 3

|=(b1) 441D (6, )] = (br) AV, )| =)0 6, 1)
are fourth detrition coef ficients for category 1,2 and 3
| _(b’1’6)(2,2,2,2) (Gio,t) |, |_(b;’7)(2'2'2'2) (Gro,t) |, | _(b,1,8)(2'2'2'2) (Gyo, t)|

are fifth detrition coef ficients for category 1,2 and 3

|— (b30) 333 (G, 1) |,|— (by1)®333)(Gy3, 1) |, |— (b32) G333 (Gy3, t)|
are Sixth detrition coefficients for category 1, 2 and 3

COEFFICIENTS*96
*97
FIFTH MODULE CONCATENATION:*98

[ (a2e)®)|+(a56)® (T, ]| +(a5) #*) (Tys, O)|[+(az) @4 (T3, 1) |

dG 0
—2 = (a26)®Gp9 — |+(a 3)ALAD(T,, t)||+(a 6) FH22D(T,, t)”+(a20)(3'3'3'3'3)(T21,t)l Gag %99
|+(a” YT T(T,, t)l
(azg)(5)|+(a29)(5)(7’29,t)||+(a25)(44)(T25,t)“+(a 3)©00 (T3, t)l
d("l

= (a29) G5 — |+(a DHEID(T, t)||+(a 7) @222 (T, t)“+(a21)(33333)(T1 t)l Gy9 *100
] |+(a 7 ) 77T (T, t)l

[ (aéo)(5)|+(ago)(5)(T29,t)||+(a 6) ) (Tys, t)“+(a" Y600 (T35, t)l
250 — (43) Gy — | [H(@D) ™D (T, O] | +(@1) #2222 (T, )] [ +(a) >3 (T, )] | 6, 4101

|+(a 12) 77777 (T, t)l 1
Where | +(a28)(5)(T29, t)| |+(a29)(5)(T29, t)l |+(a30)(5)(T29, t)l are first augmentation coef ficients for category 1,2 and 3

And | +(azy) ™) (Tys, t)| |+(a25)(4'4') (Tys, t)|,|+(a26)(4'4') (Tys, t)l are second augmentation coef ficient for category 1,2 and

|+(a )(©.6.6) (T, t)| |+(a )(6.66) (T, t)l |+(a'3'4)(6'6'6) (Ty3, t)lare third augmentation coef ficient for category 1,2 and 3

|+(a PISERER ¢ t)| |+(a PISERRR ¢ t)l |+(a15)(1 ALLD(T,,, t)l are fourth augmentation coefficients for category
1,2,and 3
|+(a” )@2222)(T,,, t)| |+(a )@2222)(T,,, t)l |+(0L18)(2 2222)(T,,, t)| are fifth augmentation coefficients for category
1,2,and 3
|+(a” )B3333)(T,,, t)| |+(a )B3333)(T,,, t)l |+(0L'2'2)(3 3333)(T,,, t)| are sixth augmentation coefficients for category

1,2,3 x102
*103
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[ (b)) (03)®) (61, D] [~ 03)**) (G, D] |- 13) O (G35, 0] |
T = (0p) T — | [~ () DG, )] [ (b1) #2222 (Gyo, D] [- (030) P339 (G, 1)] | Tos #104
|=(b36) 77777 (Gag, )] ]
(b29)(5)|—(b29)(5)(G31;t)||—(b25)(44)(G27;t)|| (bs )(6'6'6)(G3s»t)| 1
C2 = (by9)OTys —| [F (1) VDG, 0] [0 P22P (G, D[ (b3) 3339 (Gyg, D] | Too #105
| =377 (G, 8)| |
[ (0:0) [ (03 (631, O] [~ 034 (G, O] |- (0259 (G5, | 1|
T = (b3) Ty — | [~(b1) WD (G, D] [“(01) #22D (G, 8)] |- (952) B2338) (Gys, )] | T 106
|—(b )(7,7,7,7,7,)(G3 t)| J
where| (bzg)(s)(G31,t)| |—(b29)(5)(G31,t)| |—(b30)(5)(G31,t)| are first detrition coef ficients

for category 1,2 and 3

|—(b'2'4)(4'4') (Gy, t)| ,| —(bys) ™) (G, t)|,|—(b;6)(4'4') (G, t)l are second detrition coef ficients for category 1,2 and 3
|—(b§2)(6'6'6) (Gss, t)| ,| —(b33) 0 (G, t)|,|—(b;4)(6'6'6) (Gss, t)l are third detrition coef ficients for category 1,2 and 3
|—(b{3)(1'1'1'1'1)(G, t) |,|—(b'1'4)(1'1'1'1'1)(6, t)| ,|—(b'1'5)(1'1'1'1'1')(6, t)| are fourth detrition coefficients for category 1,2, and

|—(b'1'6)(2'2'2'2'2)(G19,t)|,|—(b'1'7)(2'2'2'2'2)(619,t)|,|—(bi'g)(z'z'z'z'z)(Glg,t)| are fifth detrition coefficients for category 1,2,
and 3

|— (by) 33333 (6,3, 1) | |— (b3,)33333)(G,3, 1) ||— (b'z'z)(3'3'3'3'3)(623,t)| are sixth detrition coefficients for category 1,2,
and 3+107
SIXTH MODULE CONCATENATION*108

(@32) @[ +(a3) @ (T3, 6)|| +(a28) 5 (Tyo, 6)| | +(a3) 4 (Ts, 0)|
= (a3)©Gs3; — |+(a ) LALID(T,, t)||+(a16)(2‘2‘2‘2‘2‘2)(T17 t)||+(a20)(3'3'3'3'3'3)(T )| Gz *109
| +(az6) 777777 (T, t) |
(@35) @+ (a33) @ (Tz3, )| [+(a50) O5% (T, || +(a55) 4+ (Tys, 1)
= (a33)© Gy, — |+(a” )(1'1'1'1'1'1)(7’14,t)||+(a 7) #2222 (T, t)”+(a )B33333)(T, )l Gz %110
|+(a§7)(7'7'7"7'7'7') (T3, t)l
(@3)©|+(a3) @ (T3, )| +(a30) 5 (Tyo, 6)| | +(a36) 4 (Ts, 0)|
= (a31) G35 — |+(a )(1'1'1'1'1'1)(7’14,t)||+(a g) 22222 (T, t)”+(a )B33333)(T, )l G3q *111
|+(a" YT77.77.7) (T, t)l
|+(a32)(6) (T33, t)| |+(a33)(6) (Ts3, t)| |+(a34)(6) (Ts3, t)l are first augmentation coef ficients for category 1,2 and 3

dG32

d533

d534

|+(a 6) 59 (Tyg, t)| |+(a )55 (T, t)l |+(a 0) G55 (Tyq, t)l are second augmentation coef ficients for category 1,2 and 3
|+(a 2) &) (T, t)| |+(a25)(444)(T25, t)l |+(a26)(4 A4 (T, t)l are third augmentation coef ficients for category 1,2 and :
|+(a ;) ALLLLD (T t)| |+(a14)(1'1'1'1'1'1)(T14,t)l |+(a15)(1'1'1'1'1'1)(T14,t)l - are fourth augmentation coefficients

|+(a ) @22222) (T, t)| |+(a17)(2'2'2'2'2'2)(T17, t)l |+(a18)(2'2'2'2'2'2)(T17 t)| - fifth augmentation coefficients

|+(a” )B33333)(T,,, t)| |+(a21)(3'3'3'3'3'3)(T21, t)l |+(a22)(3'3'3'3'3'3)(T21, t)| sixth augmentation coefficients

|+(a30) 777777 (Tyy, O)|| +(aze) 777777 Ty, ) || +(a36) 77777 7) (Ty;, )| ARE - SVENTH ~ AUGMENTATION
COEFFICIENTS*112
*113

[ (béz)(6)| —(b32)® (Gs, t)“- (b35) ) (Gsy, t)“- (b3)***)(G,y, t)|
= (b3) T35 — ||—(b,1,3)(1'1'1'1'1'1)(6. t)l |—(bfe)(z'z'z'z'z'Z)(Gw.t)“- (blzlo)(3'3'3‘3‘3‘3)(623;t)|IT32 114
I- (b36) 7777777 (G, t) I

dT32
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[ (03) @[ (03)© (G35, D] |- (B30) 559 (631, )| |- () 44 (G, 0)] ]
% = (b)) Ty, — |—(b’1'4)(1'1'1'1'1'1)(G, t)| |—(bi’7)(2'2'2'2'2'2)(619,t)”—(bgl)(3'3'3'3'3'3)(623,t)| Tyy *115
= (b3) 77717 (Gag, t) 1
B3 ©[=(b3) @ (G35, D] |- B50)5*) (G1, || - (b30) *44 (G5, 0)] |
d;% = (b34)(6)T33 - |—(b'{5)“'1'1'1'1'1)(G, t)| |_(bi’g)(z,z,z,z,z,z)(Gw't)”_ (blzlz)(3'3’3‘3‘3‘3)(023»t)| T, *116
|- (b3g) 777777 (G, t)|

|—(b;z)(6)(G35,t)|,|—(b§3)(6)(635,t)| ,|—(b'3'4)(6)(G35, t)l are first detrition coef ficients for category 1,2 and 3
|—(b'2'8)(5'5'5)(631, t)| ,| —(b39) %% (G4, t)|,|—(b'3'0)(5'5'5)(G31, t)l are second detrition coef ficients for category 1,2 and 3
|—(b'2'4)(4'4'4') (Gy7, t)| ,| —(bys) 4+ (G, t)|,|—(b;6)(4'4'4') (G, t)l are third detrition coef ficients for category 1,2 and 3
|—(b'1'3)(1'1'1'1'1'1) (G, 1) |,|—(b'1'4)(1'1'1'1'1'1) G, 0) |,|—(bi’s)“'l'l'l'l'”(G, t)| are fourth detrition coefficients for category 1, 2,

and 3

|—(b'1'6)(2'2'2'2'2'2) (Gyo, t)|, |—(b{7)(2'2'2'2'2'2)(G19, t) |,|—(bi'g)(z'z'z'z'z'Z)(Gw, t)| are fifth detrition coefficients for category 1,

2,and 3

|— (by) 333333 (6,3, 1) | |— (by) 333333 (G,g, 1) ||— (byy) 333333 (G,s, t)| are sixth detrition coefficients for category 1,

2,and 3

|- (B36) 777777 (Gao, )| - (036) 777777 (G0, D) |- (b36) 7777771 (G35, ) |ARE SEVENTH DETRITION

COEFFICIENTS%117

*118

SEVENTH MODULE CONCATENATION:*119
dG ’ " ¢ " " "

736 = (a36)"Gs; - [(a36)(7) +(a36) P (Ty7, 1) | + |(a16)(7)(T17;t)| + |(a20)(7)(T21,t)| + |(a24)(7)(T23't)G36| +

a28"7729¢ + a32"7733¢ +al3”7714t G36%120

121

4G , 7 7 7 -

737: (a37) P G36 — [(037)(7) +|(a37)(7)(T37,t)| + |(a14)(7)(T14,t)| + |(a21)(7)(T21,t)|+ |(a17)(7)(T17:t)| +
al5"7725¢ +a337 7733t + a29”77729.¢ G37

*122

. , i e ) ]

=2 = (a33) PGy — [(a30)? +[(a30) P (T37, )| + [(a15)P(Ti0, )| + |(a2) (D1, ) + | +(a19) P (Th7,8)| +
dt

a26”7725¢ + a34”7733¢ + a3077729¢ (38

*123
124

125
Ty

dt

(b36) Ty, — [(056)7 = [036)7 ((G39), O)] ~[B1) P (G1).8)] =[P (G0, 0)] =[5V (s, 1)] -
02477627t 528”7631t —b3277635,¢ 736

*126

% = (b37)(7)T36 -

[(b30)? =[5 P (G30). )] ~[G1INP((61).1)]  ~[01) V(G 0)] [P (Ga51).8)] -
| (by5) 7 ((G7), t)| - | (b20)?((G31), t)l -

| (b33) 7 ((G35), t)| ] Ts7

*127
Where we suppose

(A) (ai)(l)i (a;)(l)’ (a;, )(1)1 (bi)(l)i (bl’)(l)’ (bl” )(1) > 0,
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i,j =13,14,15

(B) The functions (a; )@, (b; ) are positive continuous increasing and bounded.
Definition of (p))®, (r;)W:

(a, )V (T t) < )P < (Ay3)®
bV G ) < )P < (B)P < (B3)®

(C) limTz—mO (a;, )(1) (T14' t) = (pi)(l)
limg_e, (b )V (G,0) = (1)D

Definition of (A3 )™, (B3 )M :

Where [(A13)D, (Bi3)D, ), 1)V are positive constants

and |i =13,14,15

They satisfy Lipschitz condition:
(@) YD (Ty4, £) = (@] YD Ty, )] < (g3 )Y DTy — Trgle~(Ms) P

(b YD G,0) — (b YV(G, T < (ki3 YV|IG — G [|le=(Mi3)Dr

With the Lipschitz condition, we place a restriction on the behavior of functions (a; ) (Ty4,t) and(a; )P (Ty4,t) . (Tis, t) and
(T4, t) are points belonging to the interval [(&y3 )™, (M5 )] . It is to be noted that (a; )™ (Ty4, t) is uniformly continuous. In

the eventuality of the fact, that if ( M,; ) = 1 then the function (a; )*’(T,,t) , the first augmentation coefficient attributable
to terrestrial organisms, would be absolutely continuous.

Definition of ( M3 )@, (k3 )® :
(D) (M3 )D, (ky3)D, are positive constants

@® _mp®
(M13)D 7 (My3)D

<1

Definition of ( 25 )@, (03 )@ :

(E) There exists two constants ( P35 )™ and (0,3 )™ which together with ( M3 ), (ky3)D, (4;3)Pand (B3 )P and
the constants (a,)@, (a;,)®, ()@, (b)) D, ()P, )WV, i = 13,14,15,
satisfy the inequalities

(M5 ) [(@)® + (@)D + (A)D+ (P )D (k)P < 1
13

1 , ~ ~ ~
W[ b)® + B)P + (B3 )+ (Q13)D (ky3)P] <1
(My3)
dT ’ " " "
738 = (b3g) Ty — [(bBB)(7) —l(b38)(7)((539)' t)l - |(b18)(7)((619): t)l —|(b20)(7)((614), t)| - gg
b227623¢  — 52677627, ~53077G31,¢ ~53477635¢ 39
738 131
132
+(azs) 7 (Ty,,t) = First augmentation factor 134
(D(@)®, (@)®, ()P, B)?, 1), ()P >0, i,j=1617,18 135
(F) (2) The functions (a; )®, (b; )® are positive continuous increasing and bounded. 136
Definition of (p;))®, (r;))®: » 137
(@)D (T, 0) < PP < (45 138
(b )P (Gro,t) < ()P < ()P < (B )@ 139
(G) (3) limg,_e, (a; ) (Ty7,t) = (p)@ 140
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limg_., (6, )® ((Gyo),t) = ()@
Definition of (A4 )@, (B )@ :
Where|(415)@, (Bis )@, )@, ;)@ fare positive constants and
They satisfy Lipschitz condition:
(@)D (T17,6) — (@ )P (Ty7, )| < (kye )PTy; — Tiple~ (16t
(6 )P (G19),£) = (B YP((Gro), )] < (16 )P (G19) — (G19)'[Je (1620

ISSN: 2249-6645
141

142

143
144

145

With the Lipschitz condition, we place a restriction on the behavior of functions (a; )?(Ty,,t) and(a; )®(Ty,,t) 146
. (T{7,t) And (T, t) are points belonging to the interval [( ks )@, ( My )@] . It is to be noted that (a; ) (Ty;,t)
is uniformly continuous. In the eventuality of the fact, that if ( M, )@ = 1 then the function (a; )@ (T, t) , the

SECOND augmentation coefficient would be absolutely continuous.
Definition of ( Mz )@, (k)@ :
(H) (4) (My6)@, (ki )@, are positive constants
@® k@
(M16)@ 7 (M16)P <1
Definition of (P53 )@, (0;3)@ :

147
148

149

There exists two constants ( P )@ and ( 0,4 )® which together with (M5 )@, (k1 )@, (A1) Pand ( Byg )P

and the constants (a,)®, (a))®, (b)?, (b)P, ()P, )P,i=16,17,18,
satisfy the inequalities
m [@)P + @)D + (A)P + (Ps)® (k)P <1
ool G)P + B + (Bi)® + (016)® (kig)@]<1
Where we suppose
0] 6) (@)®, @), (@), 1), B)D, () >0, ij=2021,22
The functions (a; )®, (b, ) are positive continuous increasing and bounded.
Definition of (p,))®, (r;)®:
(@, ) (Ty1, ) < )P < (Ay)®
(b)) (G, ) < ()P < (b)) < (B, )®
limr, o, (a; )® (Tyy,0) = (p)®
limge, (b )® (G3,8) = ()@
Definition of ( A,y )@, (B, )@ :
Where|( 4,0 )®, (B2 )®, (0)®, (r,)®|are positive constants and
They satisfy Lipschitz condition:
(@ ) (Ty1, ) — (a7 )P Ty, O] < (go )P |Tyy — Ty le™Ma0 e
|(bli,)(3)(G23,'t) — (b )P (G3, O < (g0 )P|Gy3 — Gz3l||€_(m20 Dt

150
151

152
153

154
155
156

157
158
159

With the Lipschitz condition, we place a restriction on the behavior of functions (a; )®(T,;,t) and(a; )®(T,,,t) 160

.(Ty,,t) And (T,,t) are points belonging to the interval [(ky )@, (M, )®] . It

is to be noted that

(a; )®(Ty,t) is uniformly continuous. In the eventuality of the fact, that if ( M,,)® =1 then the function

(a; )®)(T,,t) , the THIRD augmentation coefficient, would be absolutely continuous.
Definition of (M, )@, (ky )@ :
) (6) (M,o)®), (ky )P, are positive constants
@)® _ep®
(M30)® 7 (Mp0)®

161

There exists two constants There exists two constants (P, )® and (0, )® which together with 162
(Mo )®, (koo )P, (Ag0)Pand (Byy ) and the constants (a)®, (@)@, 0P, (0)®, )P, ()®,i= 163

20,21,22,
satisfy the inequalities

[(ai)(3) + (a;)(3) + (A;))® + (Py)® (,220 Y®] < 1
! Z3Y ! D A ~
(M20)® [ )@+ (B)® + (By )P + (Q20)® (ko )P] <1

Where we suppose
(ai)(4): (ai)(4): (a; )(4): (bi)(4): (bi)(4)' (b; )(4) >0, ij=242526

_r
(Mz9)®

L) (7) The functions (a; )™, (b, )™® are positive continuous increasing and bounded.
Definition of (p)®, (r,)®:

(a; )P (Tys,8) < ()™ < (Ayy )P
BHP(G)t) < (W < B)W < (By)®
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M) (8) limp, (a))® (Tys, ) = (p)®
limg e, (b )® ((Gy7), ) = (1)@
Definition of (A,, )™, (B,4 ) :
Where |[( A4 )™, (B2 )™, )@, (1,)™ | are positive constants and
They satisfy Lipschitz condition:
1@ )P (Tys, £) — (@] )P (Tys, )] < (Rpy YP|Tos — Tysle~ (T
(6 )P ((G27)', ) = (B )P (G2, )1 < (Ras YPUI(Gr) — (Gpy) |l F2e) e

With the Lipschitz condition, we place a restriction on the behavior of functions (a; )* (Tys,t) and(a; )® (Tys, t)
.(Tys5,t) And (Tys,t) are points belonging to the interval [( kg4 )®, (M, )®] . 1t is to be noted that
(a; )®(T,5,t) is uniformly continuous. In the eventuality of the fact, that if (M,,)® = 4 then the function

(a; )®(T,s5,t) , the FOURTH augmentation coefficient WOULD be absolutely continuous.
Definition of ( My, )®, (kpy )@ :
(M,,)17617°®), (k,, )@, are positive constants

@® _ep®
(M24)® 7 (Mg )H
Definition of (P, )@, ( Q24 )@ :
(P) ((Q)A o (];I'he)rg ) (eAxis)ta) tvc\;o( A co)r}i'gants (P )® dand (0,,)® X which
M,, , (koy ,(A5) M and ( By, an the
(@)@, (@)@, (b)®, (b)), @)@, ()™, i = 24,2526,
satisfy the inequalities
@)™+ @)+ (Az)P+ (P )P (k)P <1
Tl G)P + B + (B )P+ (Q0)® (ko )P] <1
Where we suppose
(@)@, (@)@, (@), 1)@, B)®, (b)) >0, i,j = 28,29,30
(R) (10) The functions (a; ), (b; )® are positive continuous increasing and bounded.
Definition of (p,))®, (;)®:
(a; ) (T9,0) < () < (Ayg )®
B)P (G, 1) < (DS < B < (B )®

!
(M24)® [

©®) (11) limr, e (a; )® (Ty9,0) = )
limg_o, (b )® (Gay, ) = (1,)®
Definition of (A,g )®, (Byg )® :
Where|( A )®, ( By )®, ()™, (1)®] are positive constants and
They satisfy Lipschitz condition:
(@i YO (Ty9,t) — (a; )P (Tag, )] < (ko )O|Tyg — Tyole~(M2s e
(5 ) (G31)',8) = (b YO ((G31), )] < (kg )O(Gar) = (Gay)'|le M)t

together  with
constants

With the Lipschitz condition, we place a restriction on the behavior of functions (a; )®)(T9,t) and(a; ) (Tye, t)
. (Tye,t) and (T;g, t) are points belonging to the interval [( kyg ), (M5 )®] . Itis to be noted that (a; )& (Tye, t)
is uniformly continuous. In the eventuality of the fact, that if ( M,g )®) =5 then the function (a; )™ (Ty,t) ,

theFIFTH augmentation coefficient attributable would be absolutely continuous.
Definition of ( M,g ), (kg )® :

(M), (kg )®, are positive constants

a)® b)®
(1(%; )& ’(1(%; o <1

Definition of ( P,g ), (0,5 )™ :

There  exists  two  constants  (P,g )® and (0,5)®  which

(Myg ), (kpg )™, (Az)®and (Byg )™ and the

(@)®, (@)®, (1), (B)D, @), :)®,i=2829,30, satisfy the inequalities

(@)® + (a)® + (A )@ + (P )P (ks )] < 1

! =2y ! 5} A ~
(M8)® [ (b)) + (1) + (B )® + (Q28)® (ks )] <1
Where we suppose
(@)®, (a))®, (q )(6):’(bi)(6)’”(bi)(6)’ GO >0, i =323334
(12) The functions (a; )®, (b; )© are positive continuous increasing and bounded.

;[
(M2g)®
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182
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Definition of (p,)©, (;)®:
(a; ) O (T35, 8) < ()© < (Az)®
(b )@ (G35), ) < ()@ < (b)© < (B3 )©
185

(13) limy, o (a; )© (T33,1) = (p)©

limg_e, (b, )@ ((G35), ) = ()®
Definition of ( Az, )©®, (B;, )© :

Where |(43,)©, (B3, ), (p)®, (r,)©|are positive constants and
They satisfy Lipschitz condition: 186
1@ ) (T3, £) = (@) (T, O] < (Rzp YO [Tz — Tazle=(F2 )
16 YO (G35), 1) = (B YO ((G3s), )] < (K2 YO|I(Gss) — (Gs) [Je~( M)
With the Lipschitz condition, we place a restriction on the behavior of functions (a; )©(Ts5,t) and(a; )© (Ty3,t) 187
. (T33,t) and (T3, t) are points belonging to the interval [( ks, )®, ( Mj; )©] . Itis to be noted that (a; )® (T35, t)
is uniformly continuous. In the eventuality of the fact, that if ( M5, )(® = 6 then the function (a; )©® (T3, t) , the
SIXTH augmentation coefficient would be absolutely continuous.
Definition of ( M3, )®, (k3, )© : 188
(M3, ), (k3, )©, are positive constants

@® _ep®

(M32)©® 7 (M35)®
Definition of ( P3; )®, (Q3, ) : 189
There exists two constants ( 2, )©® and ( 03, )© which together with ( M3, )©, (k3 )©®, (43,)@and ( B;, )©
and the constants (a;)®, (a,)©, (b)), (b)©, )@, )®,i=32,33,34,
satisfy the inequalities
(@)@ + (@)@ + (A3) O+ (P3)®@ (k3 )®] <1

1
(M32)® [
1 ! ) P ~
[ (bi)(6) + (bi)(fi) + (B3, )(6) + (05, )(6) (ks )(6)] <1

(M32)®
Where we suppose 190
V) (@)?,@)?,(@)?, )7, b)), (b )P >0, 191

i,j =36,37,38

(W)  The functions (a; ), (b; )7 are positive continuous increasing and bounded.
Definition of (p,))™”, (;)7:

(a; )P (T37,t) < )7 < (A36)?

BHPGH < ()P < B)P < (Byg)?

192
X) limg, ., (a; YD (Ts7,t) = ()7
limg e, (bg,)m ((039); t) = (ri)m
Definition of (A3 )7, (B3 )7 :
Where |(A36 YD, (B3 YD, () D, (n)(7)| are positive constants
and |i = 36,37,38
They satisfy Lipschitz condition: 193

1(a; )P (T3, ) — (] )P (T3, 0] < (Rzg )D|Tyy — Tay |~ (Ma6) 7
1) )P ((G39)', 8) = (b} ) ((G39), (T30))| < (Kzg )P[1(Gao) — (Go)'[Je~(Ms6) 7t

With the Lipschitz condition, we place a restriction on the behavior of functions (a; )7 (T3,,t) 194
and(a; )7 (Ty,t) . (Tsy,t) and (T35, t) are points belonging to the interval [(ksq )™, (M35 )] . Itis to be
noted that (a; )7’ (T3, t) is uniformly continuous. In the eventuality of the fact, that if ( M54 ) = 7 then the

function (a; )7 (T3,,t) , the first augmentation coefficient attributable to terrestrial organisms, would be
absolutely continuous.

Definition of ( Mg )7, (k3 )7 : 195
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Y) (M3 )P, (k3¢ )7, are positive constants

@ e
(M36)7) 7 (M36)7

Definition of ( Pys )™, ( Q56 )7 : 196

(2) There  exists two  constants (P )™ and (03 )  which  together  with
(M3 ) D, (k36 )P, (A36) P and ( By )7 and the constants
(@), (@)?, ()7, ()7, ()7, )7, i =36,37,38,
satisfy the inequalities

[(ai)(7) + (a;)(7) T (A36 )(7) + (ﬁ% )(7) (1236 )(7)] <1

(M36)P
W[ b)) + )P + (Bs) P+ (Q36)7 (k3e)P] <1
(M3 )
197
Definition of G;(0),T;(0) :
Gi(t) < (Py )(S)e(’WZS e | G(0)=6> 0
Ty() < (Qop )P M)t [1,(0) =T >0
198

Definition of G;(0),T;(0) : 199
GO < (Py) e G0y =67 > 0]

T,(t) < (Q3,) @)t [T,(0) =T >0

Definition of _G;(0),T;(0) :

G0 < () Ve [G0) =60 0]

T,(t) < (Q36)Pe™)Vt I1,0) =T >0

Proof:_Consider operator A defined on the space of sextuples of continuous functions G;, T;: R, - R, 200
which satisfy

G(0) =GP, T.(0) =T, G < (P3)DV, T < (Q13)D, 201
0<G(t)—G) < (P4 NOACE Yy 201
0T, () =T < (03 )DeMz) D o
. 204
Gi3(t) = G + fof [(a13)(1)G14 (san) = ((a’13)(1) + a13) V(T (sa3))s 5(13))) Gis (5(13))] ds(s)

Gu(® =Gt + y [(a14)(1)G13 (sa) = ((a’14)(1) +(a1) P (T14 (s013)), 5(13))) Gia (5(13))] ds3) 205
Gis(0) = G5 + [ [(@15) P61 (s03)) — ((@15)® + (@15) P (Toa (509)), 503) ) Gis (s3)) | dsas) 206
@ =1h +y [(bw)(l)T“ (saz) - ((b13)(1) — (1) (G(ss)), 5(13))) T13(5(13))] ds(3) 207
a® =T+l [(b14)(1)T13 (sam) = ((b14)(1) — (1) V(6 (sa3). 5(13))) Ty (5(13))] ds(13) 208
Tis® =T + [y [(b15)(1)Tl4 (sas) — ((bis)(l) — 115V (6(san) sa9)) T15(S(13))] dsqs) 209

Where s(3y is the integrand that is integrated over an interval (0, t)
210
if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying the conditions

Definition of G;(0),T;(0) :
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G < (Pe) e G 0) =60 > 0]

T,(t) < (Qs36) et [T (0)=T2 >0

Consider operator A7) defined on the space of sextuples of continuous functions G;, T;: R, — R, which satisfy

G(0) =G, T,(0) =T, G < (P3 )P, T? < (Q36),
0<G;(t) =GP < (P YD e(Msz6 YDt

0<T, ()T < (Q35)7eMss YDt

By

t
G36(t) = G + fo [(a36)(7)G37(S(36)) - ((a'36)(7) +az6) P (Ts7 (s6)), 5(36))) G3e (5(36))] ds )

G37 (1) = Gy +
t ’ "
fo [(a37)(7)G36 (5(36)) - ((a37)(7) + (az7)? (T37 (5(36))' 5(36))) G37(S(36))] ds(36)

Gag (t) = G +
t ’ "
fo [(a38)(7)G37 (5(36)) - ((a38)(7) + (az)?” (T37 (5(36))' 5(36))) Gsg (5(36))] ds(36)

T (t) = T5 + fot [(b36)(7)T37 (5(36)) - ((blsé)m - (b;6)(7)(6(5(36))' 5(36))) Ts6 (5(36))] ds3e)

Ty () = T3, + fot [(b37)(7)T36 (5(36)) - ((bé7)(7) - (b;7)(7)(6(5(36))' 5(36))) Ts7 (5(36))] ds3e)

Tsg () = Tgp +
t ’ "
fo [(b38)(7)T37 (5(36)) - ((b38)(7) - (b38)(7)(G(5(36)): 5(36))) T3g (5(36))] ds(3e)

Where s34 is the integrand that is integrated over an interval (0, t)

Consider operator A@® defined on the space of sextuples of continuous functions G;, T;: R, —» R, which 211
satisfy

G:(0) =G, T(0) =T, G < (P ), T < (Q16)®, 212
0<G,(t) — GO < (P )Pe(Me)Pr a:
0<T(t) = T° < (0 )Pe(Me) e =
. 215

Gie () = G + fot [(‘116)(2)617 (sae) = ((‘1116)(2) +a16) P (Ty7 (sae)), 5(16))) Gig (5(16))] dse)
Gi7 () = Gfy + fot [(‘117)(2)616 (sae) = (@)@ + (@) P (717 (s06)). 5(17))) Gy (5(16))] dse) 216

-
-

Gig(t) = G + fot [(a18)(2)Gl7 (sae) = ((@18)® + (a16)P (717 (506))s 5(16))) Gig (5(16))] ds(16) 217
T (6) = T + fot [(b16)(2)Tl7 (sae) = ((bie)(z) — (b16)?(G(s06)), 5(16))) Tie (5(16))] ds ) 218
T, () =T + fot [(b17)(2)Tl6 (sae) = ((bi7)(2) — (1P (6(sa6)), 5(16))) T17(5(16))] ds () 219
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e t ’ "
Tig(t) = T + fo [(b18)(2)Tl7 (5(16)) - ((b18)(2) - (b18)(2)(G(S(16)); 5(16))) Tig (5(16))] ds(1e) 220

Where 56 is the integrand that is integrated over an interval (0, t)

221
Consider operator A®) defined on the space of sextuples of continuous functions G;, T;: R, - R, which
satisfy
G(0)=G), T;(0) =T, G? < (P )®, TP < (Q20)®, 222
0 < Gi(t) — G < (Pyy )PeMa0 Y3t 223
0 < Ty() = T < (Qgp )P0t 224
> 225
Gy () = Gy + fot [(azo)(3)G21 (5(20)) - ((aéo)(3) + az0)®(Ty1 (s20)), 5(20))) Gy (5(20))] ds 20
Cn(® =i+, [(a21)(3)G20(5<20)) - ((a’m)(” + (a20)® (T1 (520, 5(20))) GZI(S(ZO))] ds (20) 226
G (6) = G2z + f(’t [(aZZ)(g)GM (s200) = ((a’ZZ)B) +(a22)® (T1 (s20))s 5(20))) G2z (5(20))] ds 20 221
Too(®) =T + fot [(bzo)(3)T21(5(20)) - ((b'zo)<3> = (b30)®P(6(520)), 5(20))) Tyo (5(20))] ds ) 228
Ty () =TH + [ [(b21)<3>7"20(s<20)) - ((b;1)<3> — (03)®(6(s50209), 5(20))) T21(5(20))] dsa0) 229
Ty, (®) =TS + [ [(bzz)(3)T21(5(20)) - ((béz)e) = (022)®(6(s20))s 5(20))) T,, (5(20))] ds 20 230

Where s,y is the integrand that is integrated over an interval (0, t)

Consider operator A defined on the space of sextuples of continuous functions G;, T;: R, — R, which 231
satisfy

Gi(0) =G, T,(0) =T, G < (P )™, TP < (Q24)™, 232
0 < G,(£) — G? < (Pyy )WDe(M2a) Pt 23
0 < T,(t) = T < (Qyy )PeMa) ™t -
. 235
Gy (t) = G, + fot [(a24)(4)025 (5(24)) — ((a’24)(4) +ay)® (Tzs (5(24))» 5(24))) Gas (5(24))] ds(24)

Gos () = G35 + [(azs)(4)Gz4 (sea) = ((a'zs)u) + (a35) @ (Tys (s20)), Sz 4))) 625(5(24))] dsem) 236
626 (t) = 6206 + fot [(a26)(4) st (5(24)) - ((aIZG)(‘*) + (a,2,6)(4) (TZS (5(24)), 5(24))) Gze (5(24))] ds(24) 237
Tu(t) =TS + fot [(bz4)(4)T25 (5(24)) - ((b124)(4) - (b;4)(4)(6(5(24)), 5(24))) Ty, (5(24))] dsa 238
Tos(8) = Tis + fot [(b25)(4)T24 (s@ay) = ((blzs)m — (b2)®(G(s2m), 5(24))) T25(5(24))] dsz4) 239
Tos (O = T + fOt [(bZG)(4)T25 (sen) = ((blzs)m — (b26)®(G(sn), 5(24))) T (5(24))] dsz4) 240

Where s (54 is the integrand that is integrated over an interval (0, t)
Consider operator A® defined on the space of sextuples of continuous functions G;, T;: R, —» R, which 241

satisfy 2
G(0) =GP, Ti(0) =T, GP < (P )®, TP < (Q2)®, 243
0 < G,(t) — G? < (P )Se(M2s)t 2
0<T,(t) =T < (0 )De (M) 5
;. 246
G (®) =G + [(azg)(S)ng (sew) - ((“’28)(5) +az6) (29 (528)), S(zs))) Gag (5(28))] ds (28)

G0 =G+ [(azg)(S)GZB (sew) - ((a’29)(5) +(a20)(T29(528)), S(zs))) Gao (S(zs))] dsz¢) 247
o® = +y [(aBO)(S)ng (sew) - ((a’30)(5) +(a30)®(To9 (s2s))» S(zs))) G3o (S(zs))] ds 2¢) 248
Ty (6) = T + [ [(b26) VT (s028) = ((b3)® — (03)®(G(520)): 5¢8)) ) Tos (S0 | dsisy 249
T =Th + [(bzg)(S)TZB (sew) = ((bé'?)(S) — (020)(6(s028)), 5(28))) Ty (5(23))] ds(28) 250
Ta (D) =T + fof [(bgo)(S)ng (5(28)) - ((béo)(S) - (b;o)(s)(G(S(zg)). 5(28))) T3 (5(23))] ds(g) 251

Where s(,g) is the integrand that is integrated over an interval (0, t)
252
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Consider operator A® defined on the space of sextuples of continuous functions G;, T;: R, - R, which

satisfy

G,(0)=G?, T,(0) =T, G? < (P, )®,T? < (Q3,)®,
0 < G,(t) — GP < ( By, )©e(Ms2)®t

0<T,(t) =T < (Qs, )®eMs2 Ot

By

Gy (t) = G + fot [(a32)(6)G33 (5(32)) - ((aéz)(ﬁ) +az)® (T33 (5(32))' 5(32))) Gs; (5(32))] ds(sz)
Gy3(t) = G5 + fot [(a33)(6)G32 (5(32)) - ((a’33)(6) + (az3)® (T33 (5(32))' 5(32))) Gs3 (5(32))] ds(sz)
G3q(t) = G4 + fot [(a34)(6) Gs3 (5(32)) - ((a’34)(6) + (azy)® (T33 (5(32))'5(32))) Gsy (5(32))] ds(sz)
T32 ) = T302 + fot [(b32)(6)T33 (5(32)) - ((béz)(()) - (bgz)(ﬁ)(G(Sez))' 5(32))) T3, (5(32))] d5(32)
Ty (t) = T35 + fot [(b33)(6)T32 (sG2)) = ((bé3)(6) — (03)9(6(s3)), 5(32))) Ts3 (5(32))] ds(32)

— t ’ "

T3y () = Tg, + fo [(b34)(6)T33 (5(32)) - ((b34)(6) — (13)®(6(562)), 5(32))) T34(5(32))] ds 32)
Where s (3, is the integrand that is integrated over an interval (0, t)

. if the conditions IN THE FOREGOING are fulfilled, there exists a solution satisfying the conditions

Definition of G;(0),T;(0) :

G < (B ) et [ G0 =6 >0

T,(t) < (Q36)Pe™)Pt [1(0) =TI >0

Proof:

253
254
255
256

257
258
259
260
261

262

Consider operator A7) defined on the space of sextuples of continuous functions G;, T;: R, — R, which

satisfy
G;(0)=G), T,(0) =T, G? < (P3 ), TY < (Q36)7,
0. Gi(t) = G < (Pyg ) Ve M)

0 <Ti(6) =T < (Q36 )P0
By

G () = G3 + fot [(a36)(7)637 (sae) = ((a'36)(7) +a36) 7 (Ts7 (56))s 5(36))) G36(5(36))] ds 3e)

(737 (&) =G +
fo [(a37)(7)G36 (5(36)) - ((a37)(7) + (az;) (T37 (5(36)); 5(36))) G37(5(36))] ds(3e)

Gag () = G +
t ’ "
fo [(a38)(7)637 (5(36)) - ((a38)(7) + (az) (T37 (5(36)). 5(36))) Gsg (5(36))] ds(ze)

T (t) = T + fot [(b36)(7)T37 (5(36)) - ((b,36)(7) = (b36)7(G(s636)), 5(36))) T3 (5(36))] dsze)

Ty () = T4, + fot [(b37)(7)T36 (sae)) = ((b’37)(7) = (b3)7(6(s66)), 5(36))) Ts7 (5(36))] ds3e)

Tsg () = Tgp +
t ’ "
fo [(b38)(7)T37 (5(36)) - ((b38)(7) - (b38)(7)(G(S(36))v 5(36))) T3g (5(36))] ds(ze)

Where s34 is the integrand that is integrated over an interval (0, t)

Analogous inequalities hold also for G,; , G232, To0, To1, Tz

263

264

265
266

267

268

269

270

271

272

(@) The operator A™ maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is 273

obvious that
t 5 (C))
Goa () < Gy + [ [(a24)(4) (Gzos +( Py YW Me) 8(24))] dS(2e) =
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(aze) W (Pra)® @
(1+ (az)®t)G3s + %Tff)(em“) f- 1)
From which it follows that 274

_(Paa)B+6Y5

- () ® 5 ( g ) 5
(Gpa (£) — G )e~(Mas)We < (028 —_1((p, Y 4 G0)e W35 + (B, )@

(Mgs )W

(G?) is as defined in the statement of theorem 1
(b) The operator A maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is 275
obvious that

t 5 5)
Gyg(t) <GP + [(azs)(s) (GZ()9+(P28 )®eM28) 5(28))] ds(zg) =

(a28)®(P25)®) ®)
(1+ (az8)®t) Gy +%(e(m8) ‘- 1)

From which it follows that 276
_(P28)®)+6Yy

_ ®) ® 5 ( —0—> 5
(Gog (t) — Gg)e~(M28)™t < L) (( Py )® + G209)e 629 + (P )®

T (M)

(G?) is as defined in the statement of theorem 1

(c) The operator A©® maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is 277
obvious that

t PN (6)
6oz (0) < 6% + J; [(@5)@ (G +( Py YO 1520V )| oy =

(@3)© (P3O (7.6
(1 + (a32)(6)t)G§)3 + W(e( 27— 1)

From which it follows that 278
_(P32)®+6%;

) ol ((Flek)
(Gap () = G M) @t < LD (B y© 4 60)e\ s ) 4 (B, )@l

= (M32)®

(GY?) is as defined in the statement of theorem1
Analogous inequalities hold also for G5 , Gag, Tos, Tos, Tog

(d) The operator A7) maps the space of functions satisfying 37,35,36 into itself .Indeed it is obvious that 279
G36(t) < G3 + fot [(a36)(7) (0307"‘(1336 )(7)€(M36)(7)5(36))] ds(e) =

@) ]
(1 + (a36) )Gy + LTI (03607t _ 1)

(M36 )7
280
From which it follows that
(P36)+65;
_ @ (az6)? ~ <——0—> ~
(66 (£) = G )e~ (a6 < Z28s [(( PP +GY)e\ S )4 (P )
(G?) is as defined in the statement of theorem 7
@® @y ® 281

It is now sufficient to take @ i ® < 1 and to choose

(Pi3)® and ( Q3 )™ large to have 282

(P13) D) 283
@)® | = 5 B = A
1)@ (P)® + ((P3)D + Gjo)e J < (P;)®
[ (Q13 )(1)+TJQ 284
(b® A B A A
(M13)D ((Q13)M + 7}0)6 J +(013)P] < (043)®

In order that the operator AM transforms the space of sextuples of functions G;,T; satisfying GLOBAL 285
EQUATIONS into itself
The operator A is a contraction with respect to the metric 286

d ((G(l),T(l)), (G(Z),T(Z))) =
sup{max |Gl.(1)(t) - Gi(z)(t)|e‘(M13)(l)f,max |Ti(1)(t) - Tl.(z)(t)|e‘(M13)(1)t}
i teRy tER4
Indeed if we denote 287
Definition of G, T :
(G, T)=AMDG,T)
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It results
|G~(1) G(Z)| <f (a13)(1) |G(1) Gl(i)|e—(ﬁhs)(l)sas)9(7‘713)(1)5(13) ds(13) +

f{(a13)(1)|6(1) G(Z)| —(TV713)(1)S(13)e—(TVhs)(l)S(ls)+
(a13)(1)(T1(4) 5(13))|G(1) - G(2)| (1) Dsaz) ¢ M3 Vsas) 4

G(Z)K 13)(1)(T4 5(13)) - (a13)(1)(T4 5(13))| e—(th)( )5(13)9(%3)( )5(13)}‘15(13)

Where 5,3 represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

|6 — @]~ De < 288

1 ’ —~ ~ -
Fom (@) + @) + (AP + (Py) D (ki) V) (6D, 7D; 6@, 7))
And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows
Remark 1: The fact that we supposed (a;3)" and (b;3)™ depending also on t can be considered as not 289
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition
necessary to prove the uniqueness of the solution bounded by (P)Pe™1)Vt gnd (Qp5) e Ve
respectively of R,.
If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to
consider that (a; )’ and (b; )V),i = 13,14,15 depend only on T, and respectively on G(and not on t) and
hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0 290
From 19 to 24 it results

G, (t) > Gioe[—fot{(a;)(l)—(a;’ YD (T14(sa3))s@13)}ds13) | >0 291
T, (¢) > TPtV > 0 fort>0

Definition of ((M5)®),, and ((M;3)®), : 292

Remark 3: if G5 is bounded the same property have also G4 and G5 . indeed if
Gis < (M13)@ it follows 224 < ((P5)¢ ), — (a12)Gy4 and by integrating

Gra < (( M13)(1))2 =Gl + 2(“14)(1)(( Mls)(l))l/(au)(l)

In the same way , one can obtain

Gis < ((/M13)(1))3 = Gfs + 2(“15)(1)((/Mls)(l))z/(a;s)(l)

If Gy, or G;5 is bounded, the same property follows for G5, Gi5 and Gy3 , Gy, respectively.

Remark 4: If G5 is bounded, from below, the same property holds for G;, and G;5 . The proof is analogous 293
with the preceding one. An analogous property is true if G4 is bounded from below.

Remark 5: If T,5 is bounded from below and lim,_,., ((b; )V’ (G(t), t)) = (by4)® then T}, — oo. 294
Definition of (m)® and ¢ :

Indeed let t; be sothatfort > t;

(b14)(1) - (b”)(l)(G(t) t) <&, Tis () > (m)®

Then L4 > (g, )P ()@ — &,T,, which leads to 295
O m)®
Ty = (M) (1—e 1)+ TYhe 1t If we take t such that e 61t = % it results
(a14)(1)(m)(1) 2 . . . R
Ty, = (f) = logg— By taking now ¢; sufficiently small one sees that Ty, is unbounded. The
1

same property holds for T;s if lim,_c, (b15)® (G(t),t) = (bys)®
We now state a more precise theorem about the behaviors at infinity of the solutions

296
: i @® _ep® 297
It is now sufficient to take @ e ® < 1 and to choose
(P )P and ( Q¢ )@ large to have
[ (P16 )(2)+G? 298
@® | 5 U 5
B (Pe)@® + ((Prs)® + Gjo)e / < (P)@
299
[ ( (Q16 )(2>+T}’>
(b)® A - 70 A A
0@ ((016)® + 7}0)3 / +(016)P|[ < (016)?®
In order that the operator A@ transforms the space of sextuples of functions G; , T; satisfying 300
The operator A®) is a contraction with respect to the metric 301

d (((619)(1); (T19)™), ((610)?, (T19)(2))) =

WWW.ijmer.com 2131 |Page



International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2110-2167 ISSN: 2249-6645

1 2 — @ 1 2 — @)
i + "

Indeed if we denote 302
Definition of Gyg, T : ((Gro, Tio ) = A® (G, Tro)
It results 303

6% - 62| < (@)@ |67 — 62 |eM10)Ps0 e M) Psuo) ds ) +
fot{(a'16)(2)|Gl(é) - Gl(é)|e—(mls)(z)s(m)e—(ﬁhe)(z)s(m) n

(a’1’6)(z)(7~1(71)’5(16))|Gl(é) _ Gl(é)|e‘(W16)(2)Sue)emle)(z)s(m) +
Gl(é)|(a’1’6)(2)(T1(71),S(16)) - (a’1'6)(2)(T1(72), 5(16))| e—(mle)(z)s(m)e(ﬂm)(z)s(w)}ds(m)

Where 5,4 represents integrand that is integrated over the interval [0, t] 304

From the hypotheses it follows

|(G19)(1) - (Gw)(z)|€_(ﬁ1"’)(2)t < 305
1 ’ —~ - -~

Te®@ ((@e)® + (@16)@ + (A16)@ + (Pg) P (ki6)P)d (((Gw)(l)' (T19)W; (G19)@, (T19)(2)))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows 306

Remark 1: The fact that we supposed (a;¢)® and (b;4)® depending also on t can be considered as not 307
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition
necessary to prove the uniqueness of the solution bounded by (P,)@e(M1)®tand (Q,q)@e(M1e)®r
respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to
consider that (a; )® and (b, )®,i = 16,17,18 depend only on T, and respectively on (G;9)(and not on t)

and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) = 0and T; (t) =0 308
From 19 to 24 it results

G, (©) > G?e[—fg{(a;)(z)—(a; YA(T17(s(16))5016))}d5016) >0

T, () = T2eC-COP) > 0 fort > 0

Definition of ((My6)@),, (My6)@), and ((My6)@), : 309
Remark 3: if G;4 is bounded, the same property have also G;; and G;g . indeed if

Gy < (M;)@ it follows dj% < (My6)®), = (a17)® Gy, and by integrating

Gi7 < ((/1\7[16)(2))2 = Gj; + 2(a17)(2)((ﬂm)(z))l/(aln)m

In the same way , one can obtain

Gig < (( M16)(2))3 = Gig + Z(als)(Z)(( M16)(2))2/(a18)(2) 310
If Gy or G;g is bounded, the same property follows for G4, Gig and Gq4 , G5 respectively.

Remark 4: If G;¢ is bounded, from below, the same property holds for G;; and G;g. The proof is analogous 311
with the preceding one. An analogous property is true if G;, is bounded from below.

Remark 5: If T, is bounded from below and lim,_,,, ((b; )® ((G15)(1),t)) = (by;)® then Ty, — oo. 312
Definition of (m)® ande, :

Indeed let t, be sothatfort >t,

(1)@ = (b )P ((G19) (D), D) < £, Ty () > (M@

Then de > (a;7)® (m)® — ¢,T,, which leads to 313
@ (m)@
Ty, = (M) (1 —e®2) + T e 2t If we take t such that e~*2t = % it results
2
Om)®
Ty; = (w) t= logsi By taking now ¢, sufficiently small one sees that T;; is unbounded. The 314
2
same property holds for Tyg if lim,_,, (b15)® ((G19) (1), t) = (b15)®
We now state a more precise theorem about the behaviors at infinity of the solutions
315
: - @® _e® 316
It is now sufficient to take T )® i) ® < 1 and to choose
(P )® and (Q, )@ large to have
[ ((ﬁzo )(3)+G})) 317
@)® |, 5 5 - Y ~
(Mazom (P2)® + ((Py )(3)‘*‘61'0)@ / < (Py)®
[ ( (Qz20 )(3)+T]Q) 318
(b)® A T A A
B E ((Q20)® + 7}0)3 / +(Q20)P| < (Q2)®
In order that the operator A®) transforms the space of sextuples of functions G; ,T; into itself 319
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The operator A®) is a contraction with respect to the metric 320

d (((623)(1), (T1)@), ((G23)®, (T23)(2))) =
sup{max |Gl.(1)(t) - Gi(z)(t)le_(MZO)(s)‘.max |Tl.(1)(t) - E(Z)(t)le‘(ﬁzo)mt}
. CteR) teR}

Indeed if we denote - 321
Definition of G,3, T53 :( (Gz3), (Ty3) ) = C/1(3)((G23), (T23))

It results 322
|G(1) G(Z)|< (azo)(g)lG(D Gz(f)|e_mz")(3)s(20)e(MZO)G)S(ZO) dsz0) +

Jy{(ax0)®65” - G(Z)I (20050 = (M20) Vs a0y 4 323
(azo)(g)(T2(1) 5(20))|G(1) G(Z)l ~(M20)¥520) ¢ (M20) Vs 20) 4

Gi1(@30)® (T4, 520)) = (@30) D (7, 520 | €050 e Fa0) V200 Yl
Where s,y represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows
|6 — G@]e~(M20)e < 324

m((azo)a) + (a20)® + (Az0)® + (Pyg) P (k) ®)d (((st)(l), (To3)D; (63)P, (T23)(2)))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (az,)® and (b,)® depending also on t can be considered as not 325
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition
necessary to prove the uniqueness of the solution bounded by (P)® et gnd (Q,) e M)t
respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to
consider that (a; )® and (b; )®,i = 20,21,22 depend only on T,; and respectively on (G,3)(and not on t)

and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0 326
From 19 to 24 it results

G (t) = Gioe[—fé{(aé)(”—(a;’ Y®(T21 (520))520))}520) | >0

T, () = T2e-t0P) > 0 fort >0

Definition of ((M0)®),, (M30)®), and ((M0)®), : 327
Remark 3: if G, is bounded, the same property have also G,; and G,, . indeed if

Gyo < (My)® it follows d[% < (My0)®), = (a21)® Gy, and by integrating

Ga1 < ((ﬂzo)(3))2 =G + 2(“21)(3)((7‘7[20)(3))1/(“’21)(3)

In the same way , one can obtain

Gy < ((/Mzo)@))rj =G + 2(a22)(3)((/1\7120)(3))2/(51'22)(3)

If G,; or G5, isbounded, the same property follows for G,, , G,, and G, , G, respectively.

Remark 4: If G,, is bounded, from below, the same property holds for G,; and G,, . The proof is analogous 328
with the preceding one. An analogous property is true if G,; is bounded from below.

Remark 5: If T,, is bounded from below and lim,_,, ((b; )® ((G3)(£),£)) = (b31)® then T,; — oo. 329
Definition of (m)® and ;5 :

Indeed let t; be so that for t > ¢, 330
(b21)® — (b YO ((G23) (1), 1) < &3, Ty () > (M)®

Then 221 > (a,,)® (m)® — &,T,, which leads to 331

3 ()@ .
T,y = (M) (1—e 53t) + THe et If we take t such that e=#3¢ = % it results

(a21)(3)(M)(3) 2 , - .
T,y = (f) t= logg— By taking now &5 sufficiently small one sees that T,; is unbounded. The
3
same property holds for Ty, if lim,_, (b3,)® ((G53)(t),t) = (b3,)®
We now state a more precise theorem about the behaviors at infinity of the solutions
332

@® _ep® 333
(M24)® " (M2q )®

(P, )® and (Q,4 )@ large to have

It is now sufficient to take < 1 and to choose
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(P24)P+c)

[ ( 334
A (Gt
(Po)® + (P )P +G)e \ < (Py)®

(a)®
(M24)®

(Q24 )(4)+T]Q

(bpH™® T

[ 335
(M24)® (( 024 )(4) + 7}0)6 ( j > + (@24 )(4) < (024 )(4)

In order that the operator A® transforms the space of sextuples of functions G; , T; satisfying IN to itself 336

The operator A™ is a contraction with respect to the metric 337
d (((6:)D, (T3)D), ((6:)P, (T,)®)) =
sup{rtnmgx |Gl.(1)(t) - Gl.(z)(t)|e‘(m24)(4)t,rtn%x |Ti(1)(t) - 7}(2)(t)|e‘m24)(4)t}

i ER+ ER+

Indeed if we denote
Definition of (G,7), (T7) : ( (Gy7), (Ty7) ) = AW ((G), (7))
It results

|C";2(i) _ éi(2)| < fot(a24)(4) |G2(;) _ Gz(é)|e—(ﬂz4)(4)5(24)e(ﬂz4)(4)5(24) dscq) +

[@)@ |6 = 62 e M5 o= (M) Vs 4

(@)D (TL, 500) 6 — GX e W50 PPy 4

2 " 1 " 2 — @ (C)]
632 1@5) (T35, 520) = (@) (T2 500y )| e T2 Vs e (M) Dsnyds

Where s(,4) represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows 338
| 62D = (G7)P e~ T2t < 339

m((azﬂm + (a2)® + (Az)® + (Po) @ (kp0)®)d (((027)(1), (T)D; (G,)P, (T27)(2)))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (ay,)™ and (b,,)® depending also on t can be considered as not 340
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition
necessary to prove the uniqueness of the solution bounded by (Py,)®e™20®t gnd (Q,,)@e(M2e)®e

respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to
consider that (a; )™ and (b; )™, i = 24,25,26 depend only on T,s and respectively on (G,;)(and not on t)

and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0 341
From GLOBAL EQUATIONS it results

G, (t) = Gioe[—fot{(a;)(‘”—(a! ) (125 (5(24))r5(24))}d5(24)] >0

T, () = TPt > 0 fort> 0

Definition of ((M,4)®),, (M,)®), and ((M,)®), : 342
Remark 3: if G,, is bounded, the same property have also G,s and G, . indeed if

Gpy < (My)™ it follows ‘15—:5 < (M4)®), = (a25)™® Gys and by integrating

Gys < ((/Mz4)(4))2 = G35 + 2(“25)(4)((/M24)(4))1/(a’25)(4)

In the same way , one can obtain

Goe < (( M24)(4))3 = Gfis + 2(az6) ™ (( M24)(4))2/(a26)(4)

If G,5 or Gy s bounded, the same property follows for G,, , G,, and G4, G, respectively.

Remark 4: If G,, is bounded, from below, the same property holds for G, and G, . The proof is analogous 343
with the preceding one. An analogous property is true if G,5 is bounded from below.

Remark 5: If T,, is bounded from below and lim,_,., (b, )™® ((G;)(t),t)) = (bys)™ then Tps — oo. 344
Definition of (m)® and ¢, :

Indeed let t, besothatfort >t,

(b2s)™® — (b, )P ((Gy7) (1), 1) < &4, Ty (£) > (M)@

Then % > (ay5)® (M)® — &,T,5 which leads to 345
O )@ i
Tys = (M) (1 —e~54t) + T e#4¢ If we take t such that e=54¢ = % it results
4
(a25)D ()@ 2 . _ i
Tys = (f) t =log— By taking now &, sufficiently small one sees that T,5 is unbounded. The
4

same property holds for Tyq if lim,_, (b36)™® ((G57)(t),t) = (bye)®
We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS inequalities
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h0|d aISO fOI‘ ng ) 630, TZB' ng, T30

346
- o @® _e)® 347
It is now sufficient to take T)® 1 )0 < 1 and to choose
(P, )® and (Q,5 )™ large to have
[ ((ﬁzs )(5)+G]Q> 348
@® |+ 5 )., 5
e |(P)® + ((Pg) P +60)e N T /1< (Pg)®
[ ( (Q28 )(5)+T1(-)> 349
©® | a T 4 5
(M3g)>) ((026)® + 7}'0)9 g +(02)®[ < (02)®
In order that the operator A transforms the space of sextuples of functions G, , T; into itself 350
The operator A®) is a contraction with respect to the metric 351
d (((G5)D, (T3)D), ((6:)P, (T3)@)) =
sup{mmgx |Gi(1)(t) - Gi(z)(t)|e‘m28)(5)t,mu%x |Tl.(1)(t) - 7}(2)(t)|e‘('ﬂ28)(5)t} 352
i teER4 teER4

Indeed if we denote
Definition of (G3;), (T31) : ( (G31), (T31) ) = cﬂ(s)((Gm), (T31))
It results
|C72(;) _ Gi(2)| < fot(azs)(s) |G2(;) _ Gz(g)|e—(ng)(s)s(zg)e(7\228)(5)5(28) dS(zs) +
i@ 682 = 6D e P ¢~ T
(@) O(T35", 50|65’ = Gl a0 5w (Moo 1
2 " 1 " 2 — (5) )
Gz(s)l(aZB)(S)(TZ(Q)'S(ZB)) _ (a28)(5)(T2(9):S(28))| e~ (M28)s28) o (M28) @9 }ds 29
Where s(,g) represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows
(G5 — (G31)(2)|€_m28)(5)t = 353

m((azs)(s) + (az8)® + (Az5)® + (Pr5)® (kpg)®)d (((031)(1). (T:)W; (G3)@, (T31)(2)))

And analogous inequalities for G; and T;. Taking into account the hypothesis (35,35,36) the result follows

Remark 1: The fact that we supposed (ayg)® and (b,)® depending also on t can be considered as not 354
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition
necessary to prove the uniqueness of the solution bounded by (P)®e™20)®t gnd (D)@ e(M2e)
respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to
consider that (a; ) and (b; ), i = 28,29,30 depend only on T, and respectively on (Gs;)(and not on t)

and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) = 0and T; (t) =0 355
From GLOBAL EQUATIONS it results

G (t) = Gioe[—fot{(a;)(s)—(a; YO (T29 (s (28))5 28))}ds 28| >0

T, (t) 2 Tioe(_(bé)(S)t) >0 fort>0
Definition of ((M5)®),, (M55)®), and ((M5)®), : 356

Remark 3: if G,4 is bounded, the same property have also G, and G, . indeed if

Grg < (M,g)®™ it follows d‘% < (My5)®), = (a20)® Gyo and by integrating

Gao < (M5)®), = Gy + 2(a20) P ((M25)®), /(a20)®

In the same way , one can obtain

Gzo < (Mg)®), = Gy +2(az0) ™ ((M5)®), /(a30)®

If G,9 or G is bounded, the same property follows for G,g, G3o and G,g, G,q respectively.

Remark 4: If G,g is bounded, from below, the same property holds for G,, and Gs, . The proof is analogous 357
with the preceding one. An analogous property is true if G,4 is bounded from below.

Remark 5: If T, is bounded from below and lim,_,, ((b; ) ((G31)(t), 1)) = (bye)® then Tpq — oo. 358
Definition of (m)® and & :

Indeed let t; be so that for t > ¢

(b20)® — (b YO ((G31) (D), £) < &5, Tpg (£) > (M)
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359

Then ”% > (a30)® (M)® — &5T,o Which leads to 360

) (m)(®)
T = (M) (1 —e7%%) + The %5t If we take t such that e=#5t = % it results

(a29)(5)(m)(5))
> == - -
Tz ( 2

, t= logi By taking now &g sufficiently small one sees that T,q is unbounded. The

same property holds for Ty, if lim,_,, (b30)® ((G31) (), t) = (b39)®
We now state a more precise theorem about the behaviors at infinity of the solutions
Analogous inequalities hold also for Gs5 , Gs4, T35, T3, Taa
361

(a)® b)® 362
(M32)©) 7 (M3, )(©®

(B, )® and (Q3, )©® large to have

It is now sufficient to take < 1 and to choose

(P32)@+6)

( 363
-~ ~ - G_ > ~
(P2)® + ((Ps )(6)+Gjo)e o < (Pp)®

(@)®
(1‘732)(6)

(032)©+1!

364
NG! ( —o—> . .
(1(W3z))(6) (( Q3@ + To)e J +(032)@[ < (05)®

In order that the operator A® transforms the space of sextuples of functions G, ,T; into itself 365

The operator A is a contraction with respect to the metric 366
d (((63)D, (T35) D), ((G35)P, (T35)@) ) =
sup{max |Gl.(1)(t) - Gi(z)(t)|e‘m32)(6)t,max |Ti(1)(t) - E(Z)(t)|e‘(M32)(6)t}

i teER4 teER4

Indeed if we denote

Definition of (Gss), (T35) : ((Gss), (T35) ) = A©((Gss), (Ts5))
It results

1G5 = 67| < [ (as)®@ 653’ - G2 |e=Ma2)®s62) ¢ (M32) Vs(a2) s ) +
y{@52) @655 — 637e ~(M32)@s(32) o =(M32) Ps(az) 4

(@)@ (153, 5|65’ = Gg(g)|e_m32)(6)5(32)€m32)(6)5(32) +

G(2)|( 32)(6)(T3(31)'5(32)) - (agz)(6)(T3(32):5(32))| e_m32)(6)5(32)e(ﬂ“)(ﬁ)s“z)}ds@z) 367
Where s (3, represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows
(1) (@)@, (@ )V, (BHD, (B, (b )P >0,
i,j =13,14,15

(2)The functions (a; )@, (b; ) are positive continuous increasing and bounded.
Definition of (p,))®, (r;)®:

(a; )V (T, ) < ()P < (Ay3)®
(bli,)(l)(G, t) < (ri)(l) < (b;)(l) < (§13 )(1)

(3) limT2—>oo (a;’ )(1) (T14! t) = (pl)(l)
limg_o, (b )V (G, 8) = ()@

Definition of (A3 )™, (B3 )M :

Where| (A;3)D, (B3 )D, (p)D, (r)® |are positive constants

and |i = 13,14,15

They satisfy Lipschitz condition:
(@ YO0, ) = (@ )V (T, D < (Ryz YD|Tyy = Tiyle™ i)

I(BHDG,0) = (B YV(G, T < (ki3 YD|G = G'||e= ()P
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With the Lipschitz condition, we place a restriction on the behavior of functions (a; ) (Ty,,t) and(a; ) (Ty4,t)
. (Ti4,t) and (Ty4, t) are points belonging to the interval [(&y3 )™, (M5 )] . It is to be noted that (a; )P (Tyy, t) is
uniformly continuous. In the eventuality of the fact, that if ( M5 ) = 1 then the function (a; ) (Ty4,t) , the first

augmentation coefficient attributable to terrestrial organisms, would be absolutely continuous.
Definition of ( M3 )@, (k3 )D :
(AA)  (M3)D, (ky3)D, are positive constants

@® k™
(M13)D 7 (#My3)D

Definition of ( B3 )™, (03 )M :

(BB)  There exists two constants (P3)D and (Q13)® which together with
(My3)D, (fey3) D, (A13)Pand (B3 )@ and the constants (a,)®, (a;)(l)» bW, (bl")(l)' @)V, ®,i=
13,14,15,
satisfy the inequalities

W [@)®+ (@)® + (Az)D+ (P3)D (k3)P] <1

W[ BV + B)P + (Biz)P + (Q13)D (ky3)P] <1

Analogous inequalities hold also for Gs7 , Gzg, Tz, Ts7, T3g 368

- - @? _?
It is now sufficient to take D iz )

(P36 )7 and (Q36 )™ large to have

< 7 and to choose

[ (P36 )7+6} 369
@)? |+ 5 B - -
(1;36)(7) (P3e)? + (( Py ) + Gjo)e J < (B3 )?
370
[ (236) D41}
GO I ‘( 0 ) N A
(M36)D ((Q36)7 + 7}0)3 / +(Q36 )7 < (Q36)7

In order that the operator A transforms the space of sextuples of functions G; , T; satisfying 37,35,36 into itself 371
The operator A7) is a contraction with respect to the metric 372
d (((639)(1); (T3)®), ((G30)®, (T39)(2))) =
sup{max |Gi(1)(t) - Gi(z)(t)|e‘(M36)(7)f,max |Ti(1)(t) - Ti(z)(t)|e‘(M36)(7)t}
i teER4 teR4
Indeed if we denote

Definition of (Gsg), (T3o) :

( (G39), (T39) ) = AD((G9), (Ts9))
It results

|G§é) _ 6i(2)| < fot(age)m |G§§) _ Gég)|e‘(ﬂ36)(7)5(36)em36)(7)5(36> ds(36) +
ter 1) ()| ,—(M36)D —(M36)D
fo {(a36)(7)|636 — Gyt |e (M36)+7s36) o ~(M36)~'S(36) 4

(@30) (157, 5006))| G5’ = G5 le™ 5900000
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@)yr," (€] " 2) (P2 D M) D)
Gse |(a36)(7)(T37 '5(36)) _ (a36)(7)(T37 ,5(36))| e~ (M36)"’s36) o (M36) 5(36>}ds(36)
Where s34 represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

373
|(039)(1) _ (639)(2)|e—(W36)(7)t <
1 ’ —~ ~ P
W((a%)m + (a36) 7 + (A36) 7 + (P36) P (k36))d (((039)(1), (T39)®; (G39)@, (T39)(2)))
And analogous inequalities for G; and T;. Taking into account the hypothesis (37,35,36) the result follows 374

Remark 1: The fact that we supposed (as¢) and (bs)™ depending also on t can be considered as not 375
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition
necessary to prove the uniqueness of the solution bounded by (Pss)™e™36)”t and (Qse)PeMse) Ve
respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to
consider that (a; ) and (b; )", i = 36,37,38 depend only on T;, and respectively on (Gso)(and not on t)
and hypothesis can replaced by a usual Lipschitz condition.

376
Remark 2: There does not exist any t where G; (t) =0and T; (t) =0
From 79 to 36 it results
G (t) = Gioe[—fé{(aé)m—(a! ) (137 (s@e))s@e)lsee)]| >
T, () = TPtV > 0 fort> 0
Definition of ((ﬂ36)(7))1' ((7‘7[36)(7))2 and ((7‘7[36)(7))3 : 3

Remark 3: if G54 is bounded, the same property have also G;; and Gsg . indeed if

Gzs < (M3g) it follows dg% < ((M36)?), = (a37)7 Gy, and by integrating

Gy < ((”1\7136)(7))2 =Gg + 2(“37)(7)((/M36)(7))1/(a’37)(7)

In the same way , one can obtain

Gsg < ((/MBG)(7))3 = Gis + 2(a38)(7)((/M36)(7))2/(a,38)(7)

If G3; or Gsg is bounded, the same property follows for G , Gsg and Gsq , G respectively.

Remark 7: If G is bounded, from below, the same property holds for G;; and Gs5 . The proof is analogous 378
with the preceding one. An analogous property is true if G;, is bounded from below.

Remark 5: If Ty is bounded from below and lim,_,, ((b; )7 ((G39)(t), 1)) = (b3,)7 then T3, — oo. 379
Definition of (m)? and ¢ :
Indeed let t; be sothatfort > t,
(b37) P — (b )P ((G39)(0), 1) < &7, T4 (£) > (M)
Then d;% > (a3;)?(m)? — &,T;, which leads to 380
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(a3 D)™ —egt 0 ,—e7t —e7t 1
T3; = (e—) (1 —e ') + T,e 47" If we take t such that e~¥7¢ = S it results
7
(az))D@)?) 2 : . )
Ty = (f) t= log; By taking now ¢, sufficiently small one sees that T;, is unbounded. The

same property holds for Tsg if lim,_,., (b3g)” ((G30)(t), t) = (b3g)?
We now state a more precise theorem about the behaviors at infinity of the solutions of equations 37 to 72

In order that the operator A7) transforms the space of sextuples of functions G;,T; satisfying GLOBAL 381
EQUATIONS AND ITS CONCOMITANT CONDITIONALITIES into itself

382
The operator A is a contraction with respect to the metric 383

d (((639)(1)' (T39)(1))' ((G39)(2), (T39)(2))) =
supfmax |62 (©) — 6P ©)|e 0Vt max 1D () — T (0)]|e=1a) 7t}
. teRy teR}

Indeed if we denote
Definition of (Gs9), (Tzo) :

( (Gso), (T59) ) = AD((Gso), (Ts9))
It results

|53(é) _ Gi(2)| < fot(aga)m |G3(§) _ Gg)|e‘m36)(7)5(36)e(7‘”36)(7)5(36) ds(36) +
fy (@) 657 = 652 e o0 P sw (Mo Do 4
(@30) 7 (157, 500)) G5 = G5 |50 560 Moo P 4
@)y, (€] " (2) —(M36)D M36)7
Gse |(a36)(7)(T37 ,5(36)) _ (a36)(7)(7'37 ,5(36))| e~ (M36)"7s36) o (M36) 5(36)}d5(36)

Where s34 represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

384

|(G3)® — (G39)(2)|€_m36)(7)t =
1 : - ~ ~
W((a%)m + (a36) 7 + (A36)7 + (P36) 7 (k36)P)d (((639)(1), (T39)W; (G39)@, (T39)(2)))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows
Remark 1: The fact that we supposed (as¢)? and (bs¢)? depending also on t can be considered as not 385
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by (Pss)™e™36)?t gnd (Qse)PeMse) Ve
respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it suffices to
consider that (a; )™ and (b, )”,i = 36,37,38 depend only on Ts, and respectively on (Go)(and not on t)

and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0 386
From CONCATENATED GLOBAL EQUATIONS it results

G, (t) > Gioe[—fot{(a;)m—(a; )D(T37(s36))536)) Y5 36) | >0

T, (£) = T0e(-007) > 0 fort> 0
Definition of ((M34)”),, ((M36)?), and ((Ms6)?), : 387
Remark 3: if G54 is bounded, the same property have also Gs; and Gsg . indeed if
Gy < (M36)7 it follows d(% < ((M36)™), = (az;)7Gs; and by integrating
G37 < ((M36)(7))2 =G + 2(‘137)(7)(( M36)(7))1/(a’37)(7)
In the same way , one can obtain
Gzg < (M36)?), = G +2(azs)”((M36)7), /(azs)"”
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If G5, or Gsg is bounded, the same property follows for Gs¢ , Gsg and Gsg , Gg; respectively.
Remark 7: If G4 is bounded, from below, the same property holds for G;; and Gz . The proof is analogous 388
with the preceding one. An analogous property is true if G;, is bounded from below.
Remark 5: If Ty, is bounded from below and lim,_,, (b, )7 ((G39)(t), 1)) = (b3,)7 then T3, — oo. 389
Definition of (m)” and ¢; :
Indeed let t; be so that for t > t,

(b37) P = (b, )P ((G39)(0), 1) < &7, T3 (£) > (M)

Then == > (az;)™ ()™ — &,Ts; which leads to 390
DD .
Ty, = (M) (1 —e 1) + T e 7t If we take t such that e 67t = % it results
(a37)Dm)?D 2 . .. i
T3; = (f) t= logg— By taking now ¢, sufficiently small one sees that T;, is unbounded. The
7

same property holds for Tsg if lim,_,., (b3g)" ((G39)(t), t) = (b3g)”
We now state a more precise theorem about the behaviors at infinity of the solutions

—(02)® < —(a16)® + (a17)P — (a16) P (Ty7, ) + (a17) P (Ty7, 1) < —(01)@ 391
—(1)® < =(b16)® + (b17)@ — (b16) P ((G1o), t) — (b17)P((Gro),t) < —(1))P 392
Definition of (v;)®, (v)®, ()@, (uy)® : 393
By (v,)® >0, (v,)® < 0 and respectively (u,)® >0, (u,)® < 0 the roots 394
(a) of the equations (a17)(2)(v(2))2 + (0)Pv® — (a;5)@ =0 395
and (1)@ (u?)” + (1)@u® — (by)@ = 0 and 396
Definition of (7,)®,, (1#,)®, (i1,)@, (i1,) @ : 397
By ()@ >0, (v,)® < 0and respectively (i,)® >0, (1,)® < 0 the 398
roots of the equations (a17)(2)(v(2))2 + (0)Pv® — (a;)@ =0 399
and (b17)® (u®)” + () Pu® = (b;)® =0 400
Definition of (m;)®, (m,)®, (u)@, (uy)® :- 401
(b) If we define (m)@, (m,)®, ()@, ()@ by 402
(mz)(z) = (Vo)(z)' (m1)(2) = (V1)(2): if (Vo)(z) < (V1)(2) 403
(my)® = (v)@, (m)® = @)@, if )P < W)? < (7)P, 404
and [(v))® = %
(mz)(z) = (Vl)(z)' (m1)(2) = (Vo)(z): if (171)(2) < (Vo)(z) 405
and analogously 406

(12)® = )@, (u)® = (W)@, if (u)® < (u)®
(12)® = @), (u)® = @)@, if ()@ < (ue)® < @)@,

0
and | (uo)® = %

(1) = (u1_)(2), (1{1)_(2) = (7_10)(2); if (@)® < (u)® 407
Then the solution satisfies the inequalities 408
Ghee(0 0105 < 6,4(6) < Ge0 ™" 09
(p;)'~ is defined 4
g Gl < 6y (1) < G e 410
( " (als)(Z)Gm e((sl)(z) (Plé)(z))t _ e—(Sz)(Z)t] +Go e_(SZ)(z)t < Gyg(t) < 411
m)@(SDD-@16)D~(52)?) 18 = sl =
(a18)@c? @¢ _ —(ae)@ @@
(mz)(z)((Sﬂ(Z)—1(fli8)(2))[ GO — e(o) t] + G?SE (1) t)
T° e®DPt < Ty (£) < TS e((Rl)(2)+(r16)(2))t 412
@ T16e(R1)( & <Th (t) < (2) Tl()ee((Rl)(Z)+(r16)(2))t 413
(1 )
(b1) P16 R <2>t —bi) @] 4 0 a-big) @t 414
)P (R)P—(b15)@) e — ) ] + e 0T < Typ(6) <
(a18) 186 (RDP+(r16)@)e _ o—R)Pt 0 —(Ry)Dt
EDP(RDD +r10)D+R)D) [e(@ e e 0Vt ] 4 TR
Definition of ($,)®, (5,)®, (R))®, (Rz)(f):- 415
Where (S))® = (a;6)@ (m,)® — (a;6)? 416
(Sz)(z) = (‘118)(2) - (P18)(2) ,
(RDP = (b16)? (u)™ = (b16)@ 417
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(R)® = (b1g)@ — (r5)@
418
Behavior of the solutions 419

_If we denote and define
Definition of (0,)®,(6,)®,(1)®, (t,)® :
@ ), (0,)®, @), (1,)® four constants satisfying
—(02)® < —(a20)® + (a51)® = (a20)® (T , 1) + (a21)® Ty, 1) < —(01)®
~(@)® < =(020)® + (020)® — (b20)P (G, ) = (b21)P((63), £) < ~(7)®
Definition of (v;)®, (v)®, (u)®, (uy)® : 420
(b) By (v)®>0,1,)® <0 and respectively (u;)® >0, (u,)® <0 the roots of  the equations
(@)PO) + @)V (@)@ = 0
and (b,1)®u®)” + (1)@u® = (by0)® = 0 and
By (v))® > 0, (#,)® < 0 and respectively (&1;)® >0, (i1,)® < 0 the
roots of the equations (a21)(3)(v(3))2 + (6)Pv® — (a,)® =0
and (b;1)® (u®)’ + (1) Pu® = (b;)® =0
Definition of (m;)®, (m)®, (u)®, (ux)® :- 421
(©) Ifwe define (m)®, (my)®, (u)®, (u)® by
(mz)(g) = (Vo)(3)' (m1)(3) = (V1)(3): if (Vo)(3) < (V1)(3)
(m)® = )P, (m)® = @)D, if )@ < (W) < (1),

0
and |(vy)® = %
21

(mz)(3) = (Vl)(3)' (ml)(3) = (Vo)m' if (171)(3) < (Vo)(s)
and analogously 422

(12)® = )P, (u)® = )P, if (u)® < (u)®
0
(12)® = W)@, (u)® = @)D, if W)® < w)® < @)®, and|(u))® = 2_0(1)

(Hz)(3) = (ul)(3)' (#1)(3) = (uo)(3): if (ﬁ1)(3) < (uo)(3)
Then the solution satisfies the inequalities

69 e(EP-0200P) < 6, (1) < 6§, eVt 123
;)% is define
p;)® is defined
3)_ 3) 1 3)
W(;2003((51) 209Nt < G, () < — G9ye St 424
(a22)(3)G80 ((5‘ )(3)_(p )(3))4‘.‘ _ (s )(3)t 0 ,—(S )(3)[; 425
RO REes G| L . e ] +le R < G (B) <
(a22)P 6 NG TSN N 0 —(ah) @
m2)®((51)P-(az)®) [e( DT et 1+ Gzze (v )
The®DVt < T, (1) < T e (B P+ D) 426
1 ® 1 ©) ®)
m’[‘200@(131) < Ty(t) < m’]’2006((1?1) +(r20))e 427
(b22) 7 ® ARG b3 428
TGP et — eVt | 4 e < Ty (1) <
(aZZ)(3)T200 ((R )(3)+(r )(3))t _ ,—(R )(3)t 0 ,—(R )(3)t
EDO(RD®+(r20)P+R)®) el eVt ] 4 TR
Definition of (5))®, (5,)®, (R)®, (Rz)@:- 429
Where (5,)® = (a50)® (m)® — (a0)®
(52)(3) = (azz)(g) - (Pzz)(3) )
(R1)(3) = (bzg)(g)(/iz)@) - (bzo)(3)
(Rz)(B) = (bzz)(B) - (7”22)(3)
430
431
432

1f we denote and define
Definition of (6,)™®, (6,)®, (t)W, (1,)® :
d) (6P, (6)?, (1P, (7,)® four constants satisfying

—(02)™® < —(a2)™ + (a35)® — (a24) P (Ty5, 1) + (a35) P (Tys5, 1) < —(07) P

WWW.ijmer.com 2141 |Page



International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2110-2167 ISSN: 2249-6645

—(1)® < =(b2)® + (by5) ™ — (b2) P ((G7), t) = (bs) P ((G7), ) < — (1)@
Definition of (v))®, (v)®, ()@, (up)®,v®,u® : 433

() By ()W >0,w,)® <0 and respectively (u)® >0, )™ <0 the roots of  the equations
(@)D ()" + @) PV — (@)@ =0
and (by5)® (u™®)” + (1) @u® — (b,,)® = 0 and

Definition of (¥,)®,, (1,)®, (i1,)®, (i1,)@ : 434
435

By ()™ > 0, (,)® < 0 and respectively (&i,)® >0, (i1,)® < 0 the
roots of the equations (a,s)® (v(‘”)2 + (6)Pv® — (a)® =0
and (bys)®(u®)" + (1) Pu® — (by)® =0 436
Definition of (m;)®, (m,)®, (u)®, (u2)™@, (vp)™® :-

(M If we define (my)®, (mp)™@, (u)™@, ()™ by
(mz)(4) = (Vo)(4): (m1)(4) = (V1)(4)' if (Vo)(4) < (V1)(4)

(m)® = ()@, (MmN® = )P, if W < (W@ < ()@,
0
and |(v)® = g%
25

(m)® = (W)@, (m)® = ()@, if NP < (v))®

and analogously 437
438

012)(4) _ (uo)(4)' (#1)(4) — (ul)(4), if (uo)(4) < (u1)(4)

()™ = @)@, ()@ = @), if w)® < W)™ < @)™,
and | (ug)® = ;2—4

(12)® = @)@, ()™ = ()@, if @)™ < (up)® where (u)®, (@)™
are defined respectively

Then the solution satisfies the inequalities 439
440
G, e(EVP-@20D) < G, (1) < 65 e@D ™ 441
442
where (p,)™ is defined 443
(®) 444
445
— 1G9 e(DW-p2)®)e < < (S Wt 446
o G Gas (1) S Gy Gl 447
(a26)™63, @) _(pr)® —(5)@® PN 448
((m1)(4)((51)(2:)6—(P242;(4)—(52)(4)) [e((81) e — e ] + Gzoée G < Gz (1) <
(a26)46240(m2)4(851)4—(a26)4e(S1)4t—e—(a26")4t+ G260e—(a26")4t
T eVt < Ty, () < TP eGP+ @) 449
@ @) @)
™ )(4) T2 e®D)™t < Ty, (1) < (4) T204e((R1) +(r24) )t 450
(b26) TS, R ARG 0 —(bh)® 451
(#1)(4)((R1)(4)—(bée,)(4)) [e( D — em(b26) t] + TZGe (b2 )™t = T26 (t) =
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(a26) TS, R B +(r24) D)t —(Ry) Wt 0 ,—(Ry)®t
@B (RD® +ro) P+ (R D) [e( DO - e ]+ Tage ™™

Definition of (5))“, (5,)®, (R)™, (R,)®:- 452
Where (S)® = (a34)® ()™ — (aze)®
(52)(4) = (a26)(4) - (p26)(4)
(R)™ = (b)) ® (1)@ — (b2)®
(R)® = (B3)® — (rp6)® 43

Behavior of the solutions 454
If we denote and define

Definition of (6)®,(,)®,(@)®, (1,)® :

@) (@), (0)®, ()P, (1,)® four constants satisfying

—(0)® < —(a28)® + (a29)® = (a2) ™ (Tp9, 1) + (a20)®(Ty9, 1) < —(7)®

—(12)® < =(b30)® + (b20)® — (b38) P ((G31), £) — (b29)®((G31),t) < —(x))®

Definition of (v;)®, (v,)®, (1), (uy)®,v®,u® : 455

(h) By (v))® >0,,)® <0 and respectively (u;)® >0, ;)™ <0 the roots of  the equations
(a29)(5)(v(5))2 +(0) VS — (a)® = 0
and (b)) (u®)” + (1,)®u® — (byg)® = 0 and

Definition of (¥,)®,, (#,)®, (i1,)®, (i1,)® : 456

By (7,)® >0, (#,)® < 0 and respectively (;)® >0, (%i,)® < 0 the
roots of the equations (azg)(S)(v(S))2 + (0,) v — (a,5)® = 0
and (by)®(u®)" + (2)Ou® = (b)® = 0
Definition of (m)®, (m,)®, (1)®, (12)®, (v)® :-

(i) Ifwe define (m)®, (m,)®, (u)®, (1) by
(m)® = )@, () = W)@, if (W)™ < (v)®
(m)® = ()®, (m)® = @), if 1) < W)® < @),

0
and |(vy)® = %
29

(mz)(s) = (Vl)(s): (m1)(5) = (Vo)(s): if (171)(5) < (Vo)(s)
and analogously 457
(Mz)(s) = (uo)(s): (M1)(5) = (u1)(5)' if (uo)(s) < (u1)(5)

1) = W)®, 1) = @), if W)™ < (w)® < @)®,
TO
and|(uy)® = %

(12)® = @)®, (u)® = W)™, if @) < (up)® where (u)®, (@)™
are defined respectively

Then the solution satisfies the inequalities 458
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G5 e(DP-02)M)t < G () < 69D

where (p,)® is defined

1 $)5)— 5) 0 .(S)®
T)(S)ng (D -@2))t < Gyo(t) < TGZBQ( IO 459
460
(a30)®635 [ (DB =28)N)t _ =5t ] 0 ,—(52)®¢ 461
((ml)(s)((51)(5)—(1328)(5)—(52)(5)) ¢ ¢ *G3e <G <

(@30)56280(m2)5(S1)5—(a30)5e(S1)5t—e—(a30")5¢+ G300e—(a30")5¢

The®D®t < Ty (1) < T e (B +02) D)t 462
o T e ™ < Ty (1) < gy T e (040 463
(u1><s>833::i€i;o><s>) [e(Rl)(S)t B e_(béO)(S)t] + The 00Vt < Ty () < 464
(uz)(s)((ngtz:)ojizgia+(Rz)(s)) [e((Rl)(s)Jr(rZS)(s))t - e_(RZ)(S)t] + Tsooe‘(RZ)(s)t

Definition of (5;)®, (5,)®, (R))®, (R,)®:- 465

Where (51)(5) = (azg)(s)(mz)(s) - (alzs)(s)
(52)(5) = (a30)(5) - (P30)(5)
(R1)(5) = (bzs)(s)(ﬂz)(s) - (blzs)(s)

(Rz)(s) = (b'30)(5) - (7”30)(5)

Behavior of the solutions 466
_If we denote and define

Definition of (,)®, (0,)®, (1,)©, (1,)©® :

0 (@)@, (06)®, ()@, (1,)® four constants satisfying

—(02)® < —(a3)® + (a33)© — (a32) @ (T3, 1) + (a33) @ (T3, 8) < —()©

—(1)©@ < =(b52) @ + (b33)©@ — (b32) @ ((G35), ) — (b33) @ ((G35), t) < —(7)®

Definition of (v;)©, (v,)©, (u;)©, (u,)©,v®,u® : 467

(k) By (v)® >0,(w,)® <0 and respectively (u;)® >0, (u,)® <0 the roots of  the equations
(a33)(6)(V(6))2 +(0)Ov® — (a3,)® = 0
and (b53)©u®)” + (1)©u® — (bs,)® = 0 and

Definition of (#,)©,, (#,)©, (i1,)®, (i1,)© : 468

By (,)® >0, (#,)©® < 0 and respectively (i;)©® >0, (7i,)® < 0 the
roots of the equations (az3) @ (v®)” + (3,)©v(® — (a5,)® =0
and (bs3) @ (u®)" + (1) @u® = (b)) = 0
Definition of (m;)©, (my)®, (1)@, (1)@, (v)® :-

() 1f we define (my)® , (my)©, (u)®, (1)©® by
(mz)(6) = (Vo)(6): (m1)(6) = (V1)(6): if (Vo)(G) < (V1)(6)
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470
(mp)® = (Vl)(6) m)® = T)@,if )@ < )® < ()@,

and |(vy)® =

|l‘0o

G

[N
wo

(mz)(6) = (Vl)(6)r (ml)(6) = (Vo)(6)' if (171)(6) < (Vo)(ﬁ)
and analogously 471
M2)® = W)@, (u)® = W)®, if (w)® < (u)®

W)@ = @)@, ()@ = @)@ ,if )@ < (w)® < @)@,
and|(up)©® = ;3—2

(12)® = @)@, (1)@ = W)@, if (@) < (up)® where (u)®, (@)
are defined respectively

Then the solution satisfies the inequalities 472
nge((sl)(ﬁ)_(p“)(ﬁ))t <SGy (t) < G3oze(51)(6)t

where (p;)© is defined

6)_ (6) 6)
Wc,‘3ze((51) @32))t < Gay (1) < (6) GO, et 473
(a39)©68, SO _(92,) O _(5,)O)¢ 0 —(5)©¢ 474
((ml)(f’)((51)<6>—(p32)<6>—(Sz)<6>) [e(E e - =60 [ 4 60760 < G 0) <

(@34)6G320(m2)6(S1)6—(a34)6e(S1)6t—e—(a34)6t+ G340e—(a34)6¢

TS e @t < T (1) < T (D@ +s) )t 475
© ) 1 (1))
" )(6) ——TL eRD™t < Ty, (1) < (6) Tgoze((Rl) +(r32) )t 476
(b34)OTY, TING VAN N 0 (b)) 477
DO (R)©—(b3)©) et — g=(bse) ]+ THhe 0™t < Ty (t) <

(a34)(6)T302 [ ((R1)(6)+(T32)(6))t_ _(Rz)(ﬁ)t] 0 —(Rz)(ﬁ)t
@O (RD®+r3) O+ R)®) L e +Te

Definition of (), ($;)®, (R)®, (R):- 478
Where (5,)® = (a3,)® (my)©® — (az,)®
($2)® = (a3)® — (p3)©
(R)® = (b32)®@ (1) ® — (b3)®

(Rz)(G) = (b§4)(6) - (7”34)(6)

_If we denote and define

Definition of (0,)7, (6,)?, (1)), (1) :

(m) (6D, (6)7, (t)?, (1,)? four constants satisfying

—(0)7) < —(a36)” + (a37)? = (a36) 7 (T3, £) + (a37) (T35, £) < —(o)?

—(1)7 < —(b3e)7 + (b37)7 = (b36) 7 ((Ga), ) — (b37)V((G39),t) < —(7)

Definition of (v;)?, v,)?, (u)?, (uy)?,v?,u® : 480

(n) By ()P >0,1,)7 <0 and respectively (u;)? >0, (u,)” <0 the roots of  the equations
@) P (D) + @)V — (a5)? = 0
and (b5) D)’ + (1) Pu? = (bag)? = 0 and
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Definition of (¥,)™,, (1,)7, (i1,)7, (i1,) ™ : 482

By (7)) > 0, (#,)? < 0 and respectively (it,)7 > 0, (&,)? < 0 the
roots of the equations (as;)” (vm)z + (0) D = (a3)? = 0
and (bs)? (™) + (@) Pu? — (bye)? = 0
Definition of (m)™, (my)@, (u))?, ()7, (v)? :-

(0) If we define (m)™, (mp)™, (u)?®, (1) by
(mz)m = (Vo)m: (m1)(7) = (V1)(7)' if (Vo)m < (V1)(7)
(m)? = (v, )(7) m)? = @)D ,if v)? < (p)? < ()7,

and |(vy)? = —0
3

(mz)m = (Vl)(7)' (ml)(7) = (Vo)m' if (171)(7) < (Vo)m
and analogously 483
(Hz)m = (uo)m: (H1)(7) = (u1)(7)' if (uo)m < (u1)(7)
)" = W), w)? = @), if w)” < (up)? < @)?,
and|(up)? = sz

()7 = W), ()™ = (up)?,if (@)™ < (up)? where (u)?, (@)
are defined respectively

Then the solution satisfies the inequalities 484
GO e(©EDM-w3) )t < G, () < GY eVt

where (p,)” is defined

485
1 D () Q)
W e (6D =0307) < G, (1) S )(7 GY et 486
( 487
(azg) PGy 7 _ ) —(s D —(s D
(ml)(7)((sl)(;?—(p363)6(7)—(Sz)m) [e((81) 36))t _ o= (S0t ] + G;?Se )"t < Gig(t) <
(a38)7 63 Q) NG BN
e ) LA R LA
T0 e RVt < Tse (1) < T3 e((Rl)(7)+(T36)(7))f 488
(7) T (Rl)(7)t < T (t) < (7) 0 ((Rl)(7)+(1‘35)(7))t 489
(r1 )
(b3g) 15 ) EPAENG)! (b 490
(m)(”((;?)W)j(zég)(”) e — e w t]+T308€ P S Ta(0) <
(a3) 74 %) %) —(RD —(RD
(Hz)m((R1)(73)8+(r363)?7)+(R2)(7)) [e((Rl) o)) — o) t] + Tpe (T
Definition of (5))7, (5,)7, (R, (R,)7:- 491
Where (51)(7) = (‘136)(7) (mz)m - (a,36)(7)
(52)(7) = (‘138)(7) - (P38)(7) .
(Rl)(7) = ,(bge)m (#2)(7) - (b36)(7)
(Rz)m = (bgs)m - (rgs)m
From GLOBAL EQUATIONS we obtain 492

dv( )

= (a36)" - ((‘136)(7) — (a37)? + (a36) " (Ty7, t))
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(a37) 7 (T37, v — (az;) Vv

Definition of v(7 :- v@® = gﬁ
37

It follows
2 dv(®
- ((a37)(7)(v(7)) +(0) Vv — (a36)(7)) = ‘;t =
2
~(@N?P) + (@)Y ~ (a30)?)

From which one obtains

Definition of (#,)™, (vy)? :-

et _
(@) For0 <|(v)? = ﬁ <P < @)
V(7)(t) > (V1)(7)+(C)(7)(vz)(7)g[_(a37)(7)((”1)(7)_(”0)(7)) t] (C)(7) — )P -
- 1+(C)(7)e[—(a37)(7)((v1)(7)—(1/0)(7))t] ' o)D)
it follows (vy)” < v () < (v)?
In the same manner , we get 493
- — @z DT D= HD —
YO @) < T D+ D @y Del @DV (TDD-27) ] O = D)
- 1+(€)(7)e[_(a37)(7)((71)(7)_(172)(7)) t] ' (Vo)(7)—(72)(7)

From which we deduce (vy)? <v?(t) < (#)7

0
() If 0< ()P < )P = g% < (1) we find like in the previous case, 494
37
—(a3) D (w1 D@D
(Vl)(7) < (V1)(7)+(C)(7)(V2)(7)e[ 37D (1 2] < v(7)(t) <
140D el~@D P (DD -02)D) ]
. s D (@D -y
OOV Vel OV T
1+ @D~ @D(EDD -2 D) ] =
0 . 495
© If0<()?<@)? <|(v)? = f% , We obtain
37

TOD+OD @y Del~ @ (TP -2 P) ]
14O Dl @D (DD -2 ) ]

)7 < v < < (v)?

And so with the notation of the first part of condition (c) , we have
Definition of v (¢) :-

m)? < v () < ()P, | v (e) = 22
37

In a completely analogous way, we obtain
Definition of u™(¢t) :-

)P < uP@®) < @)@, [uP(@) =12
T37(t)

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.
Particular case :

If (azs)? = (az,)?, then (6,)7 = (6,)7 and in this case (v;)” = (#,)7 if in addition (vy)? = (v;)?
then vV (t) = (v,) and as a consequence Gz (t) = (vo) " Gs,(t) this also defines (v,)” for the special
case .

Analogously if (bzg)™ = (b3,) 7, then ()7 = (1,) and then
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(u)? = (@) Pif in addition (uy)” = (u)? then T4 (t) = (up) P Ty, (t) This is an important consequence
of the relation between (v;) and (v,)”, and definition of (uy)?.

We can prove the following 496
If (a; )P and (b; ) are independent on t , and the conditions 496A
(a:%)m (aé7)(7) - (a36)(7) (a37)(7) <0 4968
(a36) 7 (a37) 7 = (a36) 7 (a37)7 + (a36) 7 (036)7 + (a37) 7 037)7 + (036) 7 (p37)7 > 0 igsg
: : 497D

(b36) 7 3)? = (b3e) P (b3)? > 0, rors
(bé6)(7) (b§7)(7) - (b36)(7) (b37)(7) - (b’36)(7) (T37)(7) - (b’37)(7) (T37)(7) + (T36)(7) (T37)(7) <0 ig;g
with (p36)”, (13,)7 as defined are satisfied , then the system WITH THE SATISFACTION OF THE
FOLLOWING PROPERTIES HAS A SOLUTION AS DERIVED BELOW.
: 497
Particular case : 498
If (a16)® = (a;;)@, then (6,)® = (6,)@ and in this case (v;)® = (#,)@ if in addition (vy)@® = (v;)@®
then v@(t) = (v,)® and as a consequence Gy (t) = (Vo) @ Gy (1)
Analogously if (b1)® = (b;;)®,then (t,)® = (1,)® and then
(u)@® = (@) @if in addition (uy)® = (uy)@ then Ty (t) = (up)@Ty, (t) This is an important consequence
of the relation between (v;)® and (#,)®

499
From GLOBAL EQUATIONS we obtain 500
dv® , / " "

I (azo)(3) - ((azo)(3) —(az)® + (azo)(3)(T21' t)) - (a21)(3)(T21, v® — (azl)(s)V(S)
Definition of v® :- v® = gﬂ 501
21
It follows
2 dv® 2

~(@)PE®) + @) = (4)®) £ 2= < = ((@)P (V)" + (6)PV® — (a,0)®)

502

From which one obtains

GY, _
(@) For0 < (v)® = ﬁ <(v)® < (1)@

P+ @y @@ (DD -0 @) ]
140) @[ @D (DD -00®) ]

it follows (v)® < v®(t) < (v))®

In the same manner , we get 503

T+ @y P~ @DP(EDD-2®) ]
1+ ®e[f@DP(EDD-T2) ]

Definition of (¥,)® :-

From which we deduce (vy)® < v®(t) < ()@

0
() If 0< ()P < ()® = % < (1,)® we find like in the previous case,

3) _ 0D®-@®
O = @

vO() >

~A~(3) T -)®
' (C) T )@ -7®

v® () <

504

W)+ By @el~ @D (DP-02)P) ]
140 @~ @2DP (DB -2 3)) ]

T +O® @y~ @D (TDO-2®) ]
14O @~ @2DP(EDE-T2)3)) ]

v)® < < V() <

< @)®

0
© 1F0<@)® < @)® < () =2, we obtain 505
21

@O+ @@l @D (@D -2®)¢]
11O B2 (D -2 D)) <]

And so with the notation of the first part of condition (c) , we have

Definition of v®(t) :-

m)® < V() < m)®, |vO () = 25
21

)@ < v (@) < < ()®
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In a completely analogous way, we obtain
Definition of u®(t) :-
) < u® () < @)@, |u®©) =28
Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.
Particular case :
If (ay0)® = (ay)®, then (6,)® = (6,)® and in this case (v;)® = (#,)® if in addition (v,)® = (v;)®
then v (t) = (v,)® and as a consequence G,, () = (V) G, (t)
Analogously if (byy)® = (byy)®, then (7,)® = (1,)® and then
(u)® = (@;)@if in addition (1)® = (u)® then T, (t) = (uy)® T, (t) This is an important consequence
of the relation between (v;)® and (#,)®

506
: From GLOBAL EQUATIONS we obtain 507

dv@®
.

(az)® — ((a’24)(4) — (az5)® + (a24)® (Tys, t)) = (az5)® (Tps, VP — (ap5) v ®

Definition of v - [y = 2 508
25

It follows

2
~(@)PE®)" + (@) = (a,)@) <
From which one obtains

dv@®

=- ((azs)(4)(v(4))2 + (o) v — (a24)(4))

Definition of (¥,)®, (v))® :-

G, _
(d) For0 < |(vp)® =£ < ()@ < ()W

3

(Vl)(4)+(C)(4) (-Vz)(‘l-)e [_(a25)(4)((1’1)(4)—(1/0)(4)) t]
440 We @2 (G DD-00)®) ]

_ vW-@e)®
— v®-p®

’ (C)(4)

v® () >

it follows (v))® < v®(t) < (v))@

In the same manner , we get 509

(71)(4) +(E)(4) (72)(4)8 [*(azs )(4)((71)(4)*(V2)(4)) t]
14O ®e @2 (@DD-GD) ]

_ @W-(e®
— wW-p®

v (@) < @

From which we deduce (vy)® <v®(t) < ()@

0
() If 0< (V)W < (v)® = % < (7)™ we find like in the previous case, 510
25

W+ P () @e [a25)® (0®-02®) ]

< v®) <
140 @e @29 (0 D®-02)®) ] v =

()™ <

FDO+OD @)@l @2V (D -F2D) ]

< (v.)@®
1+ We["@29)®(TD®-®) ] =)

511
512

0
(M If 0< @)® < @)@ <|(w)® =Z , we obtain
25

D+ D (@) De [—(“25)(4)((71)(4)—(72)(4)) ]

< 4)
1O @ el~@2) P (DB -T2®) ] < (o)

)W < V9@ <

And so with the notation of the first part of condition (c) , we have
Definition of v®(t) :-
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Goa(t)
(my)® < v(®) < )@, | v () = 2

In a completely analogous way, we obtain
Definition of u™®(¢t) :-

)@ < uD(©) < )@, |u®(@) = 2
25

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.
Particular case :

If (az)® = (ay5)@, then (6))™® = (6,)™® and in this case (v;)® = (¥,)@ if in addition (vy)® = (v;)®

then v () = (v,)® and as a consequence G, (t) = (vo) WGy (t) this also defines (vy)® for the special 513
case .
Analogously if (by,)® = (bys)®, then (t,)® = (,)™® and then
(u)® = (w,)@if in addition (1)@ = (u)™® then Ty, (t) = (uy)®T,s () This is an important consequence
of the relation between (v;)™ and (v,)®, and definition of (uy)®.
514
From GLOBAL EQUATIONS we obtain 515
dv(® / / " "
:u = (azs)(s) - ((azg)(s) - (a29)(5) + (azg)(s)(ng, t)) - (a29)(5)(T29' v — (‘129)(5)1/(5)
Definition of v® :- v® = 28
- G29
It follows
_ ) (1)) )y (5) _ ®)) <« ® o _ ) (1)) () (5) _ )
(@20) P (V@) + () ~ (aze)® ) < == < = ((a2) P (v®)” + (0)OvE — (a5)
From which one obtains
Definition of (¥,)®, (vy)® :-
G _
(@) For0<|(v)® = ﬁ < (v)® < @)®
—a29) (1)) —w)®
vO(t) 2 DO +HOO P 2PV -0 ©© = v)®-®
h 54(0)®e @290 DO-00®) ] ' v)®-()®
it follows (v)® < v®(t) < (v))®
In the same manner , we get 516
. SN G YN PN ) —
VO (1) < TO+OO @)@l @20V (@D -e®) ] ©)® = TO-t0®
- 54(0)®)e[@2O (DO -T2®) ] : v)O-7)®
From which we deduce (vy)® < v®(t) < (¥5)®
517

0
(h) If 0< (v)® < (v)® = % < (#,)® we find like in the previous case,
29

WO+ O () O~ @2 (D=2 ]
1408 e|~@29 (DO -2 ) ¢]

v)® < < vO() <
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T+ (7y)®e @2 (O -2) ) ]

< (v.)®)
1+(O®e [T @2P(EDO-2®)e] @)
. 0 . 518
(i) 1fFo<)® <@)® <|(v))® =(% , We obtain
29

T+ wy)Oe [—(a29)(5)((V1)(5)—(172)(5)) t]

v)® < v < < (v)®

1+(@(5)e[—(a29)(5)((71)(5)—(172)(5)) t] 519

And so with the notation of the first part of condition (c) , we have
Definition of v (t) :-

(my)® < vO@) < m)D®, [vO() = Gog(t)
Ga9(t)

In a completely analogous way, we obtain
Definition of u®(¢t) :-

1)® < u® @) < w)®, |u® () = 2L
T29()

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.
Particular case :

If (a39)® = (ay9)®, then (6,)® = (6,)® and in this case (v;)® = (#,)® if in addition (v,)® = (v5)®
then v (t) = (v,)® and as a consequence G,g(t) = (v4)® Gy (t) this also defines (v,)® for the special
case .

Analogously if (byg)® = (bye)®, then (t,)® = (1,)® and then
(u)® = (@;)®if in addition (uy)® = (u)® then Tog(t) = (u)®T,e (¢) This is an important consequence
of the relation between (v;)® and (v,)®, and definition of (u,)®.

520
we obtain 521

dv(® / / " "
— = (a3)® - ((a32)(6) — (az3)® + (a3)® (T3, t)) — (a33) @ (T35, v — (az3)Ov®

Definition of v(® :- y©® — G2
G33

It follows

2 dv(©
- ((a33)(6)(v(6)) + (o) Ov® — (a32)(6)) <=

s - ((a33)(6)(v(6))2 + (0)Ov® — (a32)(6))

From which one obtains

Definition of (#,)®, (v)® :-

. 3 _
() For0<|(w)® = f < (v)® < (1)@

w

W) O+(0) O () ©e |~ @33) (DO -0 @) ]
1+(C)(6)e [—(a 33)(6)((V 1)(6)_(1/0)(6)) t]

_ v®O-®
)@ -()®

vO(t) > Clo®

it follows (v5)® < v®(t) < (v;)©®
In the same manner , we get 522
523
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TDO+()O (77)© |~ @3) O (TDO-T®) ]
14+(6)©)e [-@33)O (@O - ®) ¢

_ @®-p®

6 ~(6)
vi(t) < (O T w9 ©-)®

From which we deduce (v,)©® < v®(t) < (#,)©

0
K) If 0<(v)® < (v)® = % < ()© we find like in the previous case, 524
33
—@33)O (v O =)
)© < DO OOy @e[ @ OO0 ] YO <
YT h@® e ®en®-02®)] T -
, —(a33)O (T O =)
TDO OO @)@l @3 (DO -T2 @) ] < @)@
1+@®@e[@O(ED@-®) ] M
6) < (5.1(6) 6) _ % . 525
M If o< )™ < @)™ <|(vy) =20 | we obtain
3
= NE) 4 ()6) (371 (6) | ~(@33) O (T DO - ) ]
6) < (6 (4) < TVHOP (@) Ve < )
O™ < VB < 140 © @3 (DO -2®) ] < (o)
And so with the notation of the first part of condition (c) , we have
Definition of v©(t) :-
©) (6) (6) 6) () = 9328
(M) < v(t) < (m)™, | vi(D) = Gas (O
In a completely analogous way, we obtain
Definition of u®©(¢t) :-
6) O] 6) ) (4 — T2
(1)@ < u®(®) < ()®, |u® @) =2
T33(t)
Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem.
Particular case :
If (a3,)© = (a33)®, then (6,)© = (6,)® and in this case (v;)© = (#,)©@ if in addition (v,)©® = (v;)©®
then v®(t) = (v,)© and as a consequence Gs, (t) = (v,)© G35 (t) this also defines (v,)® for the special
case .
Analogously if (b3,)® = (b33)®,then (1,)© = (1,)© and then
(u)® = (@) @if in addition (uy)® = (u)® then Ts, (t) = (up) @ Ts3 () This is an important consequence
of the relation between (v;)® and (v;)®, and definition of (u,)®.
526
Behavior of the solutions 527

_If we denote and define
Definition of (0,)7, (6,)?, (1)), (1) :
P (067, (06,)7, ()P, (1,)? four constants satisfying

—(02)7 < —(a36)? + (a37)? = (a36) 7 (T3, ) + (a37) 7 (Ty7,£) < —(07)?

—(1)7 < —(b3e)” + (b37)7 — (b36) 7 ((Ga), ) — (b37) P ((G39),t) < —(7)
Definition of (v;)™, (v,)?, (u)?, (uy)?, v, u : 528
@ By (v)?>0,w)" <0 and respectively (u;)? >0, (u,)” <0 the roots of  the equations
(a37)(7)(v(7))2 +(0) PV — (a36)” = 0
and (b5)?uD)’ + (1) Pu? = (bag)? = 0 and

529
Definition of (¥,)7,, (1)@, (11,)7, (i1,) ™ : 530.

By (7)™ >0, (#,)7 < 0 and respectively (i) > 0, (i1,)” < 0 the
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roots of the equations (az; )™ (v®)” + (3,)Pv® — (az6)? = 0
and (b)) (u™)" + (1) Pu? = (b)) = 0
Definition of (m,)? , (M), (1)?, ()@, (vo)? :-

(r) 1f we define (m)™, (m)™, (u)?®, (1) by
(mz)m = (Vo)m: (m1)(7) = (V1)(7)' if (Vo)m < (V1)(7)
(m)? = @)D () = ), if () < o) < )

and |(vy)? = @

(mz)m = (Vl)(7)' (ml)(7) = (Vo)m' if (171)(7) < (Vo)m
and analogously 531
(Hz)m = (uo)m: (H1)(7) = (u1)(7)' if (uo)m < (u1)(7)

W)” = W)?, () = @7, if w)? < W) < @)?,
and|(up)? = :3—6

()7 = @), ()™ = (ug)?,if (@)™ < (up)? where (u)?, (@)
are defined by 59 and 67 respectively

Then the solution of GLOBAL EQUATIONS satisfies the inequalities 532
G306€((51)(7)_(p36)(7))t S G3e(t) < G3?6€(51)(7)t

where (p,)” is defined

D (2 )T @
W e (D=0 7)t < G, () <- )(7) GO, et 533
( 534
(a38) 763 (QISENG! PING) PPING)
(ml)m((sl)m—(ps;;(”—(Sz)m) e(E0T e Tt — g ] +Gle Y < Gy (0) =
(a38) 65 s D¢ —(ana) Dt 0 —(ana) Dt
D (DD (o) [eGDt — p=(a38)7t] 4 GO e(a38)"r)
TO eVt < T Lo (£) < T306e((R1)(7)+(r35)(7))t 535
oo e @7 < Ty (6) < =y T (00200 D)t 536
(b33) T (R )(7)t o —(hse) Dt 0 ,—(bsg) Dt 537
(ul)(7)((Rl)(7)_(b'38)(7)) [e ! e 38 ] + T38€ 38 = T38 (t) =<
(a39) )T ROD 4re) D) o —(R) Dt 0 —(R)Dt
PRI [e(( DV+@36) )t _ o—(R2) ]_|_ T, e~ (R2)
Definition of (5))7, (5,)7, (R)?, (R2)<7>:- 538
Where (5,)7 = (a36) 7 (my) ™ — (az6)”
(52)(7) = (‘138)(7) - (P38)(7) ) 539
(R1)(7) = ,(b36)(7) (#2)(7) - (b36)(7)
(Rz)m = (b38)(7) - (7”38)(7)
From CONCATENATED GLOBAL EQUATIONS we obtain 540

dv( )

= (az)” — (((136)(7) — (@)D + (ase) P (Tsy, t))
(az;) P (T37, VD — (ag,) v
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Definition of v :- v = G
G37
It follows

2 dv
~(@N? ) + (@™ = (a30)?) < - <

2
- ((a37)(7)(1’(7)) + (a) v — (a36)(7))
From which one obtains
Definition of (#,)7, (v)? :-
et _
(m) For 0 <|(vy)? = ﬁ < ) < @)D

W) D+ D gy Del~ @ (D=0 P) ]
1+0)Del~@NP(0DD-00 )]

_ D=

)
|7 = @)D

v () >

it follows (vy)? < v (t) < (v)?
In the same manner , we get 541
. —@s D (D= @
TDD+OD @Ml @3 (EDN-2) ] O
O D@ ED- D) ] /
From which we deduce (v)™ < v (t) < ()7

)P -)7)

v (t) <

G3 _ o .
(n) If 0< ()P < (W) =5 < (1) we find like in the previous case, 542
37
DD+ D vy Del~ @V (DD -w2)7) ]
1+(c)(7)g[—(a37)(7)((v1)(7)_(Vz)(7)) ]
DD+ D @) De [—(a37)(7)((71)(7)_@2)(7)) t]
1+ (O[T @DD(EDD-2)D) ]

()7 < < Vv <

< @)?

g . 543
© If 0< W)? < @)? <|(v)? =28| | we obtain
1 1 0 20
3

~

T+ D@y Del~ @ (TN -2)P) ]

D) < yD(p) <
)™ = v = 140D el~@D D (DD -2 ) ]

< ()

And so with the notation of the first part of condition (c) , we have
Definition of v (¢t) :-

m)? < vO(©) < )P, [vO (D) =225
G37(t)

In a completely analogous way, we obtain
Definition of u™(¢t) :-

(llz)m < u(7)(t) < (M1)(7), u(7)(t) _T36®)
T37(t)

Now, using this result and replacing it in CONCATENATED GLOBAL EQUATIONS we get easily the result
stated in the theorem.

Particular case :

If (a36)” = (a3,)?, then (6,) = (6,)7 and in this case (v,)? = [#)? if in addition (v))? = (v;)?
then v (t) = (v,)™ and as a consequence G4 (t) = (v4) 7’ G3, (t) this also defines (v,)? for the special
case .

Analogously if (b3s)” = (b3,) 7, then (1,)? = (1,)? and then

(u)? = (@) Pif in addition (1) = (uy)? then Ty4(t) = (uy) Ty, (t) This is an important consequence
of the relation between (v;)™ and (¥,), and definition of (u,)".

(b1) VT3 — [(b:14)(1) - (b:1:4)(1)(G) 1Ty =0 544
(bys) Ty — [(b15)P = (1) P (@ 1Tys = 0 _ 545
has a unique positive solution , which is an equilibrium solution for the system 546
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(a16)?@Gy7 — [(‘116)(2) + (a16)(2)(T17)]G16 =0 547
(a17) @Gy — [(‘117)(2) + (‘117)(2)(T17)]G17 =0 548
(a18) PGy — [(a19)@ + (a1g) P (T17)]|Gig = 0 549
(b16)PTy; — [(b}a)(z) - (b,1,6)(2)(G19) 1Tie =0 550
(b17) DTy — [(b,17)(2) - (b,1,7)(2)(G19) 1Ti;, =0 551
(b18)(2)T17 - [(1_71_8)(2) - (_bw)(z)(_Gw_) ]T18 Z_Q ) ) 552
has a unique positive solution , which is an equilibrium solution for 553
(a20)®Gyy — [(azo)(3) + (azo)(g)(Tm)]Gzo =0 554
(a21)®Gyy — [(a21)(3) + (a21)(3)(T21)]G21 =0 555
(az)®Gyy — [(azz)(3) + (azz)(g)(Tm)]Gzz =0 556
(bzo)(S)Tm - [(bgo)(S) - (bg,o)(g)(623) ]Tzo =0 557
(b21)(3)T20 - [(bgl)(3) - (b%1)(3)(G23) 1T, =0 558
(bzz)(S)Tm - [(1_72_2)(3) - (bzz)(B)(Gza_) 1T, = 0 ) ) 559
has a unique positive solution , which is an equilibrium solution 560
(a24)(4)025 - [(a24)(4) + (a24)(4) (Tzs)]G24 =0 561
(az5) PG,y — [(a25)™ + (az5) @ (Tz5)]Gas = 0 563
(a26)®Gos — [(a26)™ + (a26) ™ (T25)]Go6 = 0 564
(b24) P Tas = [(h24)® = (02)?((G27)) 1Tz = 0 565
(b25) DTy = [(bps)™ = (bp5)® ((G27)) 1Tos = 0 566
(ba6) P Tys — [(b26)™® — (b26) P ((G27)) 1Ty = 0 567
has a unique positive solution , which is an equilibrium solution for the system 568
(azs)(s)Gm - [(aés)(s) + (agg)(s)(ng)]ng =0 569
(029)(5)628 - [(a,29)(5) + (a;9)(5)(T29)]G29 =0 570
(a30)®Gag — [(@30)® + (a30)® (T39) ]G30 = 0 571
(bzs)(s)Tn - [(bés)(s) - (bgs)(s)(G31) 1T, = 0 572
(b29)(5)T28 - [(bé9)(5) - (blzl9)(5)(G31) 1T =0 573
(b30)(5)T29 - [(béo)(s) - (bgo)(s)(Gm) T30 = 0 574
has a unique positive solution , which is an equilibrium solution for the system 575
(a3)©Ga3 — [(@32)® + (a32)® (T33)]Gsp = 0 576
(a33)©Gsy — [(@33)® + (a33)® (T33)]Ga3 = 0 577
(a3)©Gs3 — [(@34)® + (@34) @ (T33)]G3q = 0 578
(b32) Tz — [(b32)® — (b33)®(G35) 1Ts, = 0O 579
(b33) Tz — [(b33)® — (b33)®(G35) 1T33 = 0 580
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(b34)©T33 = [(b34)© — (b34) @ (G35) 1T34 = 0 584

has a unique positive solution , which is an equilibrium solution for the system 582

(a36) 7 Gz7 — [(a36)7 + (a36) 7 (T37)]G36 = 0 583

(a37) P Gse — [(a37)7 + (a37) P (T3,)]G3; = 0 584

(a3g) Gy — [(a3e) ™ + (a3) P (T37)]Gzg = 0 585
586

(b36)(7)T37 - [(b§6)(7) - (b§6)(7) (G39)]T56 = 0 587

(b37)(7)T36 - [(b§7)(7) - (b§7)(7) (G39) 1T57 = 0 588

(b3) "' Ts7 — [(b3s) " = (b35) " (G39) I T35 = 0 589

has a unique positive solution , which is an equilibrium solution for the system 560

(@) Indeed the first two equations have a nontrivial solution G, Gs; if

F(,T39) = . ) ., , B

(age)m (a37)(7)”— (a36) 7 (a37) " + (a36) 7 (a37) 7 (T37) + (a37) 7 (a36) 7 (T37) +

(a36) ™ (T37)(a37) P (T3;) = 0

Definition and unigueness of T;; :- 561

After hypothesis f(0) <0, f(e0) >0 and the functions (a;')(7)(T37) being increasing, it follows that there
exists a unique T3, for which f(T3;) = 0. With this value , we obtain from the three first equations
Gon = (a36) 7637 (a38) 7637
367 [(a3) D +aze) D (157)] [(a36)7) +(a3)? (T47)]
(e) By the same argument, the equations( SOLUTIONAL) admit solutions Gsg, G35 if

Gig =

<P(Cf39) = (,%),36)(7) (bé7)(7) N (b36)(? (b37)(7) - ., ,

[(B36) 7 (b37) 7 (G39) + (b37) 7 (b36) 7 (G39) ]+ (b36) 7 (G39) (b37) 7 (G39) = 0

Where in (G39) (G4, G37, Gsg), Gs4, G3g must be replaced by their values from 96. It is easy to see that ¢ isa 562
decreasing function in G5, taking into account the hypothesis ¢(0) > 0, ¢(c0) < 0 it follows that there exists a
unique G3, such that p(G*) =0

Finally we obtain the unique solution OF THE SYSTEM

G37 givenby ¢((Gs9)*) = 0, T3, givenby f(T37) = 0 and

G = (a36)763, G = (a38) 763y
36 7 [(a30)P+@3) D (137)] 7 38 T [(a38) D +(aze)D(137)]
T — (b36) 137 Ti — (b38) 137 563
36 7 [(h3e) D =b30) D ((G39)0] T 38 T [(b3g) D= (b3g) D ((639)7)]
Definition_and uniqueness of T;; :- 564

After hypothesis £(0) < 0, f(o0) >0 and the functions (a; )(T,;) being increasing, it follows that there
exists a unique Ty; for which f(T5;) = 0. With this value , we obtain from the three first equations
(a20)®621 (a22)® 61

b0 = [P @] 02 T @ O]
565

Definition _and unigueness of Ty; :- 566
After hypothesis £(0) < 0, f(e0) > 0 and the functions (a; )* (T,s) being increasing, it follows that there
exists a unique T,z for which f(T,:) = 0. With this value , we obtain from the three first equations
G = (a24)W6ys G, = (a26)® G5

T @B +@0®(5)] 1 T T [(aze)®+(aze) @ (155)]
Definition _and uniqueness of Ty :- 567
After hypothesis £(0) < 0, f(e0) > 0 and the functions (a; )®(T,) being increasing, it follows that there
exists a unique T,y for which f(T59) = 0. With this value , we obtain from the three first equations
G = (a28)®) 69 G = (a30)®) 629

27 [aze)@Haz)® (1)l 1 0T [(a30)® +(a3)® (1)
Definition _and uniqueness of T35 :- 568

After hypothesis f(0) < 0, f(e0) > 0 and the functions (a; )®(T;3) being increasing, it follows that there
exists a unique Ty; for which f(T55) = 0. With this value , we obtain from the three first equations
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G = (a32)®G33 Gy = (a34)® 633
27 [@)©+az)© ()] 1 T [a30© +(a30)©(153)]
(f) By the same argument, the equations 92,93 admit solutions Gy3, G4 if 569

p(G) = (bi3)(1)(bi4)(1) - (b13)(1)(b14)(l) -

[(b13)P (1) P (G) + (b12) P (b13) P (6)]+(b13) P (6) (1) P (G) = 0

Where in G(Gy3,Gy4,Gy5), Gi3, Gy must be replaced by their values from 96. It is easy to see that ¢ is a
decreasing function in G, taking into account the hypothesis ¢(0) > 0, ¢(o0) < 0 it follows that there exists a
unique Gy, such that 9 (G*) = 0

(g) By the same argument, the equations 92,93 admit solutions G4, G, if 570

¢(Gyq) = (b,16)(2)(b,17)(2) - (b16)(2)(b17)(2) -

[(B16)® (b17)P (Gro) + (b17)P (b16) P (G19)]+(b16) P (Gr9) (b17) P (G19) = 0

Where in (Gy9)(Gi4,Gy7,G1g), Gig, Gig Must be replaced by their values from 96. It is easy to see that ¢ isa 571
decreasing function in G, taking into account the hypothesis ¢@(0) > 0, ¢ (o) < 0 it follows that there exists a
unique Gj, such that @((G;9)*) =0

(a) By the same argument, the concatenated equations admit solutions G, G, if 572

@(Gy3) = (béo)(3)(bél)(3) - (bzo)(3)(b21)(3) -

[(620)® (521)®(G3) + (021)® (b20)® (G23) ] +(b20)® (G23) (b31) P (G23) = 0

Where in G,3(Gyg, Ga1,Gy2), Gog, Go; must be replaced by their values from 96. It is easy to see that ¢ is a
decreasing function in G,; taking into account the hypothesis ¢(0) > 0, ¢(0) < 0 it follows that there exists a
unique G5, such that ¢ ((G,3)*) =0

(b) By the same argument, the equations of modules admit solutions G, G5 if 574

573

9(Gy7) = (b2) P (bys)™® = (b )W (bps)® — )

[(b24)(4)(b25)(4)(G27) + (bzs)(4)(b24)(4)(G27)]+(b24)(4)(627)(b25)(4)(GZ7) =0

Where in (G27) (G4, Gos, Gag), Gog, Gog Must be replaced by their values from 96. It is easy to see that ¢ is a
decreasing function in G,5 taking into account the hypothesis ¢(0) > 0, ¢(c0) < 0 it follows that there exists a
unique G5 such that ¢ ((G,;)*) =0

(c) By the same argument, the equations (modules) admit solutions G,g, Gy9 if 575

<P(Cf31) = (”blzzz)(s)(blze)(s) N (bzs)(i) (b29)(5) - ., ,
[(B2) (b39) ) (G31) + (b29)® (b36) ) (G31)]+(b2g) ™ (G31) (b29) P (G31) = 0
Where in (G31)(Gag, Gog, G3g), Gog, G3o Must be replaced by their values from 96. It is easy to see that ¢ is a
decreasing function in G,4 taking into account the hypothesis ¢(0) > 0, ¢(c0) < 0 it follows that there exists a
unique G54 such that ¢((G3;)*) =0
(d) By the same argument, the equations (modules) admit solutions Gs,, G35 if 578
579
(P((fas) = (f?éz)@ (bé3)(6) N (b32)(,6,) (b33)(6) - . ., 580
[(B32)© (b33) (@ (G35) + (b33) ) (b32)® (G35)|+(b32) @ (G35) (b33) @ (G35) = 0 581
Where in (G35)(Gsy, Gs3, G34), G35, G34 must be replaced by their values It is easy to see that ¢ is a decreasing
function in G5 taking into account the hypothesis @(0) > 0, () < 0 it follows that there exists a unique G33
such that (G*) =0
Finally we obtain the unique solution of 89 to 94 582
Gy givenby @ (G*) = 0, T}, given by f(T}3) = 0 and
G = — (a13)(’1’)0f4 G = — (a15)(i)Gf4
B 7 @) D+@p®(riy)] 0 T T [@is)D+ais) D(11,)]
T — (b13)VT1y T — (b15) D11y
BT 0D-006E0] T T T [015)D-0{M 6]
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution 583
G;; givenby @((G19)*) = 0, Ty given by f(T;5) = 0 and 584
G = — (316)(?017 Gt = — (318)(3)(317 585
167 [@10@+@10)@(117)] 18 7 [a15)@+@1)@(Ti))]
T — (b16)@T1y TH = (b18)PTY, 586
167 [010@-010@G19)0] BT [01)P-01)P (G19)7)]

Obviously, these values represent an equilibrium solution 587
Finally we obtain the unique solution 588
Gy, givenby @((G,3)*) =0, Ty, given by f(T;;) = 0 and
Gi = — (azo)(i)f?zﬁ Gi = — (azz)(i)Gfl
20 T a0 P +@z)®(31)] T2 T [(a) P +az)® (151)]
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T — (b20)T3; TE — (b22) 15
20 T [030)® =300 G230] T 2T ()P -03)P (G237)]
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution 589
G5 given by ¢(G,;) = 0, T, givenby f(T,s) = 0 and
Gt = — (az4)(‘i)(;z*s Gi = — (aze)(ﬁ)ﬁfs
2T (@) ®+@)®(T55)] ' 20 T [(aze)®+aze)®(T55)]
Tf, = — (b24?’(4)Tz*5 TE — — (bze)”(‘*)Tz*s 590
[(2)P=(3)PD(G27)0] " 28 T [(h26) P =(b26) P (G27)7)]
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution 591
G3o givenby ¢((G31)7) = 0, T5 givenby f(T55) = 0 and
G = — (azs)(?(;z*g G = — (a30)(i)659
27 [az)®+@z)P(159)] T 30 T [(a30)®+(az0) O (15)]
Ty = — (bzs)”(S)Tz’b Tr — (b3o)”(5)T2*9 592
(02O -02)® (@I 730 T [30) S ~b30)D(631)")]
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution 593
G35 givenby ¢((G35)*) = 0, T35 given by f(T53) = 0 and
Gl = — 0132)(6,',)63*3 Gi = — (a34)(i)5§3
32 7 (@3 @+@3)®(133)] T 3 T [(a30) @ +(a3)©(153)]
TS = — (b3z?’(6)73*3 Té — — (b34)”(6)T3*3 594
[(b32)©—-b3)©(G35))] 3 T [(031)© (b3 @ ((635))]
Obviously, these values represent an equilibrium solution
ASYMPTOTIC STABILITY ANALYSIS 595

Theorem 4: If the conditions of the previous theorem are satisfied and if the functions (a; )*’ and (b, )™
Belong to CW( R,) then the above equilibrium point is asymptotically stable.

Proof:_Denote

Definition of G;, T; :-

G=G+G | T,=T +T, 596

%(Tﬁ) = ()@ %( G")=sy
Then taking into account equations (global) and neglecting the terms of power 2, we obtain 597
dg% = —((@13)® + 013) V) Gz + (a13) PGy — (913) VG613 Tys 598
dg% = ~((@)® + 01) V) G4 + (21) PGz — (q1) VG4 Ty 599
d(d;tls = —((a’15)(1) + (P15)(1))G15 +(a15) PGy — (q15) VG5 Ty 600
T8 = —(b1)® = () V) Tz + (b)) VT + Z45(sa0)() T3 G ) 601
= (1) = (1) O) Ty + (br) VTys + 243 (50000) T2 G ) 602
dlr_tls = —((b15)® = (i) V) Ty5 + (bys) DTy + Y23 (5(15)0)T1*5«;’]‘) 603

If the conditions of the previous theorem are satisfied and if the functions (a;)® and (b; )® Belong to 604
C@(R,) then the above equilibrium point is asymptotically stable

Denote o
Definition of G;, T; :-

G = S; + G; T =T+ jﬂ(z) 28673
) . a(b; .

T (1) = @)® L T (G ) =5

taking into account equations (global)and neglecting the terms of power 2, we obtain 608
dG ' 1

d_:(, _ _((a16)(2) + (p16)(2))G16 + (a16)(2)(G17 _ (qlé)(Z)G16T17 609
dG ' 1

d_t17 _ _((a17)(2) + (p17)(2))(G17 + (a17)(2)616 _ (q17)(2)G17']I'17 610
dG ' 1

d_tlg _ _((a18)(2) + (pls)(Z))GIB + ((118)(2)@17 _ (q18)(2)G18']I'17 611
dT ' Y

cl_t16 = —((16)® = (16) @) T16 + (b16) DTy + X216 (s06)() Tis G ) o
dT : t

TN = —((011)? = () P)Ty7 + (1) DTy + 2}216(5(17)0)17@) i
dT ' Y

Tw = —((h15)? = (rg) @) Tyg + (b1g) DTy, + 2}216(5(13)0)18@) o

If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b; )® Belong to 615
C®(R,) then the above equilibrium point is asymptotically stabl
_Denote

Definition of G;, T; :-
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G—G + G; T-=T*+’]]‘

20? (11) = (009, L2 ((G6)) = 616
Then taking into account equations (global) and neglectlng the terms of power 2, we obtain 617
d:% = —((a20)® + (020)®) G20 + (a20) PGy — (G20) PG50 Ty 618
df% = —((a20)® + @21)®) Gy + (a21) PGy — (421)P631 Ty 619
df% = —((a22)® + 022)®) Gy + (a22) PGy — (422) P63, T 6120
d:ir% = _((béo)(S) - (Tzo)(g))Tzo + (bzo)(S)Tm + Zfizo(s(zo)(j)Tz*o Gj) 621
% = _((b,21)(3) - (T21)(3))T21 + (b21)(3)T20 + Zfizo(5(21)(j)T2*1 Gj) 622
dlr% = _((béz)(S) - (Tzz)(g))Tzz + (bzz)(S)Tm + Zfizo(s(zz)(j)Tz*z Gj) 623

If the conditions of the previous theorem are satisfied and if the functions (a; )™ and (b; )®» Belong to 624
C®(R,) then the above equilibrium point is asymptotically stabl

_Denote
Definition of G;, T; :- 625
G=G+G T,=T/+T,
] S ab;
2 (13) = (g)® 2202 ((Gr) ) = 5,
Then taklng into account equatlons (global) and neglecting the terms of power 2, we obtain 626
G , )
724 = —((a24)(4) + (P24)(4))G24 + (a24) M G5 — (q2) PG54 Tos 627
G , \
725 = —((az5)™ + (25)®) G5 + (a25) PGy — (425) G35 Ts 628
G : )
726 = —((a26)™® + (P26) @) Gz6 + (a26) PG5 — (426) ¥ G36Ts 629
dT : .
724 = _((b24)(4) - (7’24)(4))Tz4 + (by)PTy5 + 212224(5(24)(]')TZ4 Gj) 630
dT , \
dfs = —((b3)® = (r35) @) Tzs + (bp5) DTy + T2, (s25)) T55 Gy ) 631
dT
—%= _((bzs)(4) - (T26)(4))T26 + (b2e) P Tys + Z} 24(5(26)(])T26G ) 632
633
If the conditions of the previous theorem are satisfied and if the functions (a;)® and (b; )® Belong to
C®(R,) then the above equilibrium point is asymptotically stable
Denote
Definition of G;, T; :- 634
Gi=Gi*+(Gi ,Tl_T*+T
3(az)® . a(b )
o (1) = (@)® |, 222 (Ga)) =5
Then taking into account equatlons (global) and neglecting the terms of power 2, we obtain 635
dG ! *
—2= ~((a26)® + (p26) ) Gg + (a26) ™G9 — (426) P G35 T2 636
dG ! *
—2= ~((a20)® + (020)®) Gz9 + (a20) PG5 — (429) G5 T 637
dG ! *
- = ~((30)® + (P30)) G0 + (a30) P G9 — (430) P G5 Too 638
dT : )
—2 = —((b26)® — (rag)P) T + (b2g) P Tog + X355 (s26)() 56 Gy ) 639
dT ! *
=2 = —((b29)® — (129) ) Tog + (b29) T + X205 (520) () T2 Gy) 640
dT , )
730 = —((b30)® = (r30) ) T30 + (b30) S Tpq + 213228(5(30)0)7130@]) 641

If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b; )®® Belong to 642
C®(R,) then the above equilibrium point is asymptotically stable

Denote
Definition of G;, T; :- 643

G=G+G  T,=T +T,

F] G ) ab;

(a33) (T33) = (q3)© | ( ) ((535) ) =5y

Then taklng into account equatlons(global) and neglecting the terms of power 2, we obtain 644
dG / .
732 = —((@3)® + 03)®) Gz + (a32) @ G33 — (432) @G5, T3 645
dG / .
733 = —((a33)® + (33)®) Gz + (a33) @Gz, — (q33) @G53 T3 646
dG ' "
734 = —((@3)® + 03)®) G4 + (a3) @ G33 — (431) @634 T3 647
dT ’ *
732 = —((032)® = (152) @) T3, + (b32) T35 + L2 (56200 52 G) 648
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aT ’ *
733 = —((b33)© = (133) @) T35 + (b33) O3, + X2 (5630 53 G;) 649
aT ’ *
734 = —((03)© = (3) @) T34 + (b3) O T35 + X2 (56001 546 ) 650
Obviously, these values represent an equilibrium solution of 79,20,36,22,23, 651
If the conditions of the previous theorem are satisfied and if the functions (a; )’ and (b, )’ Belong to
CP(R,) then the above equilibrium point is asymptotically stable.
Proof: Denote
Definition of G;, T; :- 652
GLZG:‘l'(GIl ,7'127'1*‘*"]]‘1 653
ICETD LI a0 )™ o
%(Tw) = (g7 , T( (G39) ) = Sy
Then taking into account equations(SOLUTIONAL) and neglecting the terms of power 2, we obtain 654
655
dG : .
736 = —((a36)? + (036) ) Gz6 + (a36) " G37 — (q36) 7 G36 T3 656
dG : .
737 = —((@3)? + (37)7)G37 + (az7) P Gz — (q37) 7637 T3 657
dG : .
738 = —((a38)? + (38) ) Gzg + (azg) V' G37 — (q36) VG35 T3 658
dT : .
736 = _((b36)(7) - (T36)(7))T36 + (b3e) Ty + 213236(5(36)0)T36(Gj) 659
dT : .
737 = _((b37)(7) - (T37)(7))T37 + (bs))PTy6 + 213236(5(37)0)T37«;'j) 660
dT : .
738 = _((b38)(7) - (T38)(7))T38 + (b3s)(7)T37 + 213236(5(38)0)T38(Gj) 661
2 662

.The characteristic equation of this system is

(DD + 1)@ = Gi)OHDD + (@)@ + (15) ™)

[(((/1)(1) + (a13)® + 13)P) (1) V65 + (@)D (@161 )]

(((/1)(1) + (b13)® — (1) D) sayan T +(b14)(1)5(13),(14)T1*4)

+ (((/1)(1) + (@)™ + 1) V) (q1) V615 + (a13)(1)(q14)(1)6{‘4)

(((/1)(1) + (b13)® = (13) D) sy an s + (b14)(1)5(13),(13)T1*3)

(((/1)(1))2 + (@)™ + (@) + 1) + (1)) (}L)(l))

(WD) + ()@ + Bi1)® = (1) D + (1)) (DD

+ (((/1)(1))2 +((@3)® + (@)™ + (1) + (p1) ™) (}L)(l)) (015) VG5
+(DD + (@1)® + (013)P) ((a15)P (@) V61 + (@1) P (a15) P (q13)V613)

(((/1)(1) + (1) = (1)) saaas) Tia +(b14)(1)5(13),(15)T1*3)} =0
+

(DD + (b1g)® — () PN (P + (@15)® + (15)P)
[(((/1)(2) + (a16)® + (016)?) (q17)PGi; + (a17)(2)(Q16)(2)G;6)]
(((/1)(2) +(b16)® = (16)®)san,anTi7 +(b17)(2)5(16),(17)Tf7)
+ (((/1)(2) +(a17)@ + (017)?) (q16) PGl + (a16)(2)(Q17)(2)GI7)
(((/1)(2) +(b16)® = (16)®)san,ae Ti7 + (b17)(2)5(16),(16)Tf6)
(((/1)(2))2 +((@16)® + (@)@ + (p16)® + (p1)?) (A)(z))
(((/1)(2))2 +((016)? + (b17)® = (1)@ + (117)®) (A)(Z))
+ (((/1)(2))2 +((@16)® + (@)@ + (p16)® + (P1)?) (A)(Z)) (9:18) PGy
+H(DP + (a16)@ + (016)?) ((218)P (@17)P G617 + (a17)P (a18)® (q16) P Gig)
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(((/1)(2) +(b16)® — (116)®)s17) a8 Ti7 +(b17)(2)5(16),(18)Tf6)} =0

+
(P + 12)® = ()P ) (D® + (az2)® + (p22)P)

[(((/1)(3) +(a20)® + (p20)P) (@200 PGz, + (a21)(3)(QZO)(3)GZ*O)]

(((/1)(3) + (byo)® — (7”20)(3))5(21),(21)T2*1 +(b21)(3)5(20),(21)T2*1)

+ (((/1)(3) + (a20)® + 021)9)(920)¥ G5 + (azo)(3)(QZ1)(1)G2*1)

(((/1)(3) + (b0)® — (7'20)(3))5(21),(20)T2*1 + (b21)(3)5(20),(20)T2*0)

(((/1)(3))2 + ( (a20)® + (a20)® + (20)® + (p21)(3)) (/1)(3))

(((/1)(3))2 + ( (b20)® + (b21))® = (r20)® + (7‘21)(3)) (/1)(3))

+ (((/1)(3))2 + ((a20)® + (@200 + (020)® + (21)P) (A)G)) (422)%6Gy,
+((/1)(3) + (aéo)(3) + (pzo)(B)) ((azz)(3)(QZ1)(3)G2*1 + (a21)(3)(azz)(”(%o)(”GZ*O)

(((/1)(3) + (20)® = (120)®) 521,020 T51 +(b21)(3)5(20),(22)T2*0)} =0
+
(DO + (b26)® = (2) ON(DW + (@)@ + (p26)®)

[((DD + @20)® + @200 (425) P65 + (a25) P (0:6) P63 )]
(((/1)(4) + (b,24)(4) - (T24)(4))5(25),(25)T2*5 +(b25)(4)5(24),(25)T2*5)
+ (((/1)(4) + (aés)(4) + (st)(4))(Q24)(4)G2*4 + (a24)(4)(q25)(4)02*5)
(((/1)(4) + (b2)® = (124)®) 525,20y Tos + (bzs)(4)5(24),(24)T2*4)
(W) + (@)™ + (@)@ + @) + P25)®) W®)
(@D + (B2 + B3)® = ()@ + (155)®) (D)
+ (((/1)(4))2 + ( (a’24)(4) + (aés)(4) + (P24)(4) + (st)(4)) (A)G)) (q26)(4)626
+((/1)(4) + (az)® + (P24)(4)) ((026)(4) (G25) P G35 + (a5)® (az6) ™ (CI24)(4)GZ*4)

(((/1)(4) + (b24)® = (124)®)5(25),26) T25 +(b25)(4)5(24),(26)T2*4)} =0
+

(DD + 30)® = (3)P) (DS + (a30)® + 30)®)
[(((/1)(5) + (a26)® + (26)) (429)G39 + (a29)(5)(q28)(5)62*8)]
(((/1)(5) + (b26)® — (126) ) 5(29),29) T3 +(b29)(5)5(28),(29)T2*9)
+ (((/1)(5) + (a20)® + (929)) (426) G35 + (azs)(s)(CIz9)(s)G§9)
(((/1)(5) + (b28)® = (126)®)529) 28y T30 + (b29)(5)5(28),(28)T2*8)
(W) + (@) + (@) + ) + 020)®) D)
(W) + (B + (b30)® = () + (120)®) W)
+ (((/1)(5))2 +((a26)® + (a20)® + (026) + (020)®) (A)(S)) (430)®G3
(DS + (a28)® + (26)) ((a30)®(G20)® G + (a29)® (a30)® (426) P G35)

(((/1)(5) + (b26)® — (126)®)5(29),30) T +(b29)(5)s(28),(30)T2*8)} =0
+

((/1)(6) + (b34)© — (7"34)(6)){((/1)(6) + (a3)® + (P34)(6))
[(((/1)(6) +(a32)®@ + (p32)©) (433)© G35 + (a33) @ (932) @63, )]
(((/1)(6) + (b32)® = (r3)©) 533,33 T3 +(b33)(6)5(32),(33)T3*3)
+ (((/1)(6) +(a33)@ + (p33)©) (@32) @G35 + (az)© (Q33)(6)G3*3)
(((/1)(6) + (b32)®@ = (13) @) s(33),32) T3 + (b33)(6)5(32),(32)T3*2)
((WO) + (@)@ + (@)@ + P2)© + (3)@) D)
((WO) + (B5)® + (b3)® — (3)@ + (135)@) (H®)
+ (((/1)(6))2 +((@32)©@ + (a33)@ + (p32)©@ + (p33)®) (A)(é)) (434)© Gy
H(D@ + (a3)©@ + (032)@) ((a3)©(g33) @G35 + (a33) @ (a34) @ (g32) @ 632)
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(((/1)(6) +(b32) @ = (r3)©) 533,30 T3 +(b33)(6)5(32),(34)T3*2)} =0

+

(DD + (b35)? = (r3) V) (D + (aze)? + (p36)7)
[(((/1)(7) + (a36) ™ + (036)7) (q37) 7 G35 + (az;)? (q36)(7)G§6)]
(((/1)(7) + (b36)? = (136)7)san),an T +(b37)(7)5(36),(37)T3*7)
+ (((/1)(7) + (a37)? + (037)7) (q36) 7 G35 + (a36)(7)(Q37)(7)G3*7)
(((/1)(7) + (b36)? = (136) ) san,ae) T3 + (b37)(7)s(36),(36)T3*6)
(W) + (@) + @)D + 3 + (p3)?) WD)
(DD + (3)? + i) ® = (r3)? + (5)P) D)
+ (((/1)(7))2 + ( (ase)” + (a37)? + (p36)? + (p37)(7)) (/1)(7)) (38)"Gg
+((/1)(7) + (az6)? + (p36)(7)) (((138)(7)((]37)(7)03*7 + (a37)(7)(a38)(7)(Q36)(7)G3*6)
(((/1)(7) + (b36)7 — (r36)(7))5(37),(38)T3*7 +(b37)(7)5(36),(38)T3*6)} =0
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