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ABSTRACT: A state registethat stores the state of the Turing machine, one of finitely many. There is one Sjpec&ihte

with which the state register is initialized. Thesates, writes Turingyeplace the"state of mind" a person performing
computations would ordinarily be in.It is like bank ledger, which has Debits and Credits. Note that in double entry
computation, both debits and credits are entered in to the systemslyniie Bank Ledger and balance is posted. Individual
Debits are equivalent to individual credits. On a geneil
records in all its wide ranging manifestation the Debits and Credits. Thadses conservative. In other words Assets is
equivalent to Liabilities. True, Profit is distributed among overheads and charges, and there shall be another account in the
General ledger that is the account of Profit. This account is credited with the aemumed as commission, exchange, or

di scount of bill s. Now when we write the fAGener al Ledg
model, we are writing the General Theory of all the variables that are incorporated in the modw®l.e8ery variable, we

have an anti variable. This is the dissipation factor. Conservation laws do hold well in computers. They do not break the
conservation laws. Thus energy is not dissipated in to the atmosphere when computation is being perforpesat We re

are suggesting a General Theory Of working of a simple Computer and in further papers, we want to extend this theory to
both nanotechnology and Quantum Computation. Turingds v
promethalen for the development of Quantum Computers. Computers follow conservation laws. This work is one which
formed the primordial concept of diurnal dynamics and hypostasized dynamism of Quantum computers which is the locus o
essence, sense and expressiothefpresent day to day musings and mundane drooling. Verily Turing and Churchill stand
out like connoisseurs, rancouteurs, and cognescenti of eminent persons, who strode like colossus the screen of collectiv
consciousness of people. We dedicate this papehe eve of one hundred years of Turing innovation. Model is based on

Hill and Peterson diagram.

INTRODUCTION
Turing machine i A beckoning begorra (Extensive excerpts from Wikipedia AND PAGES OF Turing,Churchill,and
other noted personalitiesEmphasis ismine)
A Turing machinds a device thamanipulates ymbols on a strip otape according to a table of ruleBespite its
simplicity, a Turing machine can be adaptegitoulate the logicof anycomputeralgorithm, and is particularlyseful in
explainingthe functions of £PUinside a computer.
The "Turing" machine waslescribed byAlan Turingin 1936who called it an "a (automatichachine". The Turing
machine is not intended as a practical computing technology, but rathdrypsthetical deviceepresenting a computing
machine. Turing machindgelp computer scientists understand the limits of mechanical computation.
Turing gave a succinct and candid definition of the experiment in his 1948 essay, "Intelligent Machinery". Referring to his
1936 publicabn, Turing wrote that the Turing machine, here called a Logical Computing Machine, consisted of:
...an infinite memory capacitybtained in the form of an infinite tape marked out into squares, on each of which a symbol
could be printed. At any moment tieds one symbdh the machine; it is called the scanned symbol. The mad@nealter
the scanned symbol and its behavior is in gatermined by that symbol, but the symbols on the tape elsewbereot
affect the behaviour of the machine. However, thige can be moved back and forth through the machine, this being one of
the elementary operations of the machine. Any symbol on the tape may therefore eventually have a(rimiigg$948,
p. 61)
A Turing machine that is able simulate anyother Tumg machine is called aniversal Turing machin@JTM, or simply
auniversal machine). A more mathematically oriented definition with a similar "universal" nature was introdiddedzioy
Church, whose work ocalculusintertwined with Turing's in a formatheory ofcomputatiorknown as the&Churchi Turing
thesis. The thesis states that Turing machiiedeed capture the informal notion of effective method
in logic andmathematics, and provide a precise definition oflgorithmor 'mechanical procedure'.
In computability theory, th€hurchi Turing thesigalso known as th€hurch Turing conjectureChurch's thesi€Church's
conjecture, anduring's thesis) is acombined hypothesiq"thesis") about the nature of functions whose values
areeffectively calculak#; or, in more modern terms, functions whose vaklesalgorithmicallycomputable. In _simple
terms, the Churdhluring thesis states that "everything algorithmicatiynputable is computable byfaur i ng mach i n e
American mathematiciaAlonzo Churchcreatel a method for defining functions called #realculus,
Church, along with mathematici&@tephen Kleenand logician].B. Rossecreated a formal definition of a class of
functions whose valueuld be calculatedby recursion.
All three computational poesseg r e ¢ u r s icalaulus, ahdntree Twing maching were shown to bequivalentd all
three approaches define the same class of functions this has led mathematicians and computer scientists to believe that 1
concept of computability igccurately characterized by these three equivalent processes. Informally the Chiiucing
thesis states that if some method (algoritlexiststo carry out a calculation, then teame calculation can also be carried
out by a Turing machin@s well as by aecursivey definable function, and byafunction).
The ChurchTuring thesis is a statement that characterizes the nature of computation and cannot be formally proven. Even
though the three processes mentioned alppoged to be equivalent the fundamental premideehind the thesisthe
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notion of what it means for a function to be "effectively calculable" (computalide)'a somewhat vague intuitive
one"Thus, the "thesis" remains a hypothesis.

Desultory Bureaucratic burdock or a Driving dromedary?

The Turing machia mathematically models a machine thachanically operates oma tape. On this tape are symbols

which the machine can read and write, one at a time, using a tape head. Opefaliprdé&termined by a finite set of
elementary instructions such as "iatst42, if the symbol seen is 0, write a 1; if the symbol seen is 1, change into state 17; in
state 17, if the symbol seen is 0, write a 1 and change to state 6;" etc. In the original article, Turing imagines not a
mechanism, but a person whom he calls"toeputer”, wheexecutes theseeterministic mechanical rules slavishly (or as
Turing puts it, "in a desultory manner").

4
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The head is always over a particular square of the tape; only a finite stretch of squares is shown. The instruction to be
performed(g4) is shown over the scanned square. (Drawing after Kleene (1952) p.375.)
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Here, the internal state (q1) is shown inside the head, and the illustration describes the tape as being infinfileghd pre
with "0", the symbol serving as blank. The gysts full state (iteonfiguratior) consistsof the internal state, the contents of

the shaded squares including the blank scanned by the head ("11B"), and the position of the head. (Drawing after Minsk
(1967) p. 121).

Sequestration dispensation

A tapewhich is_divided into cells, one next to the other. Each aahtains a symbol from some finite alphabet. The
alphabetcontains aspecialblanksymbol (here written as 'B') and one or more other symbols. The tape is assumed to be
arbitrarily extendableto the left and to the right, i.e., the Turing machine is alvgaysplied with as much tape as it needs

for its computation. Cells that have not been written to before are assumed to be filled with the blank symbol. In some
models the tape has a left end kel with aspecial symbol; the tape extends or is indefinitely extensible to the right.

A headthat can read and write symbols on the tape and move the tape left and right one (and only one) cell at a time. In
some models the heatbves and the tape is taary.

A state registethat storesthe state of the Turing machine, one of finitely many. There is one sptiastate with which

the state register is initialized. These states, writes Turgpdace the"state of mind" a person performing comgiaas

would ordinarily be in.It is like bank ledger, which has Debits and Credits. Note that in double entry computation, both
debits and credits are entered in to the systems, namely the Bank Ledger and balance is posted. Individual Debits ar
equivalent o i ndi vi dual Credits. On a generalizational and g
its wide ranging manifestation the Debits and Credits. This is also conservative. In other words Assets is equivalent to
Liabilities. True,Profit is distributed among overheads and charges, and there shall be another account in the General ledge
that is the account of Profit. This account is credited with the amount earned as commission, exchange, or discount of bills
Now when we write thé Gener al Ledgero of Turing machine, the Prir
writing the General Theory of all the variables that are incorporated in the model. So for every variable, we have an anti
variable. This is the dissipation fact@onservation laws do hold well in computers. They do not break the conservation
laws. Thus energy is not dissipated in to the atmosphere when computation is being performed. To repeat we are suggestir
a General Theory Of working of a simple Computer amdfurther papers, we want to extend this theory to both
nanotechnology and Quantum Computation.

A finite table(occasionally calledanaction tableor transition functiof of instructions (usually quintuples -fsples]:

gi aj Ygi 1aj 1d k ;tuplbsythat, givernlestate (aietise machine is currentlyandthe symbol (aj) it is reading

on the tape (symbol currently under the head) tells the machine to do therfglin sequence (for thetbple models):

Eithererase or writea symbol (replacing ajith aj1),and then

Move the head (which is described byatid can have values: 'L' for one step ¢efR' for one step rightr 'N' for staying

in the same placejnd then

Assume the same omaw stateas prescribed (go to state qil).

In the 4tuple models, erasing or writing a symbol (aj1) and moving the head left or right (dk) are specified as separate
instructions. Specifically, the table tells the machindapdrase or write a symbof (ib) move the heateft or right , and

then(ii) assume thesame or a new states prescribedut not both actions(ia) and (ib) in the same instruction. In some
models, if there is no entry in the table for the current coatlun of symbol and state then the machine will halt; other
models require all entries to be filled.
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Note that every part of the machinés state and symbalollection® and its actiond printing, erasing and tapeotiond

is finite, discreteanddistinguistable Only a virus can act as a predator to itlt is the potentially unlimited amount of tape

that gives it anunbounded amount storage space.

Quantum mechanical Hamiltonian models of Turing machines are constructed here on a finite lattick&a/sf@ms. The

models do notdissipate any energy and they operate at the quantum limit in that the system (energy uncertainty) /
(computation speed) is close to the limit given bytime-energy uncertainty principle.

Regarding finite state machines as ktar chainsfacilitates the application of probabilistic methods to very large logic
synthesis and formal verification problems.Variational concepts and exegetic evanescence of the subject matter is done b
Hachtel, G.DMacii, E.; Pardo, A, Somenzi, F with symbolic algorithms to compute the steatigte probabilities for

very large finite state machines (up to 1@2ates). These algorithmisased onAlgebraic Decision Diagrams (ADD'sian

extension of BDD's that allows arbitrary valuego be assoiated with the terminal nodes of the diagraghstermine the
steadystate probabilities by regarding finite state machines as homogeneous, giacaeteter Markov chains with finite

state spaces, and by solving the corresponding Chafmiamogorov equatins. Finite state machines with state graphs
composed of asingle terminal strongly connected component systems authgesusedtwo solution techniques: One is

based on the Gaudacobi iteration, the other one is based on simple matrix multiplicatiden&on of the treatment is

done to the most general case of systems which can be modeled as finite state machines witlrankitiany structures;

until a certain temporal point, having no relevant optiang effects forthe decision maker beyonbat point. Structural
morphology and easy decomposition is resorted to towards the consummation of results. Conservations Laws powerhous
performance and no breakage is done with heterogeneous synthesis of conditionalities. Accumulation. Formulation anc
experimentation are by word and watch word.

Logistics of misnomerliness and anathema

In any scientific discipline there are many readongseterms that have precise definitions. Understanding the terminology

of a discipline isessential toearning a shject and precisterminology enables us taaommunicate ideas clearly with other
people. In computer science the problem is even more acuteedeto constructsoftware and hardware components that

must smoothlynteroperate across interfaces with clienand other components in distributed systems. The definitions of
these interfaces need to be precisely specified for interoperability and good systems performance.

Using the term "computation" without qualification oftgenerates dot of confusion. Pardf the problem is that the nature

of systemaxhibiting computational behavior is varied and the term computation means different things to different people
depending on the kinds of computational systems they are studying and the kinds of problemesithvegtéigating. Since
computation refers to a process tisatlefinedin terms of some underlying model of computation, we would achieve clearer
communication if we made clear what the underlying model is.

Rather than talking about a vague notion of "patation," suggestion is to use the term in conjunction with adedihed

model of computation whose semantics is clear and which matches the problem being investigated. Computer scienc
already has a number of useful clearly defined models of computatiose behaviors and capabilities are well understood.

We should use such models as part of any definition of the term computation. However, for new domains of investigation
where there are no appropriate models it may be necessary to invent new fosrtmlispriesent the systems under study.

Courage of conviction and will for vindication:

We consider computational thinking to be the thought processes involved in formulating problems so their solutions can be
represented as computational steps and #hgoesi An important part of this process is finding appropriate models of
computation with which to formulate the problem and derive its solutions. A familiar example would be the use of finite
automata to solve string pattern matching problems. A les$idakample might be the quantum circuits and order finding
formulation that Peter Schor used to devise an intlagtoring algorithm that runs in polynomial time on a quantum
computer. Associated with the basic models of computation in computer ssenaealth of wetknown algorithmdesign

and problernssolving techniques that can be used to solve common problems arising in computing.

However, as the computer systems we wish to build become more complex and as we apply computer science abstractions
new problem domains, we discover that we do not always have the appropriate models to devise solutions. In these case
computational thinking becomes a research activity that includes inventing appropriate new models of computation.

Corrado Priami and kicolleagues at the Centre for Computational and Systems Biology in Trento, Italy have been using
process calculi as a model of computation to create programming languages to simulate biological processes. Priami stati
"the basic feature of computatiorthinking is abstraction of reality in such a way that the neglected details in the model
make it executable by a machine." [Priami, 2007]

As we shall see, finding or devising appropriate models of computation to formulate problems is a central and often

nontrivial part of computational thinking.

Hero or Zero?

In the last half century, what we think of as a computational system has expanded dramatically. In the earliest days o
computing, a computer was an isolated machine with limited memory to whictapregvere submitted one at a time to be
compiled and run. Today, in the Internet era, we have networks consisting of noflimierconnectedcomputers and as

we move into cloud computing, many foresee a global computing environment with billions tf bbeng universal on

demand access to computing services @attd hostedin gigantic data centers located around the planet. Anything from a

PC or a phone or a TV or a sensor can be a client and a data center may consist of hundreds of thousamsls of serve
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Needless to say, the models for studying such a universally accessible, complex, highly concurrent distributed system ar
very different from the ones for a single isolated computer. In fact, our aim is to build the model for infinite number of
intercannected ness of computers.

Another force at play is thdiecause ofheat dissipation considerations the architecture of compigerkanging An

ordinary PC today has many different computing elements such as multicore chips and graphics processingd anits,
exascale supercomputer by the end of this decade is expected to be a giant parallel machine with up to a million nodes ea
with possibly a thousand processors. Our understanding of how to write efficient programs for these nsalamited.

Goad models of parallel computation and parallel algorithm design techniques are a vital open research area for effective
parallel computing.

In addition, there is increasing interest in applying computation to studying virtually all areas of human er@igavor.
fascinating exampla_simulating the highly parallel biological processes found in human cells and organs for the purposes
of understanding disease and drug design. Good computational models for biological processes are still in their infancy. Anc
it is not clear we will ever be able to find a computational model for the human brain that would account for emergent
phenomena sudis consciousness or intelligence

Queen or show piece:

The theory of computation has been and still is one of the core @freasnputer science. It explores the fundamental
capabilities and limitations of models of computation. A model of computation is a mathenadstedction of a
computing system. The most important model of sequential computation studied in compuiter isdiee Turing machine,

first proposed by Alan Turing in 1936.

We can think of a Turing machine adirite -state control attached to a tape head that can read and write symbols on the
squares of a senmfinite tape. Initially, a finite string of lengtn representing the input is in the leftmost n squares of the
tape. An infinite sequence of blanks follows the input string. The tape head is reading the symbol in the leftmost square an
the finite control is in a predefined initial state.

The Turing makine then makes a sequence of moves. In a move it reads the symbol on the tape under the tape head ar
consults atransition table in the finitstate control which specifies a symbol to be overprinted on the square under the tape
head, a direction the taghead is to move (one square to the left or right), and atstatger next. If the Turing machine

enters anaccepting halting state (one with no next move), the string of nonblank symbols remaining on the input tape at that
point in time is its output.

Mathematically, a Turing machineonsists of seven componentsa finite set of states; a finite input alphabet (not
containing the blank); a finite tape alphabet (which includes the input alphabet and the blank); a transition functags that m

a state ad a tape symbol into a state, tape symbol, and direction (left or right); a stardust@adeept statdfrom which there

are no further moves; andeiect statefrom which there are no further moves.

We can characterize tieenfiguration of a Turing mache at a given moment in time by three quantities:

1. the state of the finitstate control,

2. the string of nonblank symbols on the tape, and

3. the location of the input head on the tape.

A computation of a Turing machire an input w is a sequence a@bnfigurations the machine can go through starting from

the initial configuration with w on the tape and terminating (if the computation terminates) in a halting configuratiag. We s

a functionf from strings to strings is computable if there is somenumachineéV that given any input string always

halts in the accepting state with juisfw) on its tape. We say thit computed.

The Turing machine provides a precitainition for the term algorithm: an algorithm for a functibis just a Turing

machine that computes

There are scores of models of computation that are equivalent to Turing machines in the sense that these models compt
exactly the same set of functions that Turing machines can compute. Among thesecoimiete models of compttian

are multitape Turing machines, lambdacalculus, random access machines, production systems, cellular automata,

and all generalpurpose programming languages

The reason there are so many different models of computation equivalent to Turing mactiiaesves rarely want to
implement an algorithm as a Turing machine program; we would like to use a computational notation such as a
programming language that is easy to write and easy to understand. But no matter what notation we choose, the famot
ChurchTuring thesidypothesizes thany function that can be computed can be computed by a Turing machine.

Note that if there is one algorithm to compute a fundiiohen there is an infinite number. Much of computer science is

devoted to finding efficientlgorithms to compute a given function.

For clarity, we should point out that we have defined a computation as a sequence of configurations a Turing machine can g
through on a given input. This sequence could be infinite if the machine does not halt afraonember of possible
sequences in case the machine is nondeterministic.

The reason we went through this explanation is to point out how much detail is involved in precisely defining the term
computation for the Turing machine, one of the simplest rsodietomputation. It is not surprising, then, as we move to
more complex models, the amount of effort needed to precisely formulate computation in terms of those models grows
substantially.
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Sublime synthesis not dismal anchorage

Many reatworld compuétional systems compute more than just a single furicttboe world has moved tmteractive
computing [Goldin, Smolka, Wegner, 2006]. The term reactive sysiemsed todescribe a system that maintains an
ongoing interaction with its environment. Exampdéseactive systems includgperating systems and embedded systems.

A distributed system is one that consists of autonomous computing systems that communicate with one another througl
some kindof network using message passing. Examples of distributedesysinclude telecommunications systems, the
Internet, aiftraffic control systems, and parallel computdiany distributed systems are also reactive systems.

Perhaps the most intriguing examplesredictive distributed computing systems are biologicadtegns such as cells and
organisms. We could even consider the human brain ta belogical computingsystem. Formulation of appropriate
models of computation for understanding biological processes is a formidable scientific challenge in the intefsection
biology and computer science.

Distributed systemsan exhibit behaviors such as deadlock, live lock, race conditions, and the like that cannot be usefully
studiedusing asequential model of computation. Moreover, solving problems such as determaitngaihghput, latency,

and performance of a distributed system cannot be productively formulated with attsiege model of computation. For

these reasons, computer scientisise developed a numbepf models of concurrent computation which daeusedto

study these phenomena and to architect tools and components for building distributed systems. Many authors have studie
these aspects in wider detail (See for example Alfred V. Aho),

There are many theoretical models for concurrent computation. Gthe imessagpassing Actor modelconsisting of
computational entities called actors [Hewitt, Bishop, Steiger, 1973].

An actor can send and receive messages, make local decisions, create more actors, and fix the behavior to be used for |
next message ieceives These actions may be executed in parallel and in no fixed order. The Actor model was devised to
study the behavioral properties of parallel computing machines consisting of large numbers of independent processor:
communicating by passing messag#wough a network. Other wedtudied models of concurrent computation inclRegi

nets and the process calculi such asgbculus and nuealculus

Many variants of computational models for distributed systems are being devised to study and unterstmalviors of
biological systems. For example, Dematte, Priami, and Romanel [2008] describe a language called BlenX that is based on
process calculus called Bebanders for modeling and simulating biological systems.

We do not have the space to ddserihese concurrent models in any detail. However, it is still an open research area to find
practically useful concurrent models of computation that combine control and data for many areas of distributed computing.
Comprehensive envelope of expression nah identarian instance of semantic jugglery

In addition to aiding education and understanding, there are many practical benefits to having appropriate models of
computation for the systems we are trying to build. In cloud computing, for example, theséllaa host of poorly
understood concerns for systems of this scale. We need to better understand the architectural tradeoffs needed to achieve
desired levels of reliability, performance, scalability and adaptivity in the services these systexpeeter to provide. We

do not have appropriate abstractions to describe these properties in such a way that they can be automatically mapped from
model of computation into an implementation (or the other way around).

In cloud computing, there are a ho$tresearch challenges for system developers and tool builders. As examples, we need
programming languages, compilers, verification tools, defect detection tools, and service management tools that can scale f
the huge number of clients and servers inedhin the networks and data centers of the future. Cloud computing is one
important area that can benefit from innovative computational thinking.

The Finale:

Mathematical abstractions called models of computation are at the heart of computation andtmmraptinking.
Computation is a process that is defined in terms of an underlying model of computation and computational thinking is the
thought processes involved in formulating problems so their solutions can be represented as computational steps an
algorithms. Useful models of computation for solving problems arising in sequential computation can range from

simple finitestate machines to Turingpmplete models such as random access machines. Useful models of concurrent
computation for solving prolfes arising in the design and analysis of complex distributed systems are still a subject of
current research.

The P versus NP problem is to determine whether every language accepted by some nondeterministic algorithm ir
polynomial time is also acceptedbyo me ( det er mi ni stic) algorithm in polyno
necessary to give a formal model of a computer. The standard computer model in computability theory is the Turing
machine, introduced by Alan Turing in 1936 [Tur36]thAdugh the model was introduced before physical computers were
built, it nevertheless continues to be accepted as t h
computable function.

Examples of Turing machines

3-statebusy beaver

Formd definition

Hopcroft and Ullman (1979, [4.48) formally define a (ortape) Turing machine asa 7

tzu?i*n'f - {Q! F! b! E! 5! do, F}where
Is a finite, norempty set obtates
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['sa finite, norempty set of théape alphabet/symbols
b € I is theblank symbolthe only symbol allowetb occur on the tape infinitely often at any step during the
computation)

by E r \ {b} is the set oinput symbols

go € Q is theinitial state
F g Q is the set ofinal or accepting states.

d: Q \ FxI — Q x T' x {L.‘ R} is apartial functioncalled thetransition function, where L is left shift, R

is right shift. (A relatively uncommon variant allows "no shift", say N, as a third element of the latter set.)
Anything that operates according to these specifications is a Turing machine.
The 7-tuple for the 3-statebusy beaverlooks like this (see more abauhis busy beaver dwuring machine examples):

Q = {A,B,C,HALT}

I'={0,1)

b = 0 ('Blank")
r={1}

go = A (the initial state)
F = {HALT}

= see stat¢able below
Initially all tape cells are marked with O.
State table for 3 state, 2 symbol busy beaver
Tape symbolCurrent staté-Current stat®-CurrentstateC
-Write symbolMove tapeNext statéWrite symbolMove tapeNext stateWrite symbolMove tapeNext state
0-1-R-B-1-L-A-1-L-B
1-1-L-C-1-R-B-1-R-HALT
In the words of van Emde Boas (1990)6p. The settheoretical object his formal sewuple descrifion similar to the
above] provides only partial information on how the machine will behave and what its computations will look like."
For instance,
There will need to be some decision on what the symbols actually look like, and a failproof way of asadimgting
symbols indefinitely.
The shift left and shift right operations may shift the tape head across the tape, batta#y building aTuring machine
it is more practical to make the tape slide back and forth under the head instead.
The tape cate finite, andautomatically extendedvith blanks as needed (which is closest to the mathematical definition),
but it is more common to think of it as stretching infinitely at both ends and beirfdlgmenith blanks except on the
explicitly given finite fragment the tape head is on. (This is, of course, not implementable in practice.) Tdambayize
fixed in length, since that would not correspond to the given definition and would seriously limit the range of computations
the machine can perform tioose of alinear bounded automaton.

Contradictions and complementarities
Definitions in literature sometimes differ slightly, to make arguments or proofs easier or clearer, but this is always done i

such a way that the resulting machine has the sam@utational power. For example, changing the {s*gh R}

to {L: R! ‘N}, whereN ("None" or "Naoperation") would allow the machine to stay on the same tape cell instead of
moving left or right, does not increase the machine's computational power.

The most common conventiaepresents each "Turing instruction” in a "Turing table" by one of nitupl&s, per the
convention of Turing/Davis (Turing (1936) Wndecidable, p126-127 and Davis (2000) 452):

(Definition 1): (qi, Sj, SK/E/N, L/R/N, gm)

(Current statgi , symbd scannedsj, print symbolSk/erasé&e/noneN , move_tape_one_square leftight R/noneN , new
stategm)

Other authors (Minsky (1967) f19, Hopcroft and Ullman (1979) p58, Stone (1972) ®) adopt a different convention,
with new stateym listed inmediately after the scanned symbol S;:

(Definition 2): (qi, Sj, gm, Sk/E/N, L/R/N)

(Current stateji , symbol scanne8;, new statgm, print symbolSk/erasde/noneN , move_tape_one_square

left L/right R/noneN )

For the remainder of this article "dafion 1" (the Turing/Davis convention) will be used.

Example: state table for thesgate 2symbol busy beaver reduced tauples

Current stateScanned symbelPrint symbolMove tapeFinal (i.e. next) staté-tuples

A-0--1-R-B-(A, 0, 1, R,B)

A-1--1-L-C-(A, 1,1,L,C)

B-0--1-L-A-(B, 0, 1, L,A)

B-1--1-R-B-(B, 1, 1, R,B)
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C-0--1-L-B-(C, 0, 1, L,B)

C-1--1-N-H-(C, 1, 1, NH)

In the following table, Turing's original model allowed only the first three lines that he called N1, N2, N3 (cf Turing
in Undecidab#, p.126). He allowed for erasure of the "scanned square" by naming a Oth symbdeiB&e" or "blank”,

etc. However, he did not allow for nquminting, so every instructicline includes "print symbol Sk" or "erase" (cf footnote

12 in Post (1947)ndecidablep. 300). The abbreviations are Turing's (UndecidablEL9). Subsequent to Turing's original
paper in 19361937, machinenodels have allowed all nine possible types of-fiyges:

-Current mconfiguration (Turing stateyape symbaoPrint-operatio-Tapemotion-Final m-configuration (Turing statej-
tuple-5-tuple commentg-tuple

N1-qi-Sj-Print(Sk}Left L-gm-(qi, Sj, Sk, L, gmy'blank” = SO, 1=S1, ete.

N2-qi-Sj-Print(Sk}Right Rgm-(qi, Sj, Sk, R, gm)'blank" = SO, 1=S1, ete.

N3-qi-Sj-Print(SK}None Ngm-(qi, Sj, Sk, N, gmy'blank" = S0, 1=S1, et€qi, Sj, Sk, gm)

4-qgi-Sj-None NLeft L-gm-(qi, Sj, N, L, gm)-(qi, Sj, L, gm)

5-qi-Sj-None NRight Rgm-(qi, Sj, N, R, gm}-(qi, Sj, R, gm)

6-qi-Sj-None NNone Ngm-(qi, Sj, N, N, gmjDirect "jump'(qi, Sj, N, gm)

7-qi-Sj-EraseLeft L-gm-(qi, Sj, E, L, gm)-

8-qi-Sj-EraseRight Rgm-(qi, Sj, E, R, gm}-

9-qi-Sj-EraseNone Ngm-(qi, Sj, E, N, gm}-(qi, Sj, E, gm)

Any Turing table (list of instructions) can be constructed from the above Hin@es. For échnical reasons, the three non
printing or "N" instructions (4, 5, 6) can usually be dispensed with. For exampl€argsg machine examples.

Less frequently the use oftdples is encountered: these represent a further atomization of the Turingiorssrijct Post
(1947), Boolos & Jeffrey (1974, 1999), Da@ggalWeyuker (1994)); also see moreRaist Turing machine.

The "state"

The word "state" used in context of Turing machines can be a source of confusion, as it can mean two things. Most
commentatos after Turing have used "state" to mean the name/designator of the current instruction to be @eifernhed
contents of the state register. But Turing (1936) made a strong distinction between a record of what he called the machine
"m-configuration’ (its internal state) and the machine's (or person's) "state of progress" through the compthation
current state of the total system. What Turing called "the state formula" includes both the current instructittheand
symbols on the tape:

Thus he state of progress of the computation at any stage is completely determined by the note of instructions and the
symbols on the tape. That is, thtate of the systemmay be described by a single expression (sequence of symbols)
consisting of the symbosn t he tape foll owed by ® (which we suppose
instructions. This expression is called the 'state formula'.

0 Undecidable, p.139.40, emphasis added

Earlier in his paper Turing carried this even further: hegiae example where he places a symbol of the current "m
configuration'd the instruction's lab8l beneath the scanned square, together with all the symbols on the tape (Undecidable,
p. 121); this he calls "theomplete configuration" (Undecidable, ¥1.8). Toprint the "complete configuration" on one line

he places the statabel/mconfiguration to théeft of the scanned symbol.

A variant of this is seen in Kleene (1952) where Kleene shows how to wri@ttet numbebpf a machine's "situation": he
places he "mconfiguration” symbol géver the scanned square in roughly the center of the -®laok squares on the tape
(see the Turingape figure in this article) and puts it to thght of the scanned square. But Kleene refers to "g4" itself as
"the machie state" (Kleene, 874-375). Hopcroft and Ullman call this composite the "instantaneous description" and
follow the Turing convention of putting the "current state" (instruetédoel, niconfiguration) to théeft of the scanned
symbol (p.149).

Example:total state of 3tate 2symbol busy beaver after 3 "movdtiken from example "run” in the figure below):

1A1

This means: after three moves the tape has ... 000110000 ... on it, the head is scanningnbstrighand the stateAs
Blanks (in thiscase represented by "0"s) can be part of the total state as showB(eréhe tape has a single 1 on it, but
the head is scanning the 0 ("blank") to its left and the st&e is

"State" in the context of Turing machines should be clarified as to whlsking described: (i) the current instruction, or (ii)
the list of symbols on the tape together with the current instruction, or (iii) the list of symbols on the tape together with
current instruction placed to the left of the scanned symbol oetdght of the scanned symbol.

Turing's biographer Andrew Hodges (1983: 107) has noted and discussed this confusion.

Turing machine "state" diagrams

The table for the -3tate busy beaver ("P" = print/write a "1")

Tape symbolCurrent staté\-Current statd-Current stat€

-Write symbolMove tapeNext stateéWrite symbotMove tapeNext stateWrite symbolMove tapeNext state
0-P-R-B-P-L-A-P-L-B

1-P-L-C-P-R-B-P-R-HALT
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0/P,L

start

The "3-state busy beaver" Turing machine in dinite state representation. Each circle repesents a "state" of the
TABLE 8 an "m-configuration" or "instruction”. "Direction" of a state transition is shown by an arrow. The label
(e.g.0/P, R) near the outgoing state (at the "tail" of the arrow) specifies the scanned symbol that causes a particular
transition (e.g.0) followed by a slasH, followed by the subsequent "behaviors" of the machine, e.g. "Print" then
move tape "RRight". No general accepted format exists. The convention shown is after McClusky (1965), Booth
(1967), Hill and Peterson (194).

To the right: the above TABLE as expressed as a "state transition" diagram.

Usually large TABLES are better left as tables (Boottv4). They are more readily simulated by computer in tabular form
(Booth, p.74). However, certain concept®.g. machies with "reset" states and machines with repeating patterns (cf Hill
and Peterson [244ff)d can be more readily seen when viewed as a drawing.

Whether a drawing represents an improvement on its TABLE must be decided by the reader for the particular contex
SeeFinite state machinr more.

BT -‘j":"‘*.‘_ i Totd systemsiate - |
(At PR [¢)eR A complete configuration (aka)
‘ : 2 R L S AT T i Minstantanecus desaription’) |
| Sequence! Instruction Head Instructioc A B C H TAPE & TABLE & HEAD
0{0] 0] of ¢i cj o] 0] 0] 0] 0] 0 6} o] ©

1 A oooogoooooooooo Al AQ

2 B [o[o[o[ojcicjolo[1]0]0]ofofo)C B B01

3 A ooooooﬂ'fooooooo [A] 1A1

4 ¢ [o[o[o[olc{1[]o[ojo[o[o[o[o[C €] 11C0

5 e [ofo[o[o{7]1]]o[o[o]o[o[o] o} o B 11180

6 A [ofolo[11[1[1]o[o[olofofojoj; 5 [A[_ 1111A0

7 B [olo[o[oj1[]|[1]ojojojojcjo. @ B 111B11

8 B [ololo[olc A1l [ [ololo[cle & B 11B111

9 B [ojo[o]o[cioj]a[[1[1]o[0]o[C B 181111

10 B |o[o[ofo{c{ofo2][1]1]1]0]ofC) B B11111

1 B [ofo[o[o[ciejolel1[[1[1[[o]o ‘B BO11111

12 A oouoocq_ﬂnoco [A 1A11111

13 c [o[ofo[ofci1[A[al [ [1]ola[ofo 11C1111
14 | H [oloefoici1[[al][1[ofa[c[C [§|E| 11H1111
Progress of the computation (state-trajectory) of a 3-state busy beaver

The evolution of the buslpeaver's computation starts at the top and proceeds to the bottom.

The reader should again be cautioned that such diagrams represent a snapshot of their TABLE frozemithtnceurs
("trajectory™) of a computatiothroughtime and/or space. While every time the busy beaver machine "runs" it will always
follow the same stat&ajectory, this is not true for the "copy" machine that can be provided with variable input
"parameters".

The diagram "Progress of the computation" shows th&taBe busy beaver's "state" (instruction) progress through its
computation from start to finish. On the far right is the Turing "complete configuration" (Kleene "situation", Hopcroft
Ullman “instantaneoudescription”) at each step. If the machine were to be stopped and cleared to blank both the "state
register" and entire tape, these "configurations" could be used to rekindle a computation anywhere in its progress (cf Turing
(1936)Undecidablepp. 139 140)

Register machine,

Machines that might be thought to have more computational capability than a simple universal Turing machine can be
shown to have no more power (Hopcroft and Ullmab59, cf Minsky (1967)). They might compute faster, perhaps, or use
less memory, or their instruction set might be smaller, but they cannot compute more powerfully (i.e. more mathematical
functions). (Recall that th@hurch Turing thesis hypothesizéiis to be true for any kind of machine: that anything that can

be "compted" can be computed by some Turing machine.)
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A Turing machine is equivalent topushdown automatdahat has been made more flexible and concise by relaxirgshe
in-first-outrequirement of its stack.

At the other extreme, some very simple models twinto beTuring-equivalent, i.e. to have the same computational power
as the Turing machine model.

Common equivalent models are thelti-tape Turing machinenulti-track Turing machine, machines with input and output,
and thenon-deterministicTuring machine(NDTM) as opposed to tlieterministicTuring machine (DTM) for which the
action table has at most one entry for each combination of symbol and state.

Readonly, rightmoving Turing machineare equivalent tdiIDFAs (as well adDFAsby conversion usinghe NDFA to
DFA conversion algorithm).

For practical and didactical intentions the equivategtster machinean be used as a usaakemblyprogramming
language.

Choice emachines, Oracle emachines

Early in his paper (1936) Turing makes a distinctimetween an “"automatic machidelts "motion ... completely
determined by the configuration" and a "choice machine":

...whose motion is only partially determined by the configuration ... When such a machine reaches one of these ambiguou
configurations; ittannot go on until some arbitrary choice has been made by an external operator. This would be the case if
we were using machines to deal with axiomatic systems.

0 Undecidable, p. 118

Turing (1936) does not elaborate further except in a footnote in whidbdweibes how to use amaachine to "find all the
provable formulae of the [Hilbert] calculus" rather than use a choice machine. He "supposes[s] that the choices are alway:
between two possibilities 0 and 1. Each proof will then be determined by a seqiiehoices il, i2, ..., iil =0 or 1, i2=

Oor1l, ..., ir=0or 1), and hence the number2il2nl1+i22n2 + ... +incompletely determines the proof. The automatic
machine carries out successi velUndeigable pif38) 1 , proof 2, proo
This is indeed the technique by which a deterministic (i-p.Taring machine can be used to mimic the action of
anondeterministic Turing machine; Turing solved the matter in a footnote and appears to dismiss it from further
consideratio.

An oracle machiner o-machine is a Turing-machine that pauses its computation at state "0" while, to complete its
calculation, it "awaits the decision" of "the oradledn unspecified entity "apart from saying that it cannot be a machine"
(Turing (19®), Undecidable pl66G 168). The concept is now actively used by mathematicians.

Universal Turing machines

As Turing wrote inUndecidable, p128 (italics added):

It is possible to invent single machinavhich can be used to compweycomputable sequer. If this machind) is

supplied with the tape on the beginning of which is written the string of quintuples separated by semicolons of some
computing machin®, thenU will compute the same sequence\as

This finding is now taken for granted, but at thee (1936) it was considered astonishing. The model of computation that
Turing called his "universal machir@™U" for shor® is considered by some (cf Davis (2000)) to have been the
fundamental theoretical breakthrough that led to the notion @ttiredprogram computer.

Turing's paper ... contains, in essence, the invention of the modern computer and some of the programming techniques th
accompanied it.

0 Minsky (1967), p. 104

In terms ofcomputational complexity, a multape universal Turing machineeed only be slower Hggarithmicfactor
compared to the machines it simulates. This result was obtained in 1966 by F. C. HerRiecar®learns. (Arora and

Barak, 2009, theorem 1.9)

Comparison with real machines

It is often said that Turing machinas)like simpler automata, are as powerful as real machines, and are able to execute any
operation that a real program can. What is missed in this statement is that, because a real machine can only be in finitel
manyconfigurations, in fact this "real mackd" is nothing but éinear bounded automaton. On the other hand, Turing
machinesre equivalent tomachines that have an unlimited amount of storage space for their computations. In fact, Turing
machines are not intended to model computers, but rathgratieeintended to model computation itself; historically,
computers, which compute only on their (fixed) internal storage, were developed only later.

There are a number of ways to explain why Turing machines are useful models of real computers:

Anything areal computer can compute, a Turing machine can also compute. For example: "A Turing machine can simulate
any type of subroutine found in programming languages, including recursive procedures and any of the known-parameter
passing mechanisms" (Hopcroft abiman p.157). A large enough FSA can also model any real computer, disregarding
I0. Thus, a statement about the limitations of Turing machines will also apply to real computers.

The difference lies only with the ability of a Turing machine to manipaatenbounded amount of data. However, given a
finite amount of time, a Turing machine (like a real machine) can only manipulate a finite amount of data.

Like a Turing machine, a real machine can have its storage space enlarged as needed, by acquiisksnoorether

storage media. If the supply of these runs short, the Turing machine may become less useful as a model. But the fact is th
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neither Turing machines nor real machines need astronomical amounts of storage space in order to perform usefu
computation. The processing time required is usually much more of a problem.

Descriptions of real machine programs using simpler abstract models are often much more complex than descriptions usin
Turing machines. For example, a Turing machine describinglgoritm may have a few hundred states, while the
equivalent deterministic finite automaton on a given real machine has quadrillions. This makes the DFA representation
infeasible to analyze.

Turing machines describe algorithms independent of how much mehey use. There is a limit to the memory possessed

by any current machine, but this limit can rise arbitrarily in time. Turing machines allow us to make statements about
algorithms which will (theoretically) hold forever, regardless of advancesnwertional computing machine architecture.

Turing machines simplify the statement of algorithms. Algorithms running on TFagoiyalent abstract machines are
usually more general than their counterparts running on real machines, because they havepaebisiary data types
available and never have to deal with unexpected conditions (including, but not limited to, autrohghemory).

One way in which Turing machines are a poor model for programs is that many real programs, cpetatiag
systemsandword processors, are written to receive unbounded input over time, and therefore do not halt. Turing machines
do not model such ongoing computation well (but can still model portions of it, such as individual procedures).

Computational complexity theory

A limitation of Turing machines is that they do not model the strengths of a particular arrangement well. For instance,
modern storegbrogram computers are actually instances of a more specific foatwswhct machinknown as theandom

access stored progm machiner RASP machine model. Like thniversal Turing machinthne RASP stores its "program”

in "memory" external to its finitstate machine's "instructions”. Unlike the universal Turing machine, the RASP has an
infinite number of distinguishableumbered but unbounded "registérghemory "cells" that can contain any integer (cf.

Elgot and Robinson (1964), Hartmanis (1971), and in particular -Beskow (1973); references rahdom access
machine). The RASP's finitgtate machine is equipped with tbapability for indirect addressing (e.g. the contents of one
register can be used as an address to specify another register); thus the RASP's "program" can address any register in
registersequence. The upshot of this distinction is that there arpudational optimizations that can be performed based on

the memory indices, which are not possible in a general Turing machine; thus when Turing machines are used as the bas
for bounding running times, a 'false lower bound' can be proven on certaiithalgdorunning times (due to the false
simplifying assumption of a Turing machine). An example of thisiriary search, an algorithm that can be shown to
perform more quickly when using the RASP model of computation rather than the Turing machine model.

Concurrency
Another limitation of Turing machines is that they do not model concurrency well. For example, there is a bound on the size

of integer that can be computed by an alwlaghing nondeterministic Turing machine starting on a blank tape. (Sele arti

on unbounded nondeterminism.) By contrast, there are athalfing concurrent systems with no inputs that can compute an
integer of unbounded size. (A process can be created with local storage that is initialized with a count of 0 that lgoncurrent
sends itself both a stop and a go message. When it receives a go message, it increments its count by 1 and sends itself a
message. When it receives a stop message, it stops with an unbounded number in its local storage.)

fMA0O AND fABO(SEE FI GOSREAREPRHMSERNFI GURATI ONO OR Al NSTRU
THE CONVENTION SHOWN IS AFTER MCCLUSKY ,BOOTH,HILL AND PETERSON.

MODULE NUMBERED ONE

NOTATION :

"Q: CATEGORY ONE OF0ADQ
"Q,: CATEGORY TWO OFO0AD

Q. CATEGORY THREE OF 06ADd
Ys: CATEGORY ONE OF 6Bb
Y,: CATEGORY TWO OF 6B®
Ys: CATEGORY THREE OF 6B®

iBo0 AND AAO(SEE FI GURE REPRESENTS AN AiM CONFI GURATI O
THE CONVENTION SHOWN IS AFTER MCCLUSKY ,BOOTH,HILL AND PETERSON.
MODULE NUMBERED TWO
NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME
AT MAY BE ZERO, OR MIGHT BE SAME,I ALL THE THREE CASES THE MODEL COULD BE CHANGED
EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF
ZERO.

‘. CATEGORY ONE OF 0B®6 (NOTE THAT THEY REPRESENT CO
STATES)
'Q,: CATEGORY TWO OF 6B®
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'Qy: CATEGORY THREE OF 6B
Ys: CATEGORY ONE OF 6A®G

Y,: CATEGORY TWO OF 6A®G
Ys: CATEGORY THREE OFG6AD

A0 AND ACO(SEE FI GURE REPRESENTS AN iM CONFI GURATI ON
THE CONVENTION SHOWN IS AFTER MCCLUSKY ,BOOTH,HILL AND PETERSON.
MODULE NUMBERED THREE

‘Q: CATEGORY ONE OFO0A®G

0
Q. CATEGORY TWO OFOG6A

(0]
"Q,: CATEGORY THREE OFG6AD
Y: CATEGORY ONE OF 6Cbo
Y, CATEGORY TWO OF 6Cb6
Y,: CATEGORY THREE OF 6Cb

iCo AND fABO(SEE FI GURE REPRESENTS AN AiM CONSTATEURATI O
THE CONVENTION SHOWN IS AFTER MCCLUSKY ,BOOTH,HILL AND PETERSON.
MODULE NUMBERED FOUR
NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME
T MAY BE ZERO, OR MIGHT BE SAME, I ALL THE THREE CASES THE MODEL COULD BE CHAN GED
EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF
ZERO

"Q,: CATEGORY ONE OF ACO(EVALUATIVE PARAMETRICI ZATI ON OF
ESSENTIAL COGNITIVE ORIENTATION AND CHOICE VARIABLES OF THE SYSTEM TO WHICH
CONFIGURATION IS APPLICABLE)

"Qs: CATEGORY TWO OF #ACo

Q. CATEGORY THREE OF fACO

Y,: CATEGORY ONE OF fBo
Ys : CATEGORY TWO OF {#iBO(SYSTEMIC |INSTRUMENTAL CHARAC

ORIENTATIONS AND FUNCTIONAL IMPERATIVES OF CHANGE MANIFESTED THEREIN )
Y: CATEGORY THREE OFOBO

NCo AND AHO(SEE FI GURE REMNFHSHMNRAT I ONN ORM Al NSTRUCTI ONS

THE CONVENTION SHOWN IS AFTER MCCLUSKY ,BOOTH,HILL AND PETERSON.
MODULE NUMBERED FIVE

NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME

AT MAY BE ZERO, OR MIGHT BE SAME,IALL THE THREE CASES THE MODEL COULD BE CHANGED

EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF
ZERO:

Q. CATEGORY ONE OF fCo
"Q: CATEGORY TWO OF0CO
‘Q: CATEGORY THREE OF @
Y. CATEGORY ONE OF fH0
Yo: CATEGORY TWO OF fiHO
Yy CATEGORY THREE OF @

ABAND ABO(SEE FI GURE REPRESENTS AN AiM CONFI GURATI ONO
THE CONVENTION SHOWN IS AFTER MCCLUSKY ,BOOTH,HILL AND PETERSON.
THE SYSTEM HERE IS ONE OF SELF TRANSFORMATIONAL,SYSTEM CHANGING,STRUCTURALLY
MUTATIONAL,SYLLOGISTICALLY CHANGE ABLE AND CONFIGURATIONALLY ALTERABLE(VERY
VERY IMPORTANT SYSTEM IN ALMOST ALL SUBJECTS BE IT IN QUANTUM SYSTEMS OR
DISSIPATIVE STRUCTURES
MODULE NUMBERED SIX
NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME
AT MAY BE ZER O, OR MIGHT BE SAME,I ALL THE THREE CASES THE MODEL COULD BE CHANGED
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EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF
ZERO:

"Q, : CATEGORYONE OF fABOd

Qs CATEGORY TWO OF #Bo
Q.. CATEGORY THREE OFO0BY
INTERACTS WITH :ITSELF:

Y, CATEGORY ONE OF #ABO®
Y, CATEGORY TWO OFO0BDd

Y, CATEGORY THREE OF fABb

il NPUTO6 AND AAO(SEE FI GURE REPRESENTS ARUCTIGNG) GRONF I GU I
STATE: THE CONVENTION SHOWN IS AFTER MCCLUSKY ,BOOTH,HILL AND PETERSON.
MODULE NUMBERED SEVEN
NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME
AT MAY BE ZERO, OR MIGHT BE SAME | ALL THE THREE CASES THE MODEL  COULD BE CHANGED
EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF
ZERO:

Q: CATEGORY ONE OF Al NPUTO

Q: CATEGORY TWO OF #l NPUTO

‘: CATEGORY THREE OFOI NPUTO (I NPUT FEEDI NG AND CONCOMI
DIFFERENTIAL-TIME LAG OR INSTANTANEOUSNESSMIGHT EXISTS WHEREBY ACCENTUATION AND
ATTRITIONS MODEL MAY ASSUME ZERO POSITIONS)

Ys: CATEGORY ONE OF fAAO0

“¥; : CATEGORY TWO OF"A"

“Ys: CATEGORY THREE OFOAO

@s b, Qs b, Qs ,‘Ilglaalglaaig;lQ621Q721Q82Q62:&i721@823
Qo *. G Gt G T Gw .Gt
Goa “ s “ Gos 4 Gag * (s ) e 4 Ga S, (o O, Gao S, s 5, G 5, (o O,
@y ©, Gy ©, 0y O, °, G, @ °

are Accentuation coefficients

AV IR Y L\ S RV I IR SN | N S« B« B
R R A I .

YRR VR VAR VIR TR TR SISO LR L S VL
ap °, bl °, adl o, ddd °, g%, A C

are Dissipation coefficierts

A oW B

NAO AND AFBOQUREE REPRESENTS AN AiM CONFI GURATI ONO OR dl
THE CONVENTION SHOWN IS AFTER MCCLUSKY ,BOOTH,HILL AND PETERSON.

MODULE NUMBERED ONE

The differential system of this model is now (Module Numbered-ane)
%o g, e, G L+ AN Y0 G2
Lo g, 1 L+ @M Y0 Q-3
s g o Al @ Y0 Qs
Moy Y, @t @V Qo Y5
o @, vy, @t @M Qo Y, 6
oo G vy, @t @ 0o g 7
+ iV "Y,,0 = First augmentation facte8
Nt "Qo = First detritions factor
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iBo AND AAO(SEE FI GURE REPRESENTS AN iM CONFI GURATI O
THE CONVENTION SHOWN IS AFTER MCCLUSKY,BOOTH,HILL AND PETERSON.
MODULE NUMBERED TWO
NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME
T MAY BE ZERO, OR MIGHT BE SAME I ALL THE THREE CASES THE MODEL COULD BE CHANGED
EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF
ZERO.

T‘he differential system of this model is now ( Module numbered-8wo)
s @ 27 @l 2+ V? Y0 Qs -10
o= oy 2°Qs 2+ @z vy0 g -1l
s @y 279, W 2+ V2 Y0 Q12
Q 5 . TN NN . s
%‘E Qe 27 dff 2 diN? Q0 Y -13
Q 5 . TN NN . s
I Tt N\ B 1 L e N R AV
Q 5 . TN NN . s
;\f% Qs 27 off 2 ofiN? "Gy 0 "Ys -15
+ UNiZ2 "y, 6 = First augmentation factel.6

N2 "Qq ,0 = First detritions factorl7

i : A0 AND
ACO(SEE FI GURE REPRESENTS AN #AM CONFI GURATITERNO OR #
CONVENTION SHOWN 1S AFTER MCCLUSKY.BOOTH.HILL AND PETERSON.

MODULE NUMBERED THREE

‘T‘he differential systemfahis model is now (Module numbered thrde)
2o gy 00Q, @) S+ @I %0 Q-19
%: @ %@ & P+ MV %,0 Q20
%: @, Q@ %+ BVE Y0 G, 21
%: (I%o % @'d 3 @'ANB Q3,0 Y -22
ho Gy vy @ BV Q0 Y, 23
%: @ *7Y @y 3 QN3 Q3,0 Y, -24
+ &3V® "Y;,0 = First augmentation facter
aiN'® "Q,;,0 = First detritions factor25

NCo AND fABO(SEE FINGYRE AREPRBMSEONFI GURATI ONo OR fil NSTRU
THE CONVENTION SHOWN IS AFTER MCCLUSKY ,BOOTH,HILL AND PETERSON.
MODULE NUMBERED FOUR
NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME
AT MAY BE ZERO, OR MIGHT BE SAM E,I ALL THE THREE CASES THE MODEL COULD BE CHANGED
EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF
ZERO

The differential system of this model is now (Module numbered Ffr)

;?4: 0 * Qs o 4+ N Y0 "Qy -27

(93]

o1 " . i 4 T
= - W Q4 L+ Y "Y,0 "Qs-28

(93]

2 - 0 * Qs o 4+ BN Y0 Qs -29

@
O¥s _ = v TN FNiNi .‘ v
oS @t @Mt g, 0 Y, -30
aYs _ = o N 4 TNINi 2 P
== Qs Y ol @GINT g, 0 Y -3l
Y _ = o TN FNiNi w v
Kf— Qs Y o 4 Nt G 0 Y -32
+ N4 "Y.,0 = First augmentation factor-33
N4 "Q, ,0 = First detritions factor -34
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iCo AND AHOREEREPREBENTS AN iM CONFI GURATI ONO OR Al N
THE CONVENTION SHOWN IS AFTER MCCLUSKY ,BOOTH,HILL AND PETERSON.
MODULE NUMBERED FIVE
NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME
AT MAY BE ZERO, OR MI GHT BE SAME,| ALL THE THREE CASES THE MODEL COULD BE CHANGED
EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF
ZERO

The differential system of this model is now (Module number {8&)
QU v, o, N e NiNi o -
9% = Gy SUQy Y 5+ IS Yo, Qg -36
QU v, o, N e NiNi o -
D9 Gy 5GBS+ NS Y0 Qy-37
Q' w, o, N e NiNi o .
Do G 5 ) S+ GV Yo, Qo -38
(o} 5, o FNi FNiNi o, e
s G % G ° GNS Q0 ¥ -39
Q" 5, o FNi FNiNi o, e
M= Gy Y @S @NS g L0 Y 40
Q" 5, o FNi FNiNi o, e
ﬁfo: @ °Y o adl ° dVc Q0 Y 4l
+ GPINIS Yy 0 = First augmentation factor -42
NS "Q, ,06 = First detritions factor -43
Bo AND NABO(REEEREFPIRELSENTS AN AM CONFI GURATI ONO OR #fil N
THE CONVENTION SHOWN IS AFTER MCCLUSKY,BOOTH,HILL AND PETERSON.
THE SYSTEM HERE IS ONE OF SELF TRANSFORMATIONAL,SYSTEM CHANGING,STRUCTURALLY
MUTATIONAL,SYLLOGISTICALLY CHANGEABLE AND CONFIGUR  ATIONALLY ALTERABLE(VERY
VERY IMPORTANT SYSTEM IN ALMOST ALL SUBJECTS BE IT IN QUANTUM SYSTEMS OR
DISSIPATIVE STRUCTURES
MODULE NUMBERED SIX
NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME
AT MAY BE ZERO, OR MIGHT BE SA ME,I ALL THE THREE CASES THE MODEL COULD BE CHANGED

EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF
ZERO

The differential system of this model is now (Module numbered&ix)

45

Do oGy 57Q G S+ @Y Y0 ', -46
%: @ QB °+ IV Y0 Qs -47
Do Gy, 57Q @ S+ GV Y0 ', -48
%: @ ° ¥ o & BN Qs 0 MY, -49
‘Q-"\és = Q@ °Y i e Ve Qs ,0 Y -50

o G Y, @ C @V Qs 0 Y, 5l

[94]
+ ¢RINI® "y, & = First augmentation factor-52

Al NPUTO AND AAO(SEE FI GURE REPRESENTS AN AiM CONFI GUI
STATE: THE CONVENTION SHOWN IS AFTER MCCLU SKY,BOOTH,HILL AND PETERSON.
MODULE NUMBERED SEVEN
NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME
T MAY BE ZERO, OR MIGHT BE SAME,I ALL THE THREE CASES THE MODEL COULD BE CHANGED
EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF
ZERO

The differential system of this model is now (SEVENTH MODULE)

-53

QT o . ST NN o e
D% = G TG G 7+ YT %,0 Qs -54
QT o . ST NN o e
Do Gy T T+ @M %0 Q55
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s Gy Q@ T+ @INT %0 Qg 56

= G 7% AT AN Qs 0 Y 57
Do Gy TN @ T @M Q0 7Y, 58

59

(98 7, w TN FNiNi ™ e

T&sz s 'Y oy T AN gy 0 Y -

+ N7 "Y, 6 = First augmentation factor -61
N7 "Qy ,0 = First detritions factor

FIRST MODULE CONCATE NATION:
~ 0@2 1|+ @gml Y, 0 ||+ (q\léNJZZ Y5, 0 ||+ Q%sts Y, 0| o

T+ (Niaaas \{5,0”_‘_ (NI5555. ¥90||+ NI 6666, ¥30| Qs

0Qs _ -
== s Gy

® |
u |+ ATy, 0| U’
s A VG AN | VNl (AN R Wl Al Y
%: Qs 170, E L éNj4,4,4,4, Yo |+ QINIEE55, . °||+ QINI6666. "y, & |“Q4
u [+ N7 g0 | U

ol Tl IV v |[r @22 e ][r @ies v 0] 1
Qs _ s 1.\@4 :|+ (AgléNJ4444 ¥50||+ 6'\”5555 ¥90||+ istsss ¥30| Qs

I Fa 0] :

u U
Where iVt y,,0 || @Vt vy,,0],| oV ' Y,,0 | are first augmentation coefficients for category 1, 2 and 3

[+ @iz vy o, [+ @22 vy, o, [+ @22 "y, 6 |are second augmentation coefficient for category 1, 2 and

|+ N33y c‘)| |+ N33 Y0 ||+ N33y 0 |are third augmentation coefficient for categd, 2 and 3

oNing 4444, ., ,
|+ CHYNI 4444, \{5,o| + PN Y¥,0 |+ NI 4444 Ty 6 |are fourth augmentation coefficient for category 1,

2and 3

[+ GRINS585. "y, o |+ NBSSS o |1+ QJNBS55 "y, o | are fifth augmentation coefficient for category 1, 2
and 3

|+ cQNesss. y o | [+ cRIN66Ss "y o | |+ R8s "y, 6 | are sixth augmentation coefficient for category 1, 2
and 3

[+ N7 "y,0 [+ N7 0+ @NT Y0 IARESEVENTHAUGMENTATION COEFFICIENTS

@y [ @ivt Qo] w7%ﬂk%m3%d

Mo, vy, [ @D G b @I g, bl dgese @il
u [ & G,.0] o
~ &) '[N oo ][ @2 gyollz BN gy0
%: @ 'Y @gNﬁAM' Q7,0 |Z 2 Ql,OHZ 2 e Q5,0|,,,‘{4
y [ @ 0] o
pR B ) [ e ¥ e Y
W @ % [ B g0l G a0l BT 0]
u I @‘éNﬂ ngl U’
Wherel Nt "Qo | | Nt Qo | @2”’ are first detritions coefficients for category 1, 2 and 3
| aiNi22. "Qy, 6 || aiNi22. Q. o|| gNJ” "Qg,0 | are second detritions coefficients for categorg and 3
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| N33, "Q,,0 | | N33 "Q,,0 | | N33, "Q,,0 |are third detritions coefficients for category 1, 2 and 3
| QNI4444 Q. o | NI aaad, "Q,,0 | cpiNi 4444, "Q, & |are fourth detritions coefficients for category 1, 2

and 3
| cQNssss nq o ,| @Y¥sess g o |,| @NSESS "Qy,o |are fifth detritions coefficients for category 1, 2
and 3

| cRJussss "0 ,| @IVesss Qg |,| @Ueess "qg,o |are sixth detritions coefficients for category 1, 2
and 3

| N7 "Qy,0 || @AINT "Qe0 || @IN7 "Qy,o0 |ARE SEVENTH DETRITION COEFFICIENTS

-62

Q| @M o | [ @iN2? qy.o [z @iV g,.0]
| Q%NJ4444 "Q,,0 || 6N15555 "Q,,0 || ANJGGGG Qs 0|
Wherel Nt "Qo || Nt "Qo | o@‘g“‘l "Qo |are first detrition coefficients for category 1, 2 and 3
| aiNi22. "Qy,0 || aiNiz2, Qg0 || aiNi22. "Qy,0 | are second detritions coefficients for category 1, 2 and 3
| GHNIZ3. "Q,,0 || N33 "Q,,0 || N33 "Q,,0 |are third detritions coefficients for category 1, 2 and 3

| ussss ng 0l N Q7,0 || @444 g, 0 |are fourth detritions coefficients for category 1, 2
and 3

| GHNISS55. Q|6 | | GHINISS55. Q.0 | | GRNISSSS. Q0 |are fifth detritions coditients for category 1, 2
and 3

| GRINI6666. Q. & | | GRINI6666. "Q o | | cRNi6666. "Qg,0 |are sixth detritions coefficients for category 1, 2
and 3-64

SECOND MODULE CONCATENATION :-
R ) e ) [ e A

65%: N6 2“@7 ::|+ L{NJ44444 Ye, o||+ éN155555 Yo 0”_,_ éN166666 “Ys,0 :,:QG-GG
u [+ GBNTT %0 | v,

o 6 2] @INZ Yo [+ N Ty, 0 |+ NS Ty e v
%: &, 27G, :+ dg‘é”j4’4’4’4'4 Y0 |+ CINIBEEEE o“+ (HIN66666 ¥3,0|”Q7 67
L 1

L_, @ %] o

I T oY | O T A [ e AN

E I R Y e e Y| e i °|"Qs 08
" [+ @NT7 0 U

Wherg+ @iN? “y,,0 |,[+ QN2 y,,0 [,[+ gNJZ Y,,0 | are first augmentation coefficients for category 1, 2 and 3

|+ QN 7y, 0 | |+ YNt 7y, 0 | g"“ “Y.,0 | are second augmentation coefficient for category 1, 2 and 3

|+ GHINIS33 "y o | |+ QHnNis33 vy o| |+ NI 833 )’1, |are third augmentation coefficient for category 1, 2 and
3

eNiNG 44444,
|+ o ¥5,0| + (N ¥s,0 |+ PN 44444 6 | are fourth augmentation coefficient for category
1,2and 3
|+ Y 55555 "y o | |+ CHINISSSESS y o| |+ CINISS555 Ty | are fifth augmentation coefficient for category
1,2and 3
|+ CHINI66666 "y o ||+ (RN 66666 "y & ||+ RYNi66666 "y o | are sixth augmentation coefficient for category

1, 2 and 3-69
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70
[+ N7y, 0 [+ N7y, 0 [+ N7 7Y, 0 JARE SEVENTH DETRITION C&FFICIENTS71

@ [ & 00][ G 05 BPS 56] |

%: Qs 27 E QUNi4saas g ||Z GNI5S555 "Q, o ||Z CQINI66666 \fe 72

u | N7 gy,0 | N,

o QY [ @IV gy e ][ @M 0o |jz @N3 g0 | i
%: @ 2% E rd @'&Nj4'4'4'4'4 Q7,0 |Z e T ||Z A ® |"Y7 -3

u | @i Qg o| ¥,
” o [ G| @ o @ g
%: Qs 27V : CINI 44444 Q7ao||2 GNI55555 "Q, o ||Z GNI66666 Q. & |..\{8 -74

u | uggmﬂ "Qo ol U’
Where| bMNi 2 G g,t | | biiNi2 G g,t | | bMNI2 Gg,t | are first detrition coefficients for category 1, 2 and 3
| vt Qo | @t "o |, &Nt Qg | are second detrition coefficients for category 1,2 and 3
| GHNI333. Q5,0 | | aHNi333 Q5,0 | | GHNI333. "Q;.0 | are third detrition coefficients faategory 1,2 and 3
| GYNI44444 Q. | QggNJ44444 "Q;,0 | chiNi44444 g o | are fourth detritions coefficients for category 1,2
and 3
| GHNISSS55 g, o| | GHINISSS55 g, o| | GHINISSS55 g, o |are fifth detritions coefficients for category 1,2
and 3
| GRNIB866S g || GHINIB8666 " | | GHNIB8666 " | are sixth detritions coefficients for category 1,2
and 3

| QINTT "ge0 | INTT "Qqo| GAINTT "Qy,0 |6 QI G SONM G GEOGHE o

THIRD MO DULE CONCATENATION :-75
A e o e A

2% = Gy 37Q [+ U a2asss o ||+ GRINBESEES vy, o ||+ (RN 666666 '§’3"‘3|:::"QO 76
} & 0] o
VI e ) e ) X e Y
2=y G PRIV [+ cRUN555555 y o |[+ cRIN666666 "y & |--C21 77
'u' [+ @777y 6] U
v A e @ nel ar el
2=y, 3G |»+ NIadaass ry o]l GRNIB888ss Y o |+ G} iNJG*G*G’G’G’G "¥5.0 |--Qz 78
u [+ GV 0 | o

[+ 6BN3 Y0 L[+ @V "y,0 ||+ @V "y,,0 | are first augmentation coefficients for category 1, 2 and 3

|+ QUNIZ22 Ty g | |+ @uUNiZ22 Ty g | |+ iNiZ22 Ty o |are second augmentation coefficients for category 1, 2
and 3

111,

|+ QNI Ty, o| |+ aynuttL y, o| + N “Y,4,0 | are third augmentation coefficients for category 1, 2
and 3

NN — NN AAAAAE L N p— . -
|+ PN 444444 Ty | + (PN Y,0 ,|+ N 444444 Ty 6 |are fourth augmeation coefficients for

category 1, 2 and 3
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|+ GPINIS55555 Ty o ||+ GPINISSSSSS Ty o | |+ CRINSS55555 Ty o |are fifth augmentation coefficients for
category 1, 2and 3
|+ cRN6s666s y o | [+ (N6666EE vy o |+ GRN66SSEE "y & |are sixth augmentation coefficients for
category 1, 2 and 379

80
|+ QN7 |+ GRINITTT. |+ QNI Y0 |are seventh augmentation coeffici@it

63 2 GV "Q.0 [z AT "Go,0 [z AV Q0| 1

oY . 1
Eo_ Go 3% 1| QN4sssds g o ||Z QNI555555 Q0 ||Z CRNI666666 Q. & | Yo -82

|

Y [ 9777 Qo0 | v,

o @ [ AN "g0]lz Y222 Qo0 |z @V o | 1
o > ! J —— — n
%: Gy % | @ittt g g |Z GINI5E5555 Qo ||Z GUNI666666 Q. & |.’. Y, -83

‘ N7 i

u 2 QNI Gy.0 | U

111, Q0 .

o @ [ IV Q.0 |z @2 "gy.0 |z @Y I
Q 5
%: 0o 3 Y, Q%NJ4,4,4,4,4,4 "Q,,0 ||Z QggNJS,S,S,S,S,S Q.0 ||Z QgﬂNjﬁﬁﬁﬁﬁﬁ "Qs,0 |..)’2 -84

l

u [ 9777 "ge.0 | o
| N3 ", 0 | | QN3 Q.0 | | RYNE Q3,o| are first detritionscoefficients for category 1, 2 and 3
| GiNi222 "Qq o| | GyNi22.2 Q9,0| | GiNiZ22 Qg0 | are second detritions coefficients for category 1, 2 and
3
| auuiit Qo |,| Nttt Qo |, @ini Y -qg | are third detrition coefficients for category 1,2 and 3
| CHNI444444 "G o | &g'gNJ“"‘""“""“ "Q;,0 | chiNi444444 "Q7,0| are fourth detritions coefficients  for
category 1, 2 and 3
| iNissssss g o || QNsesss5 g 0|, dNSSS855 Q6| are fifth  detritions coefficients  for
categoryl, 2 and 3
| CRINI666666 Q. 0 || CRINIBBBEEE Q. 0 || CHNi666666 Q. o |are sixth detritions coefficients for category
1, 2 and 3-85

|z GUNITTT "Qg, 0 Iz N7 "Qg, 0 Iz N7 Qg0 |are seventh detritions coefficients

FOURTH MODULE CONCATENATION :-86
o) A1 BN Y0 [+ GBS Y0 [[+ @iNeS 0
= e 0 [Ty b [ @Ry 6 [ R 6], 87
u I_,_ GNINI 77,77,y Ol U’
“’ug‘é 4, é'Nj4 Ye,0 |+ QNS5 Ty 0“+ chNIBE vy, 0|||

T% - g 4°Q, [+ AN 0|l @M Ty, 6 |[r @I ¥10|n95 88
0 ||

|+ GNNITTTT, y ol Y,
rv@‘é Y B Y0 [+l 5 o[+ @IV g0
1
1111 Yol
%: Gy Qs |F RIN Y.,0 |+ @QiNi22.22 ¥70“+ HiNi 3333 )/1,0':,:“@6 -89
] a7 0] :
u U
o d @Vt 0| @MY ¥,0 [ @Y Y,0 | GO 0@ G aieE GO 6 @i ORI (1,2 (03

|+ CHINI 55, \{o||+ CHINI 55, \fo||+ RN 55, )’o|mQuQmsQun§men@son§Xﬂ@oQ|cmeQnleu}:QB
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|+ CHNI6E. Y 6 | |+ NI6E Y 0o | |+ YNI6E Y0 |m QETHQ (O ' XDEE 68 QCHRE ORIl (BOET 01,2 6E'Q3
|+ QYNILLLL Ty g ||+ QYNuLLLL Ty, o | gNJllll "Y,,0 | are fourth augmentation coefficients for category 1,
2,and 3
|+ QQUNi2222 7y ||+ NiZ222 Ty g ||+ Ni2222 1y | are fifth augmentation coefficients for category 1,
2,and 3
|+ GPNI3333 "y o | |+ CHNis833 "y o | |+ HNIs333 "y o |are sixth augmentation coefficients for category 1,
2,and 3

|_,_ éNJ7777,

Y;,0 |+ GINTTTT Y |+ NI 7T o IARE SEVENTH augmentation coefficien@®

91
-92
~@f [ BT g0][ VS guoz alfNee "gy0 ] n
%: &&4 4.,\£5 ::| O@glelll QO|| éN12222 anOHZ Q%stsss 'Qs,C‘J|:::"¥4-93
u | leéNj7,7,7,7,,, Qg,ol Il.ll’
oddt | G g0 |[ @IS "gi0]lz @IS "gse]
%: s Y, ::| QUNTILL Oo|| Q2222 g 0||Z FVUEREE "stc‘)| :’:")/5-94
:JI | QggNJ7,7,7,77,, "Qy o| ILIJ’
o G [ BV g 0] [ @SS g0z @V Qa0 | i
%: s 4 Ys :: @gmllll . | QiNi2222 "Qg,(J“Z CRNi3333 "Qg,C‘J|:::"¥6 95
IUI | (";ggNj7,7,7,,7,, "an()l ILIJ’
o@md @M Lol @M g0l [ BINY Q6 |d Qo oM e GO G @l WI0B (1,2 (203
| GHINI 55, Q1,0|| GHINIS S, Ql,o|| GRNISS. g, Ol(.dQlQ;a:EQEXl] GO GEOHE S @i (@BAR w1,2 E'Q3
| chiNies. Q. o| | aRiNies. Q.0 | | cNI6s. "Q,0 |G QIO "GO (8 OXHE G "@1 WHOEGI w1,2 (2'Q3

| @gNJllll QOH Alelll Qol d_\gNj

1111

3 QRO GO "G 8 QOXHE G "Bl uwQlel,Z(mQ?,

| @gsz,z,z,z "Qo,0 | aﬂsz,z,z,z "Qo,0 || ai\gsz,z,z,z "Qg’°|

G QWO "G 8 QKRG "R wWBAR1 1,2 E'Q3

|Z FrVIEEEE S IZ CNi3333 Q3’0||Z UNI3333 g, OI

G Qi "N "GEE o8 QXNIKE A "1 OB 11,2 (2'Q3

| QNI g, e | QINTITIT. geo|  @NTTTTT. Q6 |6'YOSEVENTH DETRITION

COEFFICIENTS96

-97

FIFTH MODULE CONCATENATION: -

é 5|+ éNjS ¥9,0||+ iNJ44 )(50“_,_ éNjGGG X Ol

98‘%: 5 "Qy : QNI Ty o [+ iNz2222 vy, o |[+ @giie3da vy 0| "Qg -99
Iu |+ GIN77. 7,77y ol U’

,N 3y 5|+ RNy 0|+ Q%NMA, Ye,0 |+ GhNI666 "y, bl |’|

9_(29: o 5Qg ix QUNILLILL my 0||+ QuNi22222 "y 0“+ GN33333 "y, Ol..Qg -100
'u |+ QINTTLTTT OI U
o 5|+ N 5 )(9,0“4_ GRINI 44, )(50”_,_ QNI686 0|
1

%: o 57Q AN 11,11,1 rO |+ QiNi22222 "y “+ CQINI33333 vy 4 | "Q, -101
Iul |+ QNI 777,77 XOI IlIJ;
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oM+ @NE Y0+ gNJS Yo, 0 |,[+ HIVE Y, 0 |3 Q0N 06D B G TEE (FOUGHE G "R IR 11,2 6203

osQ| QN44 Y 0 | gNJ " Y%, 0 |+ QN44 Y 0 | G 'Ql'DEE QDB 'R CHEE 08 QOCHE 0" WHAGT 01,2 (EC

[+ NS "y, o | [+ NEss y o | [+ @QPNESE "y 6 | QIO GO G aBEE GEOMNGRE ORI BRI O1,2 (2'Q3

; R 11111 ., . .
|+ QNILILLL Ty o ||+ QYN LLLLL Ty g | + QN Y,,0 | are fourth augmentation coefficients for category

1,2,and 3

|+ Ni22222 "y, ¢ ||+ Ni22222 "y ¢ ||+ Ni22222 "y, 6 |are fifth augmentation coefficients for category
1,2,and 3

|+ PN 33333 "y | |+ CHNi83333 "y o ||+ NI 33333 "y o | are sixth augmentation coefficients for category

1,2,3 -102

-103
o @S[BS Qo[ @IV Q0] dINess Q|

%: Qs 5 Yo E NI TLLLL Oo|| QuN22222 Qo ||Z @UNI3R333 g, 6 |)/8 104
u | QgAéNJ7,7,,7,7,7, "Qg,0 o
o G [N QLo @iN' g0 [z @Nees Q0] T
|

QQ!;Q: Qo 5" Y QUNTIILL QOH QUNi22222 anOHZ QNi33333 "q, 0|..)’9 -105
I
u | QggNJ7,7,7,7,7, Q810| U’
o @ 5[ AV Q0] IV g0z AV Qs0] 1

o~ - | Y]

% o 5"\2,9 | angjl,l,l,l,l, Q0 | @A'sz,z,z,z,z “QQ'OHZ (I%NjS,S,S,S,S "Q3,C‘)|-:-"¥0 106
:J | dggNj7,7,7,7,7, "Qg, 0 ILIJ’

0 qu GHINI S Q1,0| GHINIS Ql,o| | NS "qy, o| G QTN OO "GEE (8 QCXIHE o

@1 WHOG1 01,2 Q3
| G&“Nl““ Q0] QN g0l [ BN Q0] 6 0idEE QO a8 O d @l GBI (01,2 (2103

[ @ves6 g0 [ @INGes Q.0 [ QANGES "Qy0 | G0N0 O aet GO0 § @i GG (1,2 (03
| @ﬂNJlllll Q0 || (,\ﬁ{NJlllll QO| d_\gle,l,l,l,l, N

Qo | are fourth detrition coefficients for category 1,2, and

| cpiNi22222 g & || ciNi22222 g & || oiNi22222 g, & |are fifth detrition coefficients for category 1,2,
and 3

|z GHiNI33333 "G, 0 ||z GHNI33333 ", 0 ||z GHINI33333 "g, 6 |are sixth detrition coefficients for category 1,2,
and 3107

SIXTH MODULE CONCATENATION -108

~ G 6|+ CRNIG Ty 0||+ GHINI 555 -)/9,0”_}_ CRNI444 Ty Ol o
%: o 6=‘Q3 |.+ d_\gmjl,l,l,l,l,l Y4, 0 “_,_ d_\léNJz,z,z,z,z,z Y,0 “+ Q%st,s,s,s,s,s “¥,,0 |- -109
u |+ GIN 777777, -'¥7,0| IlIJ’

w \ eNiNi 444, ., \ >
e e e Y L i T B

%: W; °'Q, |,+ QYNLLLLLL my ||+ QUNi222222 "y o “+ GHNI333333 "y o |,,Q3 -110
u |+ GNINI 77,7777, -¥7,0| U’
e B A I AR | R e Aol | R i ) Y

%: Gy 8°Qs : GQN 111,111 Y00 |+ GRNI222222 vy, g “_,_ CHNIB33333 "y ¢ |--Q4 111
lul |+ N 77777, !¥710| U’

|+ RN 6 }(3,o||+ RN 6 y30||+ N6 ¥30|QOom®Qm@st§XﬂQa @1 WHOGi wl,2 03
|+ CHINISSS Ty o||+ CHINISSS Ty o||+ RN 555 )’o|mQuQasQun§anm@son§Xﬂ@:a @1 ORI w1,2 (203
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Where we suppose
(A g, @B, @, @&, §F >0,
0= 13,14,15
(B) The functions ¢§&*! , (I%ael are positive continuoucreasing and bounded

Definition of (g *, (9 *:
G (Y40 (' (043)®
@@= (QY (gt (@ (643)Y

©) o[o] YO tb B Y40 = (Mt
limgop, GEXL "QO = (ig!

Definition of ( 815 ), ( 645 ) :

Where|( 013)D,(6,53)P,(N3 L, (iQ? |are positive constants

and ['(x 13,14,15

They satisfy Lipschitz condition:
(G o (@B Yol (Q)PIY "l de)™e

(GBPF "0 (G QY| < (Q)@W[I'0 "OffQ (812)M

With the Lipschitz condition, we ma a restriction on the behavior of functiotéf** “¥,0 and &P “Y,,0 . "¥,0 and
“Y,,0 are points belonging to the interval 'Qz ), (0 153)™ . Itis to be noted tha(¢EfF* “Y,,0 is uniformly continuous.
In the eventuality of the fact, that {f0 ,5 ) = 1 then the function (¢ "Y,,0 , thefirst augmentation coefficient
attributable to terrestrial organisms, would be albstely continuous.
Definition of (0 13 )™, ( Qg )™ :

(D) (013)3,(°Q3)®, are positive constants
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(6 * (@ *
(013)® "(043)D

Definition of ( 035 )™, (045 )™ :
(E)  There exists two constantslys )™ and( 015 )™ which together with( 0 153 )™,( Qs )™, (815) P 6E'Q( 815 )™ and

the constant{cy * ,(6F 1, (L. (B L,(d . (i9 !, 131415,

satisfy the inequalities

S L@ @l (8i) % (D) (Qe) V] < 1

(043)®
1 ” " . x .
W[ (1 + (a1 + (0613) P+ (033)P (Q3)P] <1

TGy, @7 [@ Q0] [@ %o (@ Q.0 128
ONNP30T PONINP7,0 1T BONPNBLO 1 cBININP5,0 129
b 130
131
132
+ GRINI7 "y, & = First augmentation factor 134
1) g2, a2, T2, 2, B2, g2 >0, (161718 135
(3] (2) The functions ¢£*? , 5%992 are positive continuouacreasing and bounded 136
Definition of (p;) 2, (r;) ?: 137
B Y0 (M2 Bie 138
E* (.0 (% (6F> (8)? 139
G) (3) lim-yo, GB* "Y;,0 = (g 140
M-, B Qg ,0 = (i 2 141
Definition of ( 6,6 )@,( 6,5 )@ : 142

Wherel( 016)@,(636)@, (3 2, (192 |are positive constantand
They satisfy Lipschitz condition: 143
(&2 o (G2 Y01 (Q)PlY, "FQPw)® 144
(G2 Qo %0 (GB2 Qo 01< (Q)DI"Q "G QP20 145
With the Lipschitz condition, we place a restriction on the behavior of fundti@j& “Y¥&,o 146

and &2 “Y,,0 . "¥,0 And “Y,,0 are points belonging to the interval Qg )@, (015 )®? . Itis to be
noted tha{ &% “Y,,0 is uniformly continuous. In the eventuality of the fact, thdtiif,s )(? = 1 then the
function (¢&F* “Y,,0 , theSECONDaugmentation coeffient would be absolutely continuous.

Definition of (0 15)®,( Qs )@ : 147

(H) (4) (015)P,(7Qs )@, are positive constants 148
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(6 2 (@ 2

(016)3@ "(0416)@
Definition of (0y5 )@, (045 )@ :

There exists two constantg ;5 )(? and ( 0,4 )(® which together
with (0 16)@,(7Qg )@, (616)P6EQ( 616 )? and the constants

((*)d z 1(&% 2 1(&)& 2 1(@ 2 1(na 2 ' ('d 2 ,"gzz 16’17’18’

satisfy the inequalities
1
W[ (@)2 + (@52 + (Ap)?@+ (P)® (ki)@]<1

Sl @2+ (@2 (636)@+ (935)@ (Qp)P]< 1
Where we suppose
(I (5) 3, B3, E®, 3, &3, E* >0, Ok 202122
The functions ¢ , &> are positive continuotiacreasing and bounded
Definition of (74 2, (r;) 3:
B2 (%0 (2 (820)@
B (00 (13 (GB?  (85)®
0Q ~yo , > "¥,0 = (g
liMgoy, GB** Q3,0 = (ig °
Definition of ( 8,0 )®,( 65 )® :
Wherel( 020)®,(60)®, (A3 3, (193 |are positive constantgnd
They satisfy Lipschitz condition:
(= %0 (G %0l (R QP2
(B "Qs%0 (G Q3,01 < (Qo)@IIQs Qs (P20

With the Lipschitz condition, we place a restriction on the behavior of fundti@ggfs “¥5,0

andG&F® "Y;,0 . “¥5,0 And "¥;,0 are points belonging to the interva] Qg ), (0 50 )® . Itis to be
noted tha{ & “Y¥;,0 is uniformly continuous. In the eventuality of the fact, thdtiif,, ) = 1 then the
function (¢&F® “Y;,0 , theTHIRD augmentation coefficient, woulte absolutely continuous.

Definition of (0 50 )®,(Qy )@ :

) (6) (0 50)®,(Q,)®, are positive constants
(G S

(020)® "(02)3

Thereexists two constanfBhere exists two constarn(t$,, )2 and( 0, )® which together with

(020)®,("Qo)®,(820) PR 850 ) and the constantgdy (3 *,(cq * (& ®, (g 3, (19°%,'x
20,21,22,
satisfy the inequalities

(Uzi)(s) [(6Q3 + (&3 + (020)®+ (00)®(Qp)¥]<1
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SISl @? @0+ (620)+ (B20)@ (o))< 1 166
167
Where we suppose 168
g%, GB4, (B2, p*, (B4, (B> >0, & 242526 169
(L) (7) The functions GE** , ¢&>* are positive continuoumcreasing and bounded
Definition of (g 4, (9 *:
B (¥%,0 (M*  (824)@
GE* Q0 (it (G (6)®
170
M) (8) dQ-you B "¥%,0 = (g *
limeoyw, 6B "Q; ,0 = (ig*
Definition of (6,4 )*,( 654 )* :
Where|( 8,4)™,( 8,4 )@, (A4 *, (i3 * |are positive constantand
They satisfy Lipschitz condition: 171
(G B0 (6™ %0l (Q)WIYs "l P28
(G Q%0 (B "G .01<(Q)WIIG g Flba)e
With the Lipschitz condition, we place a restriction on the behavior of funciég* "¥,0 172
and(G&P* "¥5,0 . “¥E,0 And “Ys,0 are points belonging to the interval "Q, )*,( 0,4 )®* . Itis to be
noted that(¢&** “Y¥s,0 is uniformly continuous. In the eventuality of the fact, that if ,, ) = 4 then the
function (¢&** “¥s,0 , the FOURTIdugmentation coefficientWOULDbe absolutely ontinuous.
173
Definition of (0 54 )*,(Q, )@ : 174
(0 ,4)176Y5*) (°Q, ), are positive constants
@p¢ (@
(022)® "(00)@
Definition of ( 0,4 )®*,( 0,4 )® : 175

(P) (9) There exists two constan(s,, ) and( 0,, )* which together with
(054)®,07Q, ) (824) P E'Q( 6,4 ) and the constants
(cog 4, (GF*.(* (. (g, (iq*, ' 24,2526,
satisfy the inequalities

@ @ (82)@+ (D)@ (Qe) )< 1

(02411)(4)[ (G % + (QF* + (020) D+ (0,)P (Q)P]<1

WWW.ijmer.com 2052| Page



International Journal of Modern Engineering Research (IJMER)

WWW.ijmer.com Vol.2, Issue.4, JubAug. 2012 pp20282109 ISSN: 22496645
Where we suppose 176
) G5, GBS, GBS, Moo, (8°, (8™ >0, U 282930 177

(R) (10) The functions G®° , 5> are positive continuoucreasing and bounded
Definition of (9 °, (i °:

d%aefa (")/9,(‘)) (nd 5 (628 )(5)
GE® "Q; ,0 (9% (B> (06,5)®

178
(S) (11) &f{'yow B "Y¥9,0 = (g °
liMmeoy, 6B "Q,0 = (ig°
Definition of (8,5 ), ( 6,5 )® :
Where|( 0,8)®),(6,5)3,(Ny %, (ig° |are positive constantand ['G= 28,29,30
They satisfy Lipschitz condition: 179
(G "%.0 (G %01 (Q)OY% "=
5. o . 7 o . L7 o o . 0 (5) ¢
IGB® "Qu 20 (G "Q.01<(Q)®'Q q HQ P
With the Lipschitz condition, we place a restriction on the behavior of funciGff§® “¥%,0 180
and(G&F® "¥,,0 . “¥5,0 and "¥,,0 are points belonging to the interval Qg ), (0 ,5)® . Itis to be
noted that(G&f® “¥,,0 is uniformly continuous. In the eventuality of the fact, that if ,5 )(® = 5 then the
function (G “¥,0 , theFIFTHwugmentation coefficientattributable would be abolutely continuous.
Definition of (0 55 )®,( Qg )® : 181
(0,5),(Qg)®, are positive constants
(6 ° (@ °
(028)®) "(028))
Definition of ( O,g )®,( 0,5 )® : 182
There exists two constan(sl,g )® and( 0,5 )® which together with
(0,8)9,(Qg)®),(8,5)PGEQ( 6,5 ) and the constants
(6 ° (G5, (A5, (F°,(Md >, (19 %, 282930, satisfy the inequalities
1 o o o 5 %,
m[ (6 ° + (6B % + (055)5)+ (05)%( Q)% <1
1 7 5 » 4 %
m[ (6 ° + (a5 + (65)0+ (055)0 (Q)P]<1
Where we suppose 183
o ¢, CBC, B™, n°, @E°, @& >0, dr 323334 184

(12) The functions ¢GE*® , (E*° are positive continuoumcreasing and bounded
Definition of (g ©, (ig °:

@2 (%0 (M° (63)0
B (Q .9 (9° (F° (83)®
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185
(13) dQ yo s, G{E% "¥5,0 = (g ©
limgoy, 6B Qs ,0 = (ig°
Definition of ( 65, )(®,( 65, )(® :
Where|( 03,)®,(65,)0, (N ¢, (ix° |are positive constantand [Cx 32,33,34
They satisfy Lipschitz condition: 186
o o \ v o \ [ o w . O (OF
(G "Bo  (GB* %01 (RO gl ba)®e
7. o . 5 o . %, o o . 0 (6) &
(G Qs %0 (GB® Qs 01<(R)O|'Qs Qs FQ(ba)®e
With the Lipschitz condition, we place a restriction on the behavior of func(id§g® "¥g,0 187
and(GEF® "¥;,0 . "¥5,0 and "¥;,0 are points belonging to the interval Q, )(®,( 0 3, )® . Itis to be
noted that(¢&f® "¥z,0 is uniformly continuous. In the eventuality of the fact, that if 3, )(® = 6 then the
function (G “¥z,0 , the SIXTHwgmentationcoefficientwould be absolutely continuous.
Definition of (0 5, )®,(Q, )©® : 188
(03,)®,(Q,)®, are positive constants
(G ° (@9 °
(032)®) "(032)®
Definition of ( 0z, )(®,( 04, )® : 189
There exists two constan(sls, )® and( 03, )(® which together with
(032)©,(7Q2)®,(032)®2'Q( 63, ) and the constant§cy © , (¢ © (o) © ,(6F ®. (M °, (94 °,'F
32,33,34,
satisfy the inequalities
1 v . ., . -
m[((ﬂd ©+ (68 + (05)0+ (03)®(Q)0 <1
1 e 5. 2 ~ ~
m[ (6 ° +(aF° + (65)0+ (03)® ('Q)0]<1
Where we suppose 190
V) Gl @M, G, AN > o, 101
"OC: 36,37,38
(W) The functions C(ig“? , J%J'NY are positive continuouacreasing and bounded
Definition of (N9 *, (ig9 " :
AN (%0 (7 (83)
AN (09 (a7 (T (8x)7
imyop GV ¥,0 = (a7 192

limep @M Qe ,0 = (ig7
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Definition of ( 845 )™, (646 )7 :

Where|( 036 ), (636) D, (N7, (17 |are positive constants

and |'(x 36,37,38

They satisfy Lipschitz condition: 193

(Y Wo (Y %0l (Q)?IY "W e
GV Qe Mo (Y Q. Yo 1< (Qe)VIQ Qo M (D)Mo

With the Lipschitz condition, we place a restriction on the behavior of functi@d¥? "YJ,o 194
and @V "Y,,0 . "W,0 and "¥,,0 are points belongingp the interval ('Qg)(™,(035)™ . Itis to be
noted that Y™ "¥;,0 is uniformly continuous. In the eventuality of the fact, thatifzs )(7) = 7 then the

function (¢ "Y,,0 , the first augmentation coefficient attributable to terrestrial organisms, would
absolutely continuous.

Definition of (0 36)™,( Qg )™ : 195
(X) (036)7,(Qg )M, are positive constants

(¢ 7 (%7
(036)7 "(036)

Definition of ( 06 ), ( 036 ) : 196

Y) There exists two constan(ts,g )" and( 03 )(” which together with
(036)7,( Qe )™, (036) N 6EQ( 636 ) and the constants

(697 .(6H7.(7 (M7 .(ha 7, (147 & 3637.38,

satisfy the inequalities

1 - 5 ~
Tyl @7 + @7+ (82)7+ (5)7 (8) < 1
1 & oy ol ~
W[ (@ " + (a7 + (636) D+ (036)7 (Q) V<1
Definition of "@,0 ,"%0 : 197

o, \ 5 5 5
@0 Usg QU2

o I "0 ="&> 0|
. N . 198
MO (0,5)@02)0 [y 0 = 8> 0

Definition of "Q,0 ,"%0 : 199

o \ 5 6. 5 6
@0 Uz Qa2

[} ,I “Q)O — “C?)> 0|
MO  (04,) 002D [yo = B> 0

Definition of "Q,0 ,"%0 :

e, \ 5 7. 5 7
@0 Usg [N

» .[G0 =11
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O (D)Wt

Proof: Consider operatof () defined on the space of sextuples of continuous funci@nsésa ., © s,
which satisfy

Q0 =&, %0 =", @ (03)P . (045)P,
0 Qo G (D)o
0 %0 "B (03 )WigP13) Do

By

G0 =B+ g () Qs i 13 (@) " +GBFY Yol 13 Qi Oy
G0 =G+ o () Q1 (@) " +(@F" Yalag 1z Qi Oy
G 6 =G+, (Gs) Qi 13 (6f5) * + (BF" Yalag 1z Qi Gy
Yoo =Bt () Ve i 1 (GB)*  (GBF' Ol d1g "Yaia Qs
Yo=Yt ()Y s (GF) ' (GHF' Ol as Yalas Qs

Tis t =T "‘WOO (Q@s)*"Ya 013 ()1 (GEF! Oiys i Ysig Qs

Wherei ;3 is the integrand that is integated over an interval 0,0

if the conditionsN THE FOREGOIaltsve are fulfilled, there exists a solution satisfying the conditions

Definition of "Q,0 ,"%0 :

7

Q0 b QYm0 Q0 = @> 0

KO (Bap) Moo

200

201

202

203

204

205

206

207

208

209

210

Consider operator| (M defined on the space of sextuples of continuous functi@@s %5, © A, which satisfy

QO =", "0 ="8,F (U5) 7, (03),
0 Qo QG (Dg) PP

0 "0 "G (D)W@)

By
Qe 0 = G + )voo (Gyg) " "Qy 1 36 (GB) " +BF " Y ia 3 @iz g
@7 0 ="Q +

)voo (6%7) ! "QG i 36 (dg%) T+ (@?7 "¥7 i 36 !i 36 “QY i 36 qa 36
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"Cgs 0="G+
vy (Gxg) Qi g (GF) " + (6T Yy iz e "Qgige O

STl (GR)T (GBFT Ol s Y im 9

+

Y 0 ="

Y, 0="% +w0¢ (G7) " "Y1 56 (@) 7 (CHF’ Oige iz Wiz g

Teg t =T+
,VOO (Ghg) " Y7 1 36 (6%) 7 (GRF’ Oige iz Wiz g

Wherei 35 is the integrand that is integrated over an interval|o

Consider operator @ defined on the space of sextuples of continuous funci@nsgs , © s, which
satisfy

Q0 =G, %0 =8, G (56)? % (01,
0 @0 Q (B)@cs0e)
0 o "B (Dy)@ci0ie) s

By

G 0 ="+ .y () 2°Q i 16 (C) 2 + @RF> Yy i16 16 Qi Qe
G o=+ (@r)2Q i1 (@) 2+ (BF? Y i 17 Qi Qe
G 0 =B+ (6e)2°Q {16 (@R 2+ (@2 Y i 15 Qi Qe
Yo o =Bty (D)2 i 16 (Cf) > (CF® Oie e Yol Qe
Y o=t ()2 16 (CF) % (GBF* Ol s Vi Qe

Yo 0 =" "‘woo (Qg) Yy 1 16 (6f5) 2 (CBF? Ol ig Yol e

Wherei 15 isthe integrand that is integrated over an inter®ad

Consider operator () defined on the space of sextuples of continuous funci@nsgs . © s, which
satisfy

Q0 =G, 60 =8, (5o)@ 8 (00)@,
0 @6 W (D) @gim)
0 "0 "B (Dy) @i

By
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Qo 0 = Cgo"',vo (Go) "Gy 1 29

G o=@+ (63) 2 Qi
G 0 =Gty (63)° Qi 20
Yoo =M+ 5 (G0) W% i 20
Vo=t g (@)%Y i a0

Tpt =T +,v00 (@) "% i 20
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(@) ° +68F° Y i i Qizxn G
(@) ° +(HF°> Mo 20 Qizn 9
(@) ° +(BF° YMin da Qixn U
(GR) > (GRF® Oiz i Yoizn o
(6F)°  (GHF® Oig i ™ iz oo
(63)°  (GBF° Oig i Yizn

Wherei ,, is the integrand that is integrated over an inter®zd

Consider operator (9 defined on the space of sextuples of continuous functihs %5, © s, which

satisfy

Q0 ='®, %0 =8,

0 Q0 @ ()@
0 "o B (Dy) @i
By

@, 0 =G, + WOO (634) * Qs {24
"G5 0 = Qs +>,00 (6ys) * "Qq 1 24
Qe 0 = "G +>,00 (6d6) * Qs 1 24
Y0 =Yty (6h) Yo i o
Yo 0= Bt o (Gs) Y i 2

o0, o P
Tost =T+, (W) * ¥ i 24

(024)® .74

(024),

() * + BT Yoo os Quia Uy
(G) * + (GBF* Yo i2a loa Qoiog Uy
(65) * + (CBF* Yo i24 loa "Qoion Qg
(G82)*  (G8F* i s i Yaloe o
(G52)*  (C5F* Oios i Yo ia o
(G88) *  (CRF* Of s i Yol o

Wherei ,, is the integrand that is integrated over an interv@|o

Consider operator (® defined on the space of sextuples of continuous functiéhs %5 , © 5., which

satisfy

@0 =%, %0 =%,

0 Qo W (b))
0 "0 "G (D)0
By

Qg 0 = Gy + ,VOO (Gyg) ®> Qg | 25

(08)® .74

(05)®,

(GF3) ° + GBF° Yo log iog "Qgizg ™y
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Gy 0 =Gty (@e)5 Qs (CB)S + (GBS Yol i
B 0 =Gty (630)° Qo  (CB)S + (BT Yoizm oo
Yoo =Bt o (Ge) Yo i (GBS (CEFS Ol i
Yoo =Bt o (D)5 Ve iz (GBS (GRF® Oi g i

Tt =T +,v00 (Gxo) Yo i 28 (6B) 5 (GBF® "Oi 55 i

Wherei ,g is the integrand that is integrated over an interv@]o

Consider operator (8 defined on the space of sextuples of continuous functighs %5, © 51, which

satisfy
Q0 =%, %0 =8, (05)® 8 (D3)®,

0 Qo @ (by)@in)

0 %o B (Ds)O00R)

By

G o =Gk (@) Qi (CB)C BT Gin ix
G o =Gty () Qi () + (BT %in ix
G o= Gty (3)  Qia (G +(EF Gl ia
% o="%ht () hin (B (CEF® Oig iz
Yo =%t () %in  (CB)C  (CEF® Oy iz
Tt =TH+. 0 (@)% isn (@B (G&EF® Oig g

Wherei 3, is the integrand that is integrated over an interv@|o

. if the conditiondN THE FOREGOINGare fulfilled, there exists a solution satisfying the conditions

Definition of "Q,0 ,"%0 :

Q0 by QYm0 Q0 ='@> 0

%O  (0s) @) V0 [y = B> 0

Proof:

Consider operat ' (") defined on the space of sextuples of continuous funci@nsgs . © s, which

satisfy

WWW.ijmer.com

")/8 i 28
")/9 i 28

"XO i 28

“QQ i 28

“QO i 28

“QZ i 32

“Q3 i 32

“Q4 i 32
"¥2 i 32
"¥3 i 32

"¥4 i 32
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QO =@, ™0 ="8,"§ (0)"," (036)7,
0 @O0 G (D)Mo

0 "ho "% (Dg)MQbwm)Me

By

Qe 0 = "G + ,voé (Gx) " "Q7 1 36 (B 7 + Y Y g iz Qeizs U

@, 0 =" +
>v00 (6d7) " "Qe 1 36 (6B 7 + (7 Y ig Mg @iz D

Qg 0 = G+
woé (Gxg) " "Qy 1 36 (6B) 7 + (BY” ¥ (36 ige Qgig O

Y 0 = "% "‘),00 (Gd) "Y1 36 ()7 (GBY7 Oige iz Yoize g

Y, 0 =" "‘wob (G7) " " 1 36 ()7 (BT Oige iz Wiz g

Togt = T+

()Y e (@7 (G Ol iz Y ia G

Wherei 55 is the integand that is integrated over an interv@)o

Analogous inequalities hold also f6®; ,"Q,, Yy, %1, %

(a) The operator (9 maps the space of functions satisfyiBg OBAL EQUATIONS itself .Indeed it is
obvious that
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Qo G, *'wofJ (Cyq) * "G+ (0yg )(4)'51024)(4)i 24 Qg =

o (6pa) * (52a)™ (5,0 )@¢
1+ (Cyy) 40 @54_% gv24)vo 1

From which it follows that 274

(024)D+ g

o \ o, . o (4) (& )4 5 . . @ 5
Q, 0 "G, Qba)To (DQW (04)® + G5 Q 5 + (0 )

"@, is as defined ithe statement of theorent

(b) The operator (5) maps the space of functions satisfyiBOBAL EQUATIONS itself .Indeed it is 275
obvious that

Qs 0 Gy +w0¢ (Gyg) ° "Go+ (D )©Ogo) Vi g 28 =

“ N5 e (628) ° (028)®) {5 ,5))s
1+ (Gyg) 50+ 020 g028)%0 4

From which it follows that 276

(028)®)+ g

“ \ o . " (5) ¢ (&pg) 5 5 - . @ 5
Qs 0 "G Q0260 (UZSW (0y)® + "G Q o + (0 )@

"@, is as defined in the statement of theorem 1

(c) The operator| (6) maps the space of functions satisfyia OBAL EQUANSInto itself .Indeed it is 277
obvious that

RO G +>v00 (6y) & "G+ (0s, YO i) g 2 =

N (d82) © (032)® (i 520 )(O)¢
1+ (Gyp) 0C§3+—(032)(6) gb32)® ¢

From which it follows that 278

(032)®)+ s

o~ n v (D)8 (dB) 8 = S -
Q0 '@, Qb0 (U;W (05)® + @ Q 3 + (03 )®

"@, is as defined in the statement of theordm
Analogous inequalities hold also f®s ,"Qs, ¥4, ¥s5, ¥

(d) The operator () maps the space of functions satisfying 37,35,36 into itself .Indeed it isustiviat 279

o . o 0 , . o 5 o~ U (M )
Qs 0 Qo+, () " @+ (0g) NG0B T G g =

" (6m6) * (036) 7\ § as YD
1+ (Gue) 70 "G+ =iy — @) 1

280
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From which it follows that

(036)D+dy

o . o (D ) (D (¢ag) 7 > e -
Q 0 "G Q(V26)0 (032)(7) (036)7+ @ Q 7 + (36 )"

"@, is as defined in the statement of theorem 7

. l 7 1
It is now sufficient to take'22 , (@ __ < 1 and to choose 281
T013)D " (013)D
(P3)® and( Q3)® large to have
282
(013)D+d) 283
(Gt 5 5 . K 5
B (Bt + (B +g ® (Gis)®
(013)D+, 284
(& 1 x \Q ) x ~
(D(T:)l (013)P+ g Q o +(033)®  (045)®
In order that the operator (1) transforms the space of sextuples of functiahs ¥;satisfyingGLOBAL 285
EQUATIONS nto itself
The operato'r (@) is a contraction with respect toetimetric 286
yQ nol ’"Yl , .\02 ,"Y2 =
rors o v vl P, B (013)10,"‘...1 . ...2 o (013)16
lggn{%gfuq)o Q 010Q ,%gfu\ﬁo % 0Q }
Indeed if we denote 287
Definition of "Q"Y:
“Q"Y — 1 (l)(.‘o..y
It results
Qé Q)Z wob(dh) 1 Qi Qi Q(013) M i fl13) M iz oy 3 *
wob{(dﬁ) 1 Q; Q§ Q01 i3 Q(01a) s 4
(@7 Yol QG G egiw i,
w2 v, w , o, w2 1 8 0 1 o~ O 1 ,
QBT Yo i1z (CBF' Y.l | QO T gl Ty
Wherei 153 represents integrand that is integrated over the intedyal
From the hypotheses it folks
"ol 02 Q (013) 1o 288
1 o, o, o 7 7, ) o, o o o
(012) L (Qz) * + (A3) '+ (613) ' +(013) 1 (Qy) P Q@ "OF YO Y

And analogous inequalities f&RLE'Q™Y, Taking into account the hypothesis the result follows

Remark 1: The fact that we supposddiz¥ ! and (¥ depending also om can be considered as n 289

WWW.ijmer.com 2062| Page



International Journal of Modern Engineering Research (IJMER)
WWW.ijmer.com Vol.2, Issue.4, JubAug. 2012 pp20282109 ISSN: 22496645

conformal with the reality, however we have put this hypothesi order that we can postulate conditi

necessary to prove the uniqueness of the solution boundefy * G013 0 ¢EQ(0,5) L g1 10
respectively of1 , .

If insteadof proving the existere of the solution oR ., we have to prove it only on a compact then it suffice
consider tha{ ¢t and (¢! ,"x 13,14,15 depend only off;, and respectively ofd¢E' Qe £06£¢ ) and

hypothesis can replaced byisual Lipschitz condition.

Remark 2: There does not exist aywhere @, 60 = 0GE'Q"™%0 =0

From 19 to 24 it results

Q0 QO B (B Yais i1 9 as 0

%o BQ @30 >0 fort>0

Definition of (0 45) * |, &&Q (043) * -

Remark 3: if "Q; is bounded, the same property have al3p (E'Q"Qs . indeed if

Q< (Uq3) 1t it follows% (013) ', (G3%) ' "Q, and by integrating

"Q (Dag) b , =0+ 2(0) T (Dg) b /(GFR) !

In the same way , one can obtain

Qs (Dag) ' =G+ 2(s) (D) b/ (GFR) 1

If '@, €1 "Qs is bounded, the same property follows ¢ , "Qs and "Q; , "Q, respectively.

Remark 4: If "Q; "Qbounded, from below, the same property hold§@erit'Q"Qs . The proof is analogous
with the preceding one. An analogous property is tri@,ifs bounded from below.

Remark 5: If T3 is bounded from below arlin o .o, ((GEF ("00,0)) = (¢5) ! then”Y, © b
Definition of & ! and-; :

Indeed lety, be so that fob > ¢

(Qg) ' (@ (00,0 <-;,%(9> & *?

Then% (W)t & *  -;"Y,which leads to

. 1 . 1 . . .
“Ya (CEV R S o RS L Y, 'Q "1° If we taket such thalQ "1°= % it results
-1
. 1 - 1
“Ya (w”)+ , 0= cr:Qil By taking now -, sufficiently small one sees th&t, is unbounded. The

same property holds &l if lime (GEEFL "00,0 = (Gff) *

We now state a more precise theorem about the bekatiofinity of the solutions

o 2 . 2
It is now sufficient to takf‘fwd , .(‘wd < 1 and to choose
T016)@ " (016)@

(016 )@ @'Q( 046 )@ large to have
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(016)@+d) 298
o 2 5 5 o o e 5
e (O) 2 + (U6)@+'6@ Q ? (0)@

(016) 2

299
(016)2)+%,

(& 2 4 o\Q R 7 7
(Duf:)z (016)@+ "8 Q ° +(046)®  (046)®

In order that the operat(')r(z) transforms the space of sextuples of functia@hs satisfying 300
The operator @ is a contraction with respect to the metric 301
Q Qe QY 2 =

iér‘]{%dlb"%l 0 Q)Z 00 (015)20,%(111)"%1 ) "3(22 0 Q)20

Q a4+ A+

Indeed if we denote 302
Definition of "Qe, Yo : "Q."Yo =' @('Q,"Yo)

It results 303
Qé Q)z )voé(dle) 2 Q% Q$ Q(016) 2116 ¢§016) * 1 16 (Y 6+
woé{(df%) 2 Qé Qg Q(016) %116 Q(016) %1 16 4

(CRF2 Y i1e QG Q5 QT eghe e 4
- w. o ’ o, o ’ . 0 2 o~ D 2 P

QG ICHT? Yy i1 (CBF2 Y i1 | QOO T 010 ey g
Wherei 15 represents integrand that is integrated over theviaited, 0 304
From the hypotheses it follows

.‘Qg 1 “Qg 2 e (M1g) 24 305

1 o, o, [ o o o o

(M16) 2 () 2 + (GR) 2 +(A) 2 +(Pe)2(Qe) 2 d Qg 1, " 15 Qg 2, 7Yy 2
And analogous inequalities f@&and T Taking into account the hypothesis the result follows 306

Remark 1: The fact that we supposd@diz¥ 2 and (G2¥2 depending also om can be coridered as not 307
conformal with the reality, however we have put this hypothesis ,in order that we can postulate ct

necessary to prove the uniqueness of the solution bounde@Py 2 e(M1s) * t and ( Q) 2 elMie) *t
respectively ofi , .

If insteadof proving the existence of the solutionsn, we have to prove it only on a compact then it suffice

consider tha( (&2 and (6B ,"(x 16,17,18 depend only onl;; and respectively on"Qy (andnot on t)
and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist ahywhereGot = 0OandTqot = 0 308

From 19 to 24 it results

Got Gl o (082 (@B Tiris d1s dige 0

Tt Tde @2t >0 fort> 0
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Definition of (Myg) ? |, (M) ? ,and (M) ? . 309

Remark 3: if G5 is bounded, the same property have aBe and G;g . indeed if

dGl7

Gis < (Mgg) 2 it follows —=  ( Mye) 2 | (d8) ? Gy and by integrating

Gr (M) ? 5= G7 + 2(G7) * (M) ? o/ (6%%) 2
In the same way ,n@ can obtain

Gs (M) ? ;= Clg+ 2(cdg) * (Myg) > ,/(C5R) 310

If G; or Gg is bounded, the same property follows &g , G;g and G5 , G;7 respectively.

Remark 4: If G, isbounded, from below, the same property holdsGerand G;g . The proof is analogou: 311
with the preceding one. An analogous property is tr@,ifs bounded from below.

Remark 5: If T, is bounded from below arlin o (G52 ( "Qy t ,1)) = (&F2) 2 thenT;; O o 312
Definition of & 2 andRr,:
Indeed let, be so that fot > t,

(A7) 2 (GB?("Qo t.1)<R,Tig(t) > & 2

dT17

Then —*- (@W7)? & 2 RyT;;which leads to 313

. 2 . 2
T, @9 7 ert 4+Tle Rt |fwe taket such thae ®t = % it results

R2
. 2 . 2
Ti7 (w”)+ , 0= Iogf By taking now R, sufficiently small one sees that; is unbounded. The 314
2
same property holds fdg if limgp (CRF2 "Q t,t = (¢F3) 2
We now state a more precise theorem about the behaviors at iofittity solutions
315
v 3 ol 3
It is now sufficient to take'22 , (#9°_ < 1 and to choose 316
T020)®) (020)®
(P )® and (Qy )@ large to have
(820)®)+7d 317
(6o 3 5 5 o e 5
% (0x0) 3 + (0y0)P+g Q ? (0y)®
(520)3)+¥ 318
(&) 3 = o\@ - R = =
©20) 3 (050)@+ "¢ Q ° +(020)®  (0y)®
In order that the operator® transforms the space of sextuples of functi@ysy, into itself 319
The operator (3 is a contraction with respect to the metric 320

Q QY QY 2 =

iér‘]{(gdm"cbl o Q)Z 00 (020)30,(3(;1;)",\51 o ""62 0 Q©20° 0
Q

NA g oA
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Indeed if we denote
Definition of "Q,"¥;: Qs ,"¥s =' @ "Q;, Y,
It results

e e N (- S I T A LEE RN RE R o PV
00{((*3%) 3 Q(l) Qg 0 (02003120 (020 %1 20 4
(GHF° Wi Q Q= Toghoia
Qg |(ug%§3 \{11 it 2 (03%73 \{12 i 0 | 0 (020) 3i 5 '3 0 20) 3i 4 }a 20
Wherei ,, represents integrand that is integrated over the intedyal

0

From thehypotheses it follows
ol 02 Q(b20)30

- (Gh) 3 + (6F) 2 +(020) % +(0p0) 3 (Qp)° Q @ ', "% 1; Q@ 2, Y 2

(020) 3

And analogous inequalities f&B4E'Q"Y, Taking into account the hypothesis the result follows

321

322

323

324

Remark 1: The fact that we supposdd$i¥ 3 and (62¥ 3 depending also om can be considered as n 325
conforma with the reality, however we have put this hypothesis ,in order that we can postulate co

necessary to prove the uniqueness of the solution boundeflDfay 3 G920 ° 0 GEQ(0,y) 3 0200 20
20

respectively ofs , .

If insteadof proving the existence of the solutionn, we have to prove it only on a compact then it suffice

consider tha(¢gf® and (G2 ,"x 20,21,22 depend only or,; and respectively on'Q; (CEQ&&0éE ©)

and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist atywhere™@,0 = 0GE'Q"%0 =0

From 19 to 24 it results

Q0 "d0 o R i d20 9o 0

%o BQ @30 >0 fort>0

Definition of (0 50) ® |, (020) 2 ,68Q (D2)° ,:

Remark 3: if "Q, is bounded, the same property have algp6E'Q"Q, . indeed if
Q< (0,) 2 it foIIows% (02) 2% |, (¢%)°"Q and by integrating
Q (D) ® , =@+ 2() % (D) ,/(d5)°

In the same way , one can obtain

Q  (Dg)® ;=G + 2(ch) % (Dg0)® /() °

If "Q; €1 "Q, is bounded, the same property follows g , "Q, and "Q, , "Q, respectively.

Remark 4: If "Q, "Qbounded, from below, the same property hold$@erit' Q"Q, . The proof is analogous
with the preceding one. An analogous property is tri@,ifs boundd from below.

Remark 5: If T,, is bounded from below arlin o (B2  "Q; 0,0 = () 3 then™Y; © Hb.
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Definitionof & 2 and-;:
Indeed let; be so that fod > 6,
(1) (B Q@ 0,0 <-3,%(©O> a 3

Then% ()2 a 3 -3"Y; which leads to

w (6p1) % & 3 ‘A -0 @ ‘A - 20 g0 1.

Y1 = — 1 Q30 + "Y'Q 30 |f wetaket such thalQ 30 = 5 it results
-3

v (Gp) 3 @ 3

Y% 2

same property holds ¥, if limy L (GEF3 "Q; 0,0 = (a5) 3

We now state a more precise theorem about the behaviors at infinity of the solutions

(6 (6 *
0 20)@ (000 @ < 1 and to choose

It is now sufficient to tak

(P, )™ and (Qy, )® large to have

(024) B+

('d4 5 5 o, ¥, (; 5
(D(;) 7 (0) %+ (09)®+"]Q Q 2 (094 )™
(024)W+Y
(& 4 ¥ g R ¥ w
o (024) P+ "8 Q ° +(04)®  (0p)®

(024) 4

In order that the operator () transforms the space of sextuples of functios “¥saisfying INto itself
The operator ) is a contraction with respect to the metric

Q gty t, Q2 2 =

R Y, R R 4
i 0N{a o) 0 Q02" 5"y O Y o Qaa)”o
oive G Q) 0 Q] Qg 6 Y )

Indeed if we denote

Definition of "Q; , Y, : QLY = @9, %)

It results
a1 a2 0, w a1 a2 0 4 D 4 P
Q; Q >vo(°&4)4 Os O: Q (024) "1 24 J024) " 1 24 'y on +
,vob{(dﬁ) 4 g @2 Qe Yo (02a)*iag 4
(CBF* Yo ioa Qs Qf QP20 Tacfla0 iy
02 (e s vyl i e 4 vy2 Q (024) 1 24 ¢§024) 1 24 vy
Q; [(653F* Y5 i 24 (%7 N S P YR O IPY
Wherei ,, represents integrand that is integrated over the interv@jt

From the hypotheses it follows
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338
Q, ! @, 2 Qia)te 339

1
(024) 4

(Gpa) * + (6B 4+ (022)* +(0)*(Q)*Q @ 1, "% 15 G 2,7 2
And analogous inequalities faBLE Q™Y, Taking into account the hypothesise result follows

Remark 1:The fact that we suppose(ti5¥ 4 and (¢5¥ 4 depending also ort can be considered as nc 340
conformal with the reality, however we have put this hypothesis ,in order that we can postulate con

necessary to prove the uniqueness of the solution bounded(By,) 4 1024 * 0 GE'Q( 0,,) 4 Gl20) * 0
respectively of1 , .

If insteadof proving the existence of the solution @n., we have to provét only on a compact then it suffice
to consider that (¢ and (&P ,"(x 24,2526 depend only on T, and respectively or
"Q; (&'Qe€oée 0) and hypothesis can replaced by a usual Lipschitz condition.

Remark2: There does not exist aywhere"@,0 = 0GEQ"™% 0 =0 341
FromGLOBAL EQUATIONSsults

Q0 @0 “5’@34 (GBF Y5 i 20 d 24 S 24 0

%o “BQ @' >0 fort>0

Definition of (024) * |, (024) * ,GEQ (D24) * ;- 342

Remark 3if "Q, is bounded, the same property have al$g; ¢’ Q"Q; . indeed if

Q< (0,4) % it foIIowsn,% (024)* | (d88) *"Qs and by integrating

Qs (Daa)® , =G5+ 2(6s) * (D2a)* /(c8E)*

In the same way , one can obtain

Qs (D24)* ;=G +2(d)* (D20)* ,/(H)*

If°Q5 €1 "Qg is bounded, the same property follows f&, , Qs and "Q, , "Qs respectively.

Remark 4:1f "Q, "Qbounded,from below, the same property holds fi®s; 6GE'Q"Qs . The proof is analogou: 343
with the preceding one. An analogous property is tru@ifis bounded from below.

Remark 5if T,, is bounded from below ankim s, ((GE* ("Q; 0,0) = (G52) * then"¥s O b 344
Definition of & # and-,:
Indeed letg, be so that ford > ¢

(Gs)* (B ('Q 0.9<-4,%(®> a *

Then=E  (dys)* & *  -,"¥s which leads to 345
W N4 o 4 ) X ;
vy, @91 Q-ad 4+ P40 Ifwe taket such thatQ 40 = % it results
-4
. 4 o 4
“Yo (“’25)+ , 0= ch% By taking now-, sufficiently small one sees th@s is unbounded. The
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same property holds foYg if lime W (CGRF 4 "Q; 0,0 = (65) 4

We now state a more precise theorem abouethehaviors at infinity of the solutiodSNALOGOUBequalities
hold also for'Qy ,"Qy, " ¥s, ¥o. Yo

I 5 7 5
It is now sufficient to tak"fwd , .(.wd < 1 and to choose
?023)(5) (028)®)

(P )® and ( Qg )® large to have

(028)B)+7d)

(6o ® 5 5 o - e ¥

(D2g) 5 (Dgg) 5 + (0)5+"'& Q 2 (0y5)®
(628 )(5)"'"\90

(S = g R - =

(028) B (025)®+ "8 Q ? +(025)®  (05)0

In order that the operato? () transforms the space of sextuples of functio@g ", into itself

The operator! (3) is a contraction with respect to the metric
Q @ty t, @, 2 =

Iy T o2 s e~ (D) 55 4 wawl s w2 s e (D 5
i on{a G o) 0 QW22 04" 6 Y o QW8>0
"Qn{U‘H+ % Q) oAy \6 \6 }

Indeed if we denote
Definitonof '@, , "% @ &, % ='©® @, "%
It results
a1 a2 0, v a1 o2 0 5 o~ 0 5 )
Qs QY WO(O%)S Qs Q5 Q(V28) " T2s'§28) "1 28 (Y 0 +
)vob{(dg%) 5 Qé Qg Q(028) %128 Q(028) %028 4
(BT Yoize QG Qs QU@ T mgbe iy
a~2 v, el 1 o, o2 1 . 0 5 o~ D) 5 P
QG I(GF° Yo .is  (GEF® "Yo.io | QU2 T db " Tae Y o
Wherei ,g represents integrand that is integrated over the internv@jt

From the hypotheses it follows

Q !t g 2w
: (Cyg) 5 + (G3) 5 + (028) % +(0pg)°( Q)5 Q @ 1, ™ 15 Q@ 2,7 2

(028) 5

And analogous inequalities fdRLE Q" Taking into account the hypothesis (35,35,36) the resultslo
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Remark 1: The fact that we supposeti®¥F ° and (63¥° depending also ort can be considered as nc 354
conformal with the reality, however we have put this hypothesis ,in order that we can postulate con

necessary to provehe uniqueness of the solution bounded Ky0,g) 5 C1028) ° 0 GE'Q( 0,5) 5 Fl28) ° 0
respectively of1 , .

If insteadof proving the existence of the solution @n., we have to prove it only on a comgt then it suffices

to consider that (¢ and (GEF® ,"(x 28,29,30 depend only on T,y and respectively on
"Q; (C&'Qe€0ée ) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2There does nbexist anyd where"@,0 = 0GEQ"™% 0 =0 355
FromGLOBAL EQUATIONS®sults

Q0 QO (B (GBS Yo ioas ioas Do 0

%o “BQ @° >0 fort>0

Definition of (0 2g) ° ,, (026) ° ,GEQ (D) ° ;- 356
Remark 3if "Qg is bounded, the same property have al$g, (¢'Q"Q, . indeed if

Qg < (U,g) % it foIIows% (028)° , (¢%)°"Q and by integrating

Qo (D28)° ,= "G+ 2(Cho) ° (D) ° /() °

In the same way , one can obtain

"Q (D) ° ,="Go+2(k)° (D) ° ,/(6%)°

If°Qq €1 "Qy is bounded, the same property follows f@g , "Q, and Qg , "Qq respectively.

Remark4: If 'Q; "Qbounded, from below, thesame property holds foQ, 6GE'Q"Q, . The proof is analogou: 357
with the preceding one. An analogous property is trd@jfis bounded from below.

Remark 5if T,g is bounded from below antim s, ((GEF® ("Q; 0,9) = (63%) ° then"Y, © Hb. 358
Definition of & ° and-s:

Indeed letd; be so that ford > G

(Gho) ° (CFF®('Q 0.0<-5%(Q> & °
359
Then=2-  (dyg)® & 5  -5"¥Ywhich leads to 360
Yo M 1 Q5% + "YQ-s° If we taket such thatQ "s°= = it results

5

v (Gpo) ® & ®
)/9 9#

same property holds fofY, if lime L, (CBF° "Q 0,0 = (6) °

, 0= €05 By taking now-5 sufficiently small one sees th@jg is unbounded. The
-5

We now state a more precise theorem about the behawiatr infinity of the solutions
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Analogous inequalities hold also fd®; ,"Q4, " Y,, Y3, ¥4

o 6 7 6
It is now sufficient to tak".(‘w@ , Ew@ < 1 and to choose
10 32)® (03)®

(R3,)® and (Qs, )® large to have

(032)(®)+d)

—g

(¢ 8 5 ¥ o
o (03) & + (03)®+'¢ Q

0. )(6)
(D32) 8 (Vs2)

(032)( @)+,
5 6 ~ uE
(e (03)®+"8 Q e

(D32) 8

+(03,)® (03,)®

In order that the operato? (®) transforms the space of sextuples of functio@s " into itself
The operator (8 is a contraction with respect to the metric
Q Q.Y T, QY 2 =

fonfaci'q o Q¢ 0 QR oadm g o Y o Q0’9
o oAy o s 4+

Indeed if we denote
Definitionof "Qs , "% : Qs , % = © "Q, ¥
It results
. o2 o o w2 i (D 29) O 1 ap < D a9) 6 i ap v
Q% Q WO(%Z)G Qé Q5 Q(Vs2) T2 gls2) a2 iy o, +
)voo{(dgez) 6 Q% Q§ Q032 %130 isn 4
(BT Gie @ Gl adiniay
o2 v, o , o, w2 v . 0 6 o~ U 6 ,
QG I(CBF° Y i 2 (6BFC Y.l | QU T2 dbe) layqg ,
Wherei 3, represents integrand that is integrated over the inten@jt

From the hypotheses it follows

(1) C\%l, d’%ael, Jbl, (I%l, &%eel > 0,
"JCx 13,14,15

(2)Tre functions ¢E> , &> are positive continuoumcreasing and bounded
Definition of (9 *, (ig9*:

&= (Y40 (' (0853)W
CE(QY (9! (GBY (65)®

(3)da "¥O Hb B Y40 = (Mt
iMoo, CE= "Q0 = (ig
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Definition of ( 615 ), ( 8,5 )@ :

Where|( 013)D,(6,53)P,(N3 L, (iQ? |are positive constants

and |'(x 13,14,15

They satisfy Lipschitz condition:
(G "F.0 (@B Y0l ()P, "l de)®e

(G G0 (@B QY| < (Qy) P[0 "ofQ (0=

With the Lipschitzandition, we place a restriction on the behavior of functigdgf®* "¥5,0 and &t “Y,,0 . “¥5,0 and
"Y,,0 are points belonging to the interval 'Q; )™, (0 153)™ . Itis tobe noted that(¢EfP* “Y,,0 is uniformly continuous. In

the eventuality of the fact, that if 0 13 ) = 1 then the function (& “Y,,0 , thefirst augmentation coefficientattributable
to terrestrial organism, would be absolutely continuous.

Definition of (0 153 )®,( Q3 )@ :
(2) (0413)M,(Q3 )M, are positive constants

(e (gt
(013)D "(013)® <1

Definition of ( Oy5 )@, (045 )@ :

(AA)  There exists two constan(s;; ) and( 0,5 )™ which together with( 0 13 ), ( Q3 )™, (813) M E'Q( 6,3 )M and the
constants(cog 1 ,(¢F L, (L. (FL.(g L, (9L, 13,1415,

satisfy the inequalities

ST L@ @+ (B) D+ (D) ()] < 1

( 0 13 )(1)

#[ (@ +(aFL+ (63) P+ (055)P (Q)P]<1

(043)®

Analogous inequalities hold also f6®; ,"Qg, Y5, %7, ¥g 368

(cop 7 (G 7
536)D "(036)D 7 and to choose

It is now sufftient to takc(

(P ) and ( Qs )" large to have

(336) D+, 369
(¢ 7 5 ¥ o K el
B () T+ (B)P @R B (T)?
(036)M+%, 370
@l = o n W x .
(Dss:) = (03)"+"8Q ° +(036)"  (0g6)"
371
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Theoperator (7 is a contraction with respect to the metric 372

Q Q'Y ', QY 2 =
fonfacro Q@ o "Qf 0 Q@W oAy o " o Qlx Y
o ONas oAy

Indeed if we denote

Definition of "Qq , "Yy :

QY = ! M Q , Y )

It results
L G (R R R N A T
,voé{(dyil)) ! Qé Qg Q (V36) 136 (036) "1 a5 4
(37 X71 A 36 Qels QE Q(Vas) "i36cfl36) "1 4
QIR Y7 iae (YT YT i | Q0 TTae 0a) Tias yg g
Wherei ;¢ represents integrand that is integrated over the intedval

From the hypotheses it follows

373
Q1 Gy 2 P Te
1 o, N o 5 %, , o o o, o
(036) 7 (6d) " + (GB) "+ (036) " +(Ug6) "(Qe) " Q Qo ', Yo ' R %, Y ?
And analogous inequalities fa®(&'Q"Y, Taking into account the hypothesis (37,35,36) the result follows
374

Remak 1: The fact that we supposeddl)l’ and (a3l depending also om can be considered as n 375
conformal with the reality, however we have put this hypothesis ,in order that we can postulate ct

necessary to prove the uniqueseof the solution bounded bylsg) 7 ‘G038 0GR Q(D4) 7 F03) "0
respectively ofi , .
If insteadof proving the existence of the solutionsn, we have to prove it only on a compact thesuifices to

consider tha(¢yN and (c}§V , "= 36,37,38 depend only orly; and respectively on"Qq (GEQEE0EE ©)
and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exishg 0 where'@,0 = 0GE'Q"%0 =0 376
From 79 to 36 it results

@0 C%Q é’ (7 (Y 7036 i35 Qg 0
%o  "gQ W7o >0 fort>0

Definition of (036) © |, (Dg) " ,6&Q (0ge) 7 ;- 377
Remark 3: if "Qg is bounded, the same property have algp6E'Q Qg . indeed if

Qs < (Dgg) 7 it folIows% (046) 7 L (63 7 "Q, and by integrating

Q (Dse) |, =@+ 2() T (Dse) T /(E]) 7

In the same way , one can obtain
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Qg (Dgg) " ="+ 2(cks) " (Dgg) " L/(cH)
If "Q,; €1 "Qg is bounded, the same property follows Qg , "Qs and "Qg , "Q; respectively.

Remark 7: If "Qs "Qbounded, from below, the sameoperty holds fof@Q; ¢ Q"'Qg . The proof is analogou: 378
with the preceding one. An analogous property is tri@,ifs bounded from below.

Remark 5: If Tsg is bounded from below arin , 5((6YY ( "Qy 0 ,0)) = (c3)) 7 then™¥, © b. 379
Definitionof & 7 and-;:
Indeed lety, be so that fob > o, _

(@) " (WY ('Q 0,9<-7,"%(0)> a 7

Then % (&7) 7 & 7 -;"¥, which leads to 380
" NT g T , . .
Y (“)37)—70’ 1 Q7 +"%Q 7 If we taket such thalQ 70 = % it results

oNT oy T
Y, (“)37)+ , 0= ch% By taking now -, sufficiently small one sees ths§; is unbounded. The

same property holds 6 if limpo(QUY7 "Qy 0,0 = (cdl) 7
We now state a more precise theorem about the behaviofmiy iof the solutions of equations 37 to 72

In order that the operator' (7 transforms the space of sextuples of functioi@, ¥, satisfyingGLOBAL 381
EQUATIONS AND ITS CONCOMITANT CONDITIOid_ITEES

382
The operator (7 is a contraction with respect to the metric 383
Q Q'Y ', QY P =
iér‘]{%m"q)l ) Qf 00 (036)70,%(1113"}61 ) "¥12 o 'Q0se) 70y
0 a4 A4
Indeed if we denote
Definition of "Qq , "Yy :
Q.Y = ('Q,"Y)
It results
QG QY wob(d%e) T Qb Tisegbee) Tias oo+
)vob{(dg%) 7 qé Qg Q(036) "i36Q(D36) 136 4
(CEBF7 ¥ is QG Q@O Twdhn sy
Qg |(0§e6ey7 ¥71 i ag (dg%ajﬂ \{72 Aoas | Q (036) 7 36 '3 U36) "i g 1A 56
erei 35 represents integrand that is integrated over the interv@lt
Wherei 54 rep integrand that is integrated he intenv@|
From the hypotheses it follows
384
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"Qg 1 "Qg 2 '9(036) 7 )
1

(036) 7 (Gye) " + (GER) " + (036) " +(U36) "(Qe) " Q@ "Qo ', Yo 'i Qe %, Y ?

And analogous inequalities fdRLE Q™Y Taking into account the hypothesis the result follows

Remark 1: The fact that we spposed(¢&F 7 and (¥’ depending also ori can be considered as nc 385
conformal with the reality, however we have put this hypothesis ,in order that we can postulate con

necessary to prove the uniqueness of the solution bathdy ( O) 7 F03) 0 ¢EQ( b4) 7 G030 "0
respectively of1 .

If insteadof proving the existence of the solution @n., we have to prove it only on a compact then it suffic

to consider tha (¢’ and (&P’ ,"(x 36,37,38 depend only on Ty; and respectively or
"Qy (CE'QEE0EE 0) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2There does not exist alywhere"@,0 = 0 Q™% 0 =0 386
FromCONCATENATED GLOBAL EQUAT ledifts

Q0 @0 T GET Wrias i3 Do 0

%0 ¥Q @70 >0 fort> 0
Definition of (03z6) * ,, (D3e) © ,EQ (D) " ;- 387
Remark 3if "Qg is bounded, the same property have al$g,; ¢¢'Q'Q; . indeed if

Qs < (D36) 7 it follows =2

(0g) ", (%)’ "Q and by integrating

Q (Dae) " ,="F+2wy) " (Ds) | /(6F) 7

In the same way , one can obtain

Qs (Dze) " ;= "G+ 2(d) " (D) " L,/ (CFR) T

If"Q; €1 "Qg is bounded, the same property follows f@ , Qg and "Qs , "Q@; respectively.

Remark 7:1f "Q; "Qbounded, from below, the same property holds @, 6E'Q"Qg . The proof is analogou: 388
with the preceding one. An analogous property is tru@jfis bounded from below.

Remark 5if T4 is bounded from below ankim s ., ((GEF ("Qy 0,0) = (G&) 7 then™¥, © b 389
Definition of & 7 and-;:

Indeed leto, be so that ford > 0o,

(@) 7 (7 ('Q 0,0 <-7."%(9)> & 7
Then=X-  (dy;)7 & 7 -;"Y, which leads to 390
v () " a7 0-70 1 N -70 0 -70= L
Y, - 1 Q7 +"¢Q-7° If we taket such thatQ "7°= = it results

7

v (Ggr) " & 7
5‘(7 Wer) 2

> 0= €05 By taking now-, sufficiently small one sees th@}; is unbounded. The
-7
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same property holds fot¥g if lim e 1 (CBF 7 "Qy 0,0 = (¢5) 7

We now state a more precise theorem about the behaviors at infinity of the solutions

(£p) 2 (63) 2 + (6§%) 2 (GFeF? Ti7,0 + (Gf5F 2 Ty7,0 (A1) 2

(2) 2 (GR)Z+ (B> (BF*> Q.0 (BEF> Q.0

Definition of (1) 2, (k) 2,(61) 2,(0,) 2 :

(z1) 2

By (1) 2 > 0,(&) 2 < 0and respectivelyd,) 2 > 0,(6,) 2 < 0the roots

(@) of the equationgéa;)2 ' 2 “+ (£)2° 2 (Cg)? = O
and (14)2 62 2+ (2)262 (Qe)? = O0and
Definition of "D 2,,(F ?,(0,) 2,(0,) 2 :
By('[)2 >0,(4) 2 < 0and respectively(6;) 2 > 0,(6,) 2 < Othe
roots of the equatior(ga;) 2 * 2 “+ (A)) 27 2 ()2 = O
and (@7)2 62 "+ (2)262 (G2 =0
Definition of (&1) 2 ,(&5) 2 (‘1) 2.("2) 2 :-
(b) If we define(d ;) 2 ,(a,)2 ,(‘1)2.,(',)2 by
G2)2=C0)2.(a)? =002, WCo)? <(1)?
622 =0C2.0@02=0D?  MD?<(Ca)?2<(D?,

v 2 _ Gl
and ()2 = 28
17

(a)2=(C1)2%.(61)2=C0)%, D2 <(o)?2

and analogously

("2)2 = (00)2.("1) 2 =(61) 2, J(60) 2 < (0) 2
("2)2=0(61)2,(1)2 =(061) 2, (61) 2 <(6p) 2 < (6y) 2,

v o _ T%
and (0o) © = -
17

("2)2 =(61)%,("1) % = (60) *, W(61) ? < ()2
Then the solution satisfies the inequalities

e ? )2t Qo Ched)?t

(Mg 2 is defined

1 2 > 2 o, \ 1 2
QGG ($1) (N1s) <t Q7(0) TRE G?Ge(sl) t

(aq1) 2

STRE: (sl()dgg)(zhe%ﬁz o e® et e @+ G ()7
1 16
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(¢ng) 2 s [e(sl) 2t e (GMB) 2 t] + Cfge (iR%) 2 t)

(62)2 (S1) 2 (6fp) 2

ToeRU?0 "y (g The R ?+(w)? 0

1
(12

1

2 ' 2
(‘2)2T106e(R1) +(ie) © 0

2 4 o .
TeRD "0 Y5 (9)

(Gag) 2 19 2 ) 2 ¢ )28 ey
()2 (R81)2 l((j:f%)z e(Rl) o @ (53) %0 + nge (GFR) 2 0 YS(O)

(1e) ° Tho R)2+(16)% 0 g (R)20 4 TO@ (R) 20
(“2) 2 (Ry) 2 +(i1g) 2 +(Ryp) 2 e'™1 16 e (Rz +Tlge >

Definition of (S}) 2 ,(S,) 2 ,(Ry) 2,(Ry) 2 -
Where(S)) = () * (62) 2 (GF) 2
(£)? = (As) *  (s) ?
(M2 =(Qe) 2 ()" ()
(Ro) % = (cf8) ®  (ip) ?

Behavior of the solutions

_If we denote andefine
Definition of (,1) 3 ,(,2) ® (1) 3 (1) ® :
@ ,1) % ,(,2) % (1) 3 ,(f2) ® four constants satisfying
(b2) ® (6%) ° +(a31) °  (@%F° Y ,0 +(EF° "™%,0 (1) ®
(T2) 3 (@) 3+ (681)°  (@®F® Qo0 (GFHF® Qs .0 (1) 3
Definition of ('1) 3,('2) 2,(61) 3.,(6,) ? :

(b) By (1) % >0,(,)?® < 0and respectivelyo,) ® > 0,(0,) ® < 0theroots of the equations
. a2 , .
()% "% "+ ()% % ()3=0

and (Gy) 3 63 2+ (1) 363 (Gy)? = Oand
By(D? >0,0f) 2 < 0and respectively(d;) 3 > 0,(6,) 3 < Othe
roots of the equation(y;) 2 ' 3 4+ (,) 2’ 3 (Gy)® =0
and (61)° 63 "+ (1)363 (%) ® =0
Definition of (64) 3 ,(62) 3 (‘1) 3.("2) 3 -
(c) Ifwe define(ay) ® ,(a2) % ,(“1)%,("2) % by
(a2)° =(0)3.6)% =% Wo)?®<(1?
(@) =36 =CD° WD <(Ca)®<(D?3,

and|('g) ? = 2
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(62)3 =(1) 3. (4y)3 = (’0)3,%.(’[)3 <(o?

and analogously

((2)3=(60)3%.("1) % =(6y) 2, I(Oo) 3 < (03

((2)3=(0)3.("1)2% =(6y)° ,I(Ol) 3 < (6g) 2 < (61)3, and(6g)? = —

("2)3 =(01)3%.,("1) % = (6) 2, I(Ol) 3 < (6) 3

Thenthe solution satisfies the inequalities
"(golQ("Yl) 3 (hZO) 3 ¢} "QO(‘O) “@O,Qu\i) 3 o
(g ? is defined

1 o (Y 3 . 3 ¢ © . 1 © ~"Y) 3 ¢
(QOQ(\D (20) = 0 "Q, () @OQ\i) 0

(613 (@23
(6n2) 3 "o ACY) 3 (10)3 0 A (%) 36 o9 A (W) 30 .
(&3 0° w3 93 QO™ )T QD70+ GRY 0 Q9
@) G 1efn)de g ) o)+ @, @) 2o

(@203 ()3 (@533

W ie y (g QM P+ ® 0

1 .y?O'Q'Yl) 3 0 "Xo((‘)) 1 ..\?O.Q('Yl) 3 +(i20) 3 o

(13 (2)°%

(Gp) 2 v B8 e (EBY 35 L g am (GB35 e s
E ('Yi)3%15%)3 gwie QUETe + Q@R Te "y (9

(6')22)3”90 . ('Y)3+('| )3 o . ('Y)30 () . ('Y)3f)
27 M+ irms X Q270 + g

Definition of ("Y) % ,("%) 3,(Y) 2 ,(Yy) * :-
Where("Y) ® = () ° (45) ° () °
(%) % = (@) (M2)°
(V)% = (@)% (2)° ()3
(V)2 =(68)° (i) ?

If we denote and define
Definition of (,1) * .(.2) * (1) * .(T2) * :
d) (1) % .(a2) % (T * (1) * four constants satisfying
G2)* (68)* + (@) (AT ¥.0 +(BF* ¥%.0 ()
()% (68 +(@®)* (&F* Q.0 (&F* Q.0 (f)*
Definition of (*1) *,("2) *.(61) *.(62) * " * .67 :
(e) By (1) % >0,(’,)* < 0and respectivelyo,) + > 0,(0,) * < Othe roots of the equations
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() "4 T+ ()t Y ()t =0
and (Gs) * 6% "+ ()64 (G)* = Oand
Definition of ") #,,C ) 4,(61) #,(0,) 4 : 434
435
ByCD* >0,CH* < 0and respectively(6,) * > 0,(6,) 4 < Othe
roots of the equationgcys) 4 * 4 24 (L)% % ()* =0

and (Gys) 4 64 “+ () 404 (Gu)? =0 436
Definition of (&1) % ,(d5) % (1) *,("2) *.,(o) * -

() Ifwe define(d ) 4 ,(a,) 4 (‘1) *.(‘2) % by
(Go)% =(Co)*(a)* =(1)", 5@5.(’0)4 <()*
()4 =C*@)*=CD* . MCH*<C)*<(D*,

and (') ¢ =

(62)% =(Ca)* . (G1)* =(Co)?, I(’JD4 <(o)*

and analogously 437
438

(“2)% =(0) *.,("1) 4 =(0p) 4, I(Oo) 4 <(6))"
() =0)*.C)% =(0)* 01)* < (60) * < (67) %,

and|(6,) 4 = 2
5

¥

(“2)* =(61) *.("1)* = (6p) * :I(ol) 4 < (6p) * where(6;) *,(61) ¢
are defined respectively

Then the solution satisfies the inequalities 439
440

G0t et o g o v .
442

where(ryg # is defined 413
444

445

1 . oY) 4 (M24) 4 o o . 1 “ A™Y) 4 o 446
@2 3.0 Q0 G7 3, s
(6n6) * '-CS4 0 4 (M) ? o Q (9 44 + “@6'9 ¥ 4o "Qe 5 448

(@)% (D4 (h2a)* (p)*
(C26)4'Q40(G 2)4("M)4 (L6347 M)40 ©Q (cP620+ P00 (cX6320

pawie vy o gt it o 449

1 o\~ 4 ¢ o \ 1 w\g A 4 .0 4 .
4 bZAC A A () L % Q) " i) T 0 450
@Go) " gyt QURITe 1R @ te Ty (9 451

(GE RN G DI+ ) I

(Go6) * ¥ QMW 4 +i2) 0 (W40 4 g (4o
((2)4 (V)4 +(i) 4 +(V2) 4 Qln 24 Q (2 + )QGQ »
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Definition of ("Y) 4 ,("¥) 4,(Y) 4,(Y,) 4 -

Where("Y) * = () * (G2) *  (653) *
(") * = () * (M) *
(V) * = () * ()" (&)*
(V) * = (c8) * (i) *

Behavior of the solutions
If we denote and define

w (nl) 5 1(112) > 1(T1) > 1(T2) > :
@ (1) % .(,2) % (1) ® ,(1,) ® four constants atisfying

G2)° (@R)° +(6R)°  (CHF® Yo.0 + (CRF° ¥%.0

() (GB)° +(GR)° (HBF® "Q .0 (HBF® "Q .0

Definition of ('1) ®,(2) ®.,(61) ®.,(6,) °," °,06° :

(h) By ("1)® >0,(’,) ° < 0and respectivelyo,) ® > 0,(0,) ® < Othe roots of the equations

(Gyg) S S 2+(§1)5' 5 () ® = 0
and (Gyo) 5 65 “+ (1) 565 ({hg) S = Oand

Definition of (') 5,,('E) 5,(6;) ®,(6,) 5 :

(Hl) >

(1) ®

By('D® >0,(’f)® < 0and respectively6;) > > 0,(0,) ° < Othe

roots of the equation§cyg) ° * ° g (b))% % (&y)® =0
and (Gyo) ® 0% "+ (1) 565  (Gp)® =0

Definition of (61) ® ,(6,)° ,("1) > .("2)°.(0) ® =-

(i) Ifwedefine(d ) ,(a,)° ,("1)°.("2)° by
(62)°=C0)%.(61)° =(C0) %, WCo)® < ()5
(6% =0C)%,6)° =D HC)® <Co)® <D,

and (') ® = &

(62)°=(C)°.(a)® =Co)® WCD®°<(0)°®
and analogously
("2)® =(60)°,("1)° =(61)°, W(G0)® < (61)°

("2) % =(6)°,(1) % =(61)° [ W(61) ® < (60)° < (61)®,

and|(6,) 5 = %

(“2)° =(61)°.("1)° = (6p) ® ,I(Ol) > < (6g) ° where(6;) °,(0,) °

are defined respectively

Then the solution satisfies the inequalities
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"C§8'Q("\i)5 (2g) 5 © Qg (0) "@B'Q"\i)sb

where(nq ° is defined

1 o Q (Y D > 5 & o . 1 o o~"Y) D o
— GO0 T (w0 gy gy g0 459
460
(50) ° "Gy QM ()% 6 V%6 4+ @OCHSe Q¢ 461
GOS (DS () (D5 2 «Q Q0 Qo ©
(CBO)5'C80(¢ 2)5("0)5 (cBOBT )50 Q (cBOFES+ BOOR (BOFES
PAW O Ty () B ° i) ° 0 462
1 o\Q ~" 54 - \ 1 @ A (" 5 1 5 &
BE RAW o "y () P Y QM) ® *(izg) ° 0 463
(G30) ° "% YD 50 N CRYBO L D (G5 6 m ra 464
NE ?‘i(l))s @ S R L O
(dn0) ° o QM) S +i28) % 0 (W50 4 P (W)
(5 (05 +im S 2 «Q +he
Definition of (*Y) °,("Y) ® (V1) ° ,(Y2) ® - 465

Where("Y) 5 = (Gyg) 5 (4) 5 (GR) ®
("Y) ® = (&) °  (Nao) °
(V) ° = (Qe)®(2)° () °
(V) ° = (&%) °  (iz)°®

Behavior of the solutions 466
_If we denote and define

Definition of (,1) © ,(,2) & (1) & (1) © :
() (1) 8 ,(n2) 8 (1) ® ,(1,) © four constants satisfying
(w2) ® (C%) ° + (CB)°  (CBF°® "% ,0 + (FF® "%,0 (»1) ®
(t2) © (6)° +(a®)° (aBF® Q.0 (GBF® Qs .0 (t) ©
Definition of (*1) ®,("2) ®,(61) ®,(62) ®," ®,0° : 467

(k) By (";)® >0,(',) % < 0and respectivelyo,) ® > 0,(6,) ® < Othe roots of the equations
. s 2 , .
(Cy3)® 7 ° +(£l)6 °® (&p)°® =0
and (Gy3) © 6° "+ (1) ®06°¢ (&) ° =0and
Definition of (') ¢ ,,(" ) ©,(6,) ¢ ,(6,) © : 468

By('D® >0,Cf® < 0and respectively(6,) ® > 0,(6,) ® < Othe
roots of the equationgcys) & ' © g (b2)® 8 (&% =0

and (Gaz) © 66 “+ (1) 600 () =0
M(dl)e a(dz)6 !(‘1)6!(‘ 2)6,(10)6 -

() Ifwe define(d1) ® ,(62) ° .("1) ®.("2) ® by
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(65) % = (o) %, (ay)° = (’1)6,%.(’0)6 <(q)°

(62)°=C)°® =N MD®<C)®<CD®,

and|(’o) ® :%

(62)°=()®(a)°=Co)® WD <(o)®

and analogous
("2)° =(60) °,("1) = (61) ¢, W00 ® < () °
((2)®=(0)°%,(1)°® =(01)° , M(61)® < (0)® <(6r)°,

and|(6) © = %

(“2) % =(01)°%,("1) % = () ° ,I(Ol) ® < (60) ® where(6,) ®,(0;) °
are defined respectively

Then the solution satisfies the inequalities
"QZlQ("Yl) 6 (N32) 6 o] “Qz(b) “(gz,ﬂn\i) 6 o
where(fg ® is defined

1 o (Y 6 . 6 & S . 1 o ~"Y) B ¢
@M > (2)° 0 "Q,(0) Qg "o

(61)© (62) 6

(G0) © 'y QMO® (@) o QMoo L @QMHce Q¢
(@8 (N8 (M) ® (p) © Q Q +'@Q Q4 0
(¢B4)6'B20(d 2)6("M)6 (B4 M)60 Q (cB460+ B40Q ((B4360

AWy (g B i) © o

1 .r?z'Q(Yl) 6 0 ugz(b) 1 ..?Z.Q('Yl) 6 +(i32) 6 o

(18 (‘28

(d4) © ¥, Y B e (TR 6 s e o (G 6 8 ey s
e (‘Yi)6 (25%)6 gwie Q@Te + g @Te "y, (g

() © by QUM S +i2) E 0 (R Co 4 g (V)00
(DF (e fme Q270 + g%

Definition of () & ,("Y) ¢ ,(%1) & ,(Ya) © -
Where("Y) © = (G3) ® (62) ©  (8) °
(") ® = (@) ®  (Naa) ®
(M) ® = () °(2)° (@) °
(V2) © = (68) °  (ia) ®
_If we denote and define
Definition of (1) 7 ,(w2) 7 (1) 7 () 7 :
(M) (1) 7 2(h2) 7 (1) 7 (1) 7 four constants satiging
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(112) ! ((‘gé) T+ ((*g%) ! (@?7 "¥7 16 + (@327 "¥7 1(‘) (”1) !
(t2) 7 (GR) 7 + (&) " (/P Q.0 (F&F Q.0 (f) 7
w(,1)71(,2)71(()1)71(62)71, 7167 :

(n) By (1) 7 >0,(,) " < 0and respectivelyo,) 7 > 0,(0,) 7 < Othe roots of the equations

@)7 "7 ()T T (Ge) 7 =0
and (Gy;) 7 67 “+ (1) 767 (Gy)7 = Oand

Definition of ') 7 ,,('E) 7 ,(01) 7 ,(0,) 7 :
ByCD7’” >0,CF 7 < 0and respectively6,) * > 0,(6,) 7 < Othe
roots of the equationgcy;) 7 7 24 2) "7 (&))" =0
and (7)) 7 67 T+ (1) 767 ()7 =0

Definition of (&) 7 ,(d5) 7 (1) 7,("2) ", (o) 7 -

(0) Ifwe define(d () 7 ,(4,) 7 ,(‘1) 7.(‘2) 7 by

(G2)7 = (o) " (0y) " = ('1)7,§§§I(’o)7 <(1)’

@27 =C)7" @) =D DT <Co)" <(D7,

and (‘o) 7 = &

(62) 7" =(C) " (a)” =Co)", WMD" <(Co)”
and analogously
(‘2)7 =(60) " ()7 =(6) 7, W(60) T < (01)7

((2) 7 =(61) ", ("1) " =(0y) 7 ’I(Ol) T < (6g) " < (67) 7,

and|(6,) 7 = %

("2) 7 =(6) " (‘1) 7 = (60) ", W(61) 7 < (60) 7 where(6,) 7 ,(61)

are defined respectively

Then the solution satisfies the inequalities

"@6'9(“\1) ! (N3e) L) "QG((‘)) -‘@G.Q"YL) 79
where (g 7 is defined
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485
1 o o~ ("Y) 7 > 7 © . 1 o o~V T
— @69( ) © (h3e) © O Q, (0 — @6 g™ ‘o 486
(a7) (& 2)

( 487

(¢38) " "G ~Y T (e) T 5 (g 7 ¢ ey T e
GO T o QD (e 0 QR Te 4 g0 (BT gg(Q)

2 8

W ey (g RM) i) T o 488

Lo gw oy () ——"gM) 7 +se) " 0 489

(7 (27

(Gyg) 7" AN TO 2T 4 R T o v 490
(07 ?Z)?%ﬁ%h g ie QUERTe + Q@ 1o (g

(o) * "5 QM) 7+ 7 0 Q)70 4 o) 7o
DT 7 ) T T Q02 70+ o (%

Definition of (Y) 7 ,("Y) 7 .(V) 7 .(Y2) 7 - 491
Where("Y) ” = (Gy) ' (6,) 7 (%)’
(V7 = (Gg) 7 ()
() " = () " ()" (ag)’
(V2) 7 = (c8) " (izg) ’
FromGLOBAL EQUATIONSObtain 492
s (Ge) T ()T (GB)T (T %0
BT %00 T (@)

Definition of” 7 :- ' 7 =%
- Q7

It follows
Q 7

(@)7 7 6T T (@) S

. , 2 , .
()" "7 T+ G) T () T
From which one obtains

Definition of ' [) 7 ,("o) 7 :-

@ Foro<|(o)7 =< ()7 <(D7

. 7 7 s 7
(D7+@ 7 (7o % " (D7 (oo (6)7—(’1)7 (o)’

T (7 (27

0

148) 7@ 987 e’ col oo

itfollows (o) 7 " 7(® ()7

In the same manner , we get 493

o 7 ¢ 7 , 7 ¢
(D7+@§ 770 W T (W7 (D0 @7 = (o’
' ()’ (27

)

1487 q 987 TenT 70

From which we deduc€,)’ ' 7(0 (D7

B) F0< ()7 <(o)7 =< ()7 wefind like in the previous case, 494
7

..(8
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. 7 N 7 N 7 \
7+ 7¢yTo 7 (DT (27 0

) 7 7 3
(¢
(1) 148 70 97 T D7 a7 0
v T T ()T ¢
cppT+8f7¢eyT7o @7 5 (" (27 0 (’D7
14877 @7 T DT T 0
g, 495

€ fo<(C” D" (o =g , We obtain

s T T T s
, , . cp)T+of7¢y)70 987 (1) (2) 0 ,
(1)’ o : 2 : (o)’

14877 %@ T DT 27 0

And so with the notation of the first part of condition (c) , we have
Definition of * 7 0 :-

(62)7 7o (67, |7 6=
In a completely analogous way, we obtain
Definition of 67 0 :-

. A . .7 . % 0
(207 o070 ()7, 070——.;.
7 O

Now, using this result and replacing itGLOBAL EQUATIOMSget easily the result stad in the theorem.
Particular case :

F(C&F7 = (&F 7,60 (,,) 7 = (,,) 7 andinthiscas€ )’ = ()7 ifinaddition(' o) 7 = (')’
then’ 7 0 = (',) 7 and as aonsequencéQe(0) = (' o) ’ "@,(0) this also defineg’ ;) * for the special
case.

Analogously if(GEF 7 = (6F 7 ,6C% (,) 7 = (1,) 7 and then

(6,) 7 = (0,) " ifin addition(6o) 7 = (0;) 7 then "¥5(0) = (6o) * "¥Y,(0) This is an important consequenc
of the relation betweer(’ ;) 7 and(’[) 7 , and definition of(6,) 7 .

We can prove the following 496
If (6B &' Q(GEF" are independent om, and the conditions 496A
(%) 7 (6F) 7 G 7 Gy <0 o L Jonc
(68%) 7 (a%) 7 W "y T+ Gag T Ngg T H(CE) Mgy T+ Mg T My T >0 497C
5 5. 5 5 497D
(Ug%)7(0§%)7 3 ! 7 ! >0! 497E
5 5. 5 5 5. \ 5. \ \ \ 497F
(683) * (a%) ' Qs "y TO(6®]) gy T (aB]) T iy T+ g Ty T <0 497G

0'@Q Ny 7, i3y ’ asdefined are satisfied , then the systeiTH THE SATISFACTION OF THE FOLLC
PROPERTIES HAS A SOLUTION AS DERIVED BELOW.

Particular case : 498

If (CBF2 = (GRF2 6% (K,) 2 = (K,) 2 andinthiscas€,) 2 = ('[) 2 ifinaddition(') 2 = (',) 2
then’ 2 0 = ('o) 2 and as a consequerig (0) = (") 2 '@ (0

Analogously if (G&2%2 = (2% 2 ,6C% (z,) 2 = (z,) 2 and then

(6,) 2 = (6,) 2 ifin addition(6y) 2 = (0,) 2 then"Ys(0) = (0,) 2 "Y;(0) This isan important consequenc
of the relation betweefi ;) 2 and(’[) 2

499

From GLOBAL EQUATIONSwe obtain 500
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== (@) > (%) (¢8)° +(&F® "0 (&F® ¥%,0° % () °
Definition of * 3 :- 3 = 20
- Q1
It follows
. , 2 , . Q 3 o , 2 , .
((*kl) 3 3 + (112) 3 3 ((QO) 3 D (u&l) 3 3 + (nl) 3 3 (Q&O) 3

From which one obtains
@ For0< () =< () <(D°

('1)3+(6)3('2)3'Q 1 3 (Yl)3 (YO)3 o

3 (D% (0’
() (0% (23

y 3 [
o) - ,
© 14(6)3 %1 ° (D3 (03 o

itfollows('g)® ' 3(0 (,)°3
In the same manner , we get

o 3 ¢ 3 ¢ 3 ¢
3 (c‘)) (1) 3 +(6F3 C2) 3q 21 (1) (2 o _
143 @21 S 3 0 ()% (23

63 = (s (98

Definition of (' [) 3 :-
From which we deducgy)® ' 39 (D3
(b) If 0<("1)3 < (o) 3= §< (D 2 we find like in the previous case,
1

r 3 )3 (513 4
, 3 (1)3+6 3(¢,3q %t (1) (2 0
(1)

1453 @@ 3cnd 230

(D3

o 3 3 , 3 .
(3+8F3(¢,3q @ (2 (2)° o

14873 @ 3 cnd 230

© f0<()? (D3 ('0)3=%,Weobtain
1
o 3 3 3 4

(')3 3 3+ 633 %1 (7 (27 0 (,)3

! 14873 @ 3 cnd 2380 0
And so with the notation of the first part of condition (c) , weehav
Definition of * 2 0 :-

d 3 :3(‘) d 3, 13(‘:):“(200
(é2) (é2) o
In a completely analogous way, we obtain
Definition of 63 0o :-
¢ \3 13 ¢y 3 r3 o — %00

(0] (0] , | O 0 =T—
(‘2) (‘) s

501

502

503

504

505

Now, using this result and replacing itGLOBAL EQUATIONS we get easily the result stated in the theorel

Particular case :

If (CBF3 = (BF 2,60 (,1) 2 = (,,) 3 andin thiscas€ ;) 3 = (') ? ifinaddition(') 3 = ('4) 3

then’ 3 0 = ('y) ® and as a consequeri®(0) = (') 2 "Q;(0)
Analogously if (G&% 3 = (6EF 3,62 (1) 2 = (1,) 3 and then

(6,) 3 = (6,) 2 ifin addition(6y) 3 = (0;) 2 then"¥,(0) = (o) 2 "¥, (0 This is an important consequenc

of the relation betweei;) ® and(’[) 2

: FromGLOBAL HIATIONSve obtain

Q 4 o o, o, o o \ 2 o N v, ]
Q.m = (Gyq) * (68) * (6%)* + (6GBF* "¥.0  (GBEF* "¥,0" 4 () ?
Definition of” # :- v 4 -2
Qs

It follows

. L, 2 , . Q4 . L, 2 , .

(@s)* "4 T+ ()Y ()t T (@) * " TGt ()
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From which one obtains

Definition of ' ) 4 ,(" o) * :-

(d) Foro<|(o)* = 2l (4 <(D*

.-@5
L4 . (D4rs t(ptn @8t (0T (0t o L4 _ (D% (0
0 A 4 » | O = TN d
4+ 6 40 %25 T (D (0t 0 (0)* (2)
itfollows('g)* ' 4(® (q)*
In the same manner , we get 509
L4 s (wftealieytn Gt (DT (2t o b4 _(D° (o
0 o L R I LT
4+ 6F4Q w25 1 2 0 2

From which we deduc€,) * ' 40 (D*

(e fo< ()% <(o?* = %;k (D # we find like in the previous case, >10
D4 C4+8 4yt @5 Yot ot e D4 s
(1) 145 4 %5t Dt 2% 0 0
(p4+ofd(eydn @ % (0% (2% 0 4
1+ 804 @5 4 D% 24 0 D
511
512

M fo<(C)4 (p* ('0)4=%,weobtain

4+ 8ld(y4q @5 Yt ct e

’ 4 y 4 ’ 4
() © 1+ 8T4q @5 4 CD* a4 0 (o)

And so with the notation of the first part of condition (c) , we have
Definition of * 4 0 :-

a.)4 4o (a4, |4 o =l
() (61) 22

In a completely analogous way, we obtain
Definition of 6 4 0 :-

‘ 4 L4 N 11 4 L4 _"\é40
(o] o] , | O 0 =—"—
(“2) (‘1) s

Now, using this reult and replacing it iIGLOBAL EQUATIOMSget easily the result stated in the theorem.

Particular case :

If (GBF* = (GF*, 6% (,1) * = (,,)* andinthiscas€ ;) * = ('[) 4 ifinaddition(’ o) 4 = ("1) 4
then’ 4 0 = ("y) * and as a consequend®,(0) = (o) * "Qs(0) this also defineg’ ;) # for the special 513
case.

Analogously if(G5F 4 = (CRF* 6% (1) 4 = (1,) * and then
(6,) * = (0,) % ifin addition(0,) 4 = (6,) * then "¥,(0) = (6y) * “"¥s(0) This is an important consequenc
of the relation betweer(’ ;) # and(’[) 4, and definitionof (6y) 4 .
514
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From GLOBAL EQUATIONSObtain 515

VQS

== (@) ® (G8R) ° (%) ° + (GRT° "Y%.0  (GRF° Y0 ° (Cyo)°" °

Definition of’ 5 :- 5 =3
- Qg
It follows
. , 2 , . Q5 o , 2 , .
(Gpg) ® "% "+ (,2) %" % (Gyg)°® P (Gpg)° "% "+ (,1) %" % (Gyg)®

From which one obtains

Definition of ' [) 5 ,(" o) ° :-

(@ Foro<|(o)® = &|< ()5 < (D>

o
sy (WSr@eate o0 (V7 (07 0 L0 ) (gF
5+()50 99 ° (D° (0° o ' (0% (25
itfollows () 5 ' 5(89 ('4)°
In the same manner , we ge 516
. 5 . 5 s 5 .
5y (NPrErorpte % (> 27 ° @y = (0° (0°
s+af5q 929 ° (1° (2% o ' ()5 (25

From which we deducg ) > ' 5(® (F)°

(h) IF0< (1)5 < (o) ° = %< ('D 5 we find like in the previous case, 517
9
1S (1)5+6 5050 @ ° (D° (2% 0 5 4
! 145 59 @ ° (D% 25 0
(1)5+6F5(¢,50 @ ° (0% (2% 6 (DS
14 65 @9 ° (15 (2% o
. R . 518
i) fo<(y)° Do ’ 5:$,Weobtaln
1 0 3
9
o 5 ¢ 5 o 5 4
('1)5 S (’1)5+6F5(’2)5‘QS°’29 5(1) 5(2) 0 (’0)5
4r5q @20 (1> 2> o
1+ 65 Q 519

And so with the notation of the first part of coitidn (c) , we have
Definition of * > 0 -

a)5 50 (4,)°, | 5 0=22
(a>) (Gq) Qo 0

In a completely analogous way, we obtain
Definitionof 6° 0 :-

‘ 5 L5 A ‘ 5 r5 A “¥g 0
[0} [0} , | O 0 =
¢2) ¢ X
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Now, using this result and replacing itGhL OBAL EQUATIOMSget easily the result stated in the theorem.
Particular case :

If (GRF° = (GRF° . 6E (,1) ° = (,p) ° andinthiscas€ ;) > = (') ° ifinaddition(’g) ®> = (') °
then’ 5 0 = (',) ® and as a consequent®g(0) = (' o) ° "Qq(0) this also defineg’ ;) ° for the special
case.

Analogusly if (G2F° = (6BF° ,6Q% (1) ° = (1,) ® and then
(6,) ° = (0,) % ifin addition(6y) ® = (0;) ° then "¥5(0) = (6g) ° "¥Yo(O) This is an important consequenc
of the relation betweer(’ ;) ® and(’ [) ®, and definition of(d,) ° .

520
we obtain 521
= () ° (CB)° (GB)° + (BT 0 (GBF° Y00 ° (A)°°
Definition of” © :- 6 =2
Q3
It follows
. , 2 , . Q 6 - , 2 , .
Q) ® "% "+ (2) % % (@) = (@) ® "% "+ ()° % (@p)°
From which one obtains
Definition of ' [) ¢ ,("o) © :-
() Foro<|(o)® =< ()®<(D°
ey (WCr@Crata o P(wf (0° o ()6 = (W (°
1+@)6q 98 ° (0° (0 o ' ()8 (2)°
itfollows('g)® ' ¢(0 (,)°
In the same manner , we get 522
V V6 4 (s5F6 (60 @38 (D8 (28 0 .16 (1 16 523
16 (9) (1) °+@)° (2P0 (6Fe:(1) (o)
1+@f6q @ (D% (28 0 ' (08 (2)°
From which we deducg€)® ' 6(© (D°®
(K) If0< (1) 8 < (o) ® = %< ('D © we find like in the previous case, 524
3
1) e (1)6+66(¢yn6a @ ° (D° (%0 e g
! 145 6 ©3° (D6 (6 o
(1)6+6l6(n6a @ ° (D° (28 0 6
1+ 6761 @3 % (D6 26 o €D
525

0 fo<(C)® (D¢ (’o)ﬁz%meobtain
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. 6 , 6 N 6
C)8+8l6(,6o 8 ° CD° (27 0

’ 6 6 )] ’ 6
() © 1+ 476 ©8 % (D6 (28 o (o)

And so with the notation of therkt part of condition (c) , we have
Definition of " ¢ 0o :-

, 6 y 6 \ I3 6 y 6 2\ _"Qz(‘)
a (0] a , 0 =——
(62) (61) 2

In a completely analogous way, we obtain
Definition of 6 ¢ 0o :-

¢\ 6 56 o ¢\ 6 6 o _ %20
0° o , |0° 0 ==
(‘) (‘1) o

Now, using this result and replacing itGLOBAL EQUATIOMSget easily the result stated in the theorem.
Particular case :

IF(CRF6 = (CBFS,6X (,1)° = (,,)° andinthiscas€,)® = ('[) © ifin addition(’ ) ® = (';) ©
then’ & 0 = (',) ® and as a consequené®,(0) = (' o) & "Q;(0) this also defineg’ ;) & for the specal
case.
Analogously if(G&2F° = (¢BF° 6k (1) ¢ = (1,) ® and then
(6,) © = (0,) ®ifin addition(6y) & = (0,) & then "¥,(0) = (0y)  "¥5(0) This is an importantansequence
of the relation betweer(’ ;) ® and(’ [) © ,and definition of(d,) © .
526
Behavior of the solutions 527

_If we denote and define
Definition of (,1) * ,(,2) 7 (T) 7 () 7 :

®) (1) 7 2(w2) 7 (1) 7 (1) 7 four constants satisfying

(n2) ’ (GB) 7+ ()T (YT ¥ 0 + (YT ¥ ,0 (»1) ’

()7 ()7 + ()7 (Y Q.o (@ Q.0 (h)’

Definition of (*1) 7,("2) 7 ,(61) ",(62) 7, 7,07 ¢ 528
(Q By ()" >0,(,)" < 0andrespectely (6,) © > 0,(6,) ” < 0theroots of the equations
. Lo 2 , .
()" "7 T+ ()T ()’ =0
5 , 2 , 5

and(a;) " 67 "+ (h) 767 (a)’ =0and
Definition of (D) 7 ,,( D 7 .(01) 7 ,(85) 7 : 530.

By(DD’ >0,Cf’ <0and respectively(6,) * > 0,(0,) 7 < Othe

529

roots of the equation@y;) * ' g (b)) "7 7 (Gx) ' =0
and (G7) 7 67 "+ (1) 767 (Gae) 7 =0

Definition of (&) * ,(6,) " ,("1) ", ("2) ".(Co) 7 -

() Ifwe define(ay) 7 .(a,) 7 (") 7.("2) T by
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(G,) 7" = (o) " (6y) " = (’1)7,%.(’0)7 <(q)’

627 =C)7. )" =D M) <Co)" <CD7,

and|('o) 7 =

(62) 7 =(yq) " (Gy) " = (’0)7,§§§I(’D7 <(o’

and analogously
(‘2) 7 =(60) ",("1) " =(61) 7,
()" =(0) 7, ()" =(6) ",

and (60) 7 = %

gééI(()o) "< (0
égé.(él) T < (6g) " < (61) 7,

(“2) 7 =(01) ".("1) " = (6g) ’ al(ol) 7 < (60) " where(6;) 7 ,(6,) ’
are defined by 59 and 67 respectively

Then the solution cBLOBAL EQUATIONS satisfies the inequalities
“@6‘Q("YL) ! (h36) 7 0 “QG(O) ,.@G,Qn\i) 7 )
where(fry 7 is defined

1 o, . o~ 7 : 7 - ™, , 1 o, o~ 7
W(gﬁg(\i) (N3e) © 0 Q, (0 @GQ\D 0

(62)7

(

(cg) ” s Q)7 ()7 6 QY70 4 @O Q.

M N Q &0 Qs(0)
@) "G ) To Q@ 7oy @ @h 7o

@2)7 ()7 ()7 [¢ Q 1+ G0 )

AW 0y () TEQM) 7+l T o

1w N 7. " . 1 owm _ .
o’ KW % (9) (27 Y. QM) © +(ise) T O

(cag) ” s g ’e @) 7o 4 g @) Te vy (g
NI O
(07 )7 (@7 % ¥%(0)
(¢ns) " ¥ YD) T +(ia) T 6 A (Vo) 7 ¢ B o~ (Vo) 7 &
QM) “+(ize) 0 ' (Y2) "0 4 Q(Y2) "o

(2)7 (M) 7 +(ige) T +(V2) 7 ¥8

Definition of ("Y) 7 ,("Y) 7.(Y) 7 . (Y,) 7 :-
Where("Y) 7 = (63) 7 (a2) 7 () 7

(") " = (cx) " (Mze)
(V)7 = (%) " (2) 7 (&)
(V2) 7 = () " (ise)
From CONCATENATED GLOBAL EQUATIONSwe obtain

Tl (@e) T (@7 (@7 (@7 %0

(@7 %007 (@)
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Definition of * 7 :- 7 = 2
Q7
It follows

o 7

(@)7 7 G T T (@)

. , 2 , .
()" "7 TG T () T
From whid one obtains

Definition of D) 7 ,("o) 7 :-

(m) Foro<|(o)7 = Fl< ()7 <D

" 7 ¢ 7 i 7
L7 W@ TcaTe & (v (o7 @) 7 = o’
1+ 7 @ 7 (07 (o0l o ' ()7 (27
itfollows (o) 7 ' 7(0) ()7
In the same manner , we get 541
. 7 7 s 7
Ty W@’ g7 T (w7 270 @7 =’ o’
1+@f7q %7 T 07 27 e ' ()7 (27

From which we deducg )’ ' 7 (0 (D7

M IFo<()" " <(Co 7 = %< (D 7 we find like in the previous case, 542
7

Lv7 (078 70T W Ten? oca” oo
(1) 1857 %7 DT 7 0

o 7 7 ) 7 -
cpT+af7¢ey7q B 5 (D7 (27 0

(D’

1+ 807q “7 T DT T 0

© 1F0<(C)7 D7 o7 :% . we obtain 543

e T T ()T ¢
cpT+oel7¢cynT7o 7 " (DT (27 0

(o)’

N v 7
[0} " )
() 1+ 6f7q %7 7T 07 27 o

And so with the notation of the first part of condition (c)e ave
Definition of * 7 0 :-

@7 " To (@7, [ 7 o=

In a completely analogous way, we obtain
Definitionof 6 7 0 :-

‘ L7 ‘ L7 . _ %0
(207 670 ()7, 070—_-.\;0
7

Now, using this result and replacingntCONCATENATED GLOBAL EQUATIONSwe get easily the result
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stated in the theorem.
Particular case :
If (GY7 = (Y7 ,60% (,,) " =(,,) 7 andinthiscas€,)’ = ([ 7 ifinaddition('g) " = ("4) ’
then” 7 0 = (') 7 and as a consequeri@(0) = (') ’ "Q,(0) this also define{’ ;) 7 for the special
case.
Analogousy if (Y7 = (a¥7 6% (1) 7 = (1,) 7 and then
(6,) 7 = (6,) 7 ifin addition(6g) 7 = (0;) 7 then"¥s(0) = (6o) ’ "7 (0 This is an important consequenc
of the elation betweelf’ ;) ” and(’ [) * , and definition of (6,) 7 .

A “Ye [(GF)' (CBFT OIY,= 0 544
@s 'Yy [(c®) ' (aEBF' Ol'Ys= 0 545
has a unique positive solution , which is an equilibrium solution for the system 546
Qe 2'Q;  (GRR) 2 + (GRF> Yy Q=0 547
@7 2"Q  (GR)Z +(GBF* Yy, @ =0 548
%18 2" ((j'f%)2 +(CBF* Y, =0 549
We 2", [(tif%)2 ((Ef%*fz @ 1Y%= 0 550
(517 2"Ys [((if%)z ({f%*)” @ I'Y,=0 551
Qg *7Yy [(cR])* (fF® "Q I'%e= 0 552
has a unique positive solution , which is an equilibrium solution for 553
Go Q1 (6%) 3+ (GBF* Y Q=0 554
@ *"Q  (6R) 3+ (6FEF: " Q=0 555
G 2Qr  (6B)3 +(6BF: " Q=0 556
(Eko Y [({2%)3 (%2%393 Q3 % =0 557
@ °"Y% [(6H)°  (@F° Qs ™= 0 558
@ ¥ [(6))° (55F° Qs 1'% =0 559
has a unique positive solution , which is an equilibrium solution 560
G Qs (R (T Y Q=0 561
@s *°Q, (@) + (T ¥ Q=0 563
e * Qs (6F) 4 + (GBF* Y Q=0 564
G Y% [(68)* (EF* " 1%=0 565
Qs “Y [(6R)* (F* o 1%=0 566
G ‘Y% [(6%)* (F®F* Q@ 1% =0 567
has a unique positive solution , which is an equilibrium solution for the system 568
Gg °'Qy  (GF)° + (ABF° Yo Q=0 569
Go °'Qg () +(ARF° Y Q=0 570
o ° Qo (6B)° + (F° Yo Q=0 571
s ° Yo [(G%)° (GHBF® "Q 1% =0 572
o °Y [(6$B)° (GHBF° @ 1% =0 573
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o °Yo [(6%)° (GHBF® "Q IY=0 574
has a unique positive solution , which is an equilibrium solution for the system 575
@ °'Q  (6F)° +(FBF° Y% Q=0 576
Qs °'Q,  (GRB)° +(BF® Y Q=0 577
Gy ®'Q; (B +(EF® Y, Q=0 578
@ °Y [(68)°® (cHBF® Qs 1'% =0 579
@z °Y, [(6B)°® (cHBF® Qs 1'% =0 580
@y °Y [(68)°®  (cEF® Qs 1'% =0 584
has a unique gsitive solution , which is an equilibrium solution for the system 582
e '"Q (GR) T (BT Y Q=0 583
Q7 Qs (GFB) T H(EFT Y Q=0 584
G "Q  (GRB) T (BT Y Q=0 585
586
@ 'Y [(68])7 (BF QlY%=0 587
@ Y [(6B)7 (HEF Q 1'% =0 588
@s 'Y [(6B)7 (GBF Q 1'% =0 589
has a unique positive solution , which is an equilibrium solution for the system 560
(a) Indeed the first two equations have a nontrivial soluti@g, 'Q, if
0"y, =
(GR) 7 (@R 7 G T Gy T+ (CH)T(ETT Y + (6T (CEF Y+
(BT Y (&F" % =0
Definition and unigweness ofT3; :- 561

After hypothesis’/Q0 < 0,"QH> > 0 and the function{ ¢’ “Y, being increasing, it follows that there
exists a unique™¥, for which"Q"Y, = 0. With this value , we obtain from the three firsteations

‘Q, = s Q7 Q, = g 7 "Qy
67 () T +BFT Y 87 (&) T (BT Y

(e) By the same argument, the equatidrSOLUTIONAIadmit solutionsQg, "Q; if

* Qo :(%)7(@%)7 a%s ! 6%7 !
(682) 7 (6EF " Qe + (6F) " (GBF’ "Qy +(WHF’ Qo (FF’ "Q =0
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Where in "Qy "Qg,"@;,"Qs ,"Qg, Qg must be replaced by their values from 96. It is easy to seezhaia 562

decreasing function ifQ; taking into account the hypothesis 0 > 0, Hb < 0 it follows that there exists
a unique'@d; suchthat "0 =0

Finally we obtain the unique solutiadF THE SYSTEM
"G, givenbye "Qy * =0,"Y, givenby"Q"Y, = Oand

"Q - d@e 7“@7 u@ - ‘1338 7"@7
67 (@R THEERTT % T BT (R T & %

Y - s "%y Y - s " Y7 563
67 (®)7 BFT Q° BT (@) T (BT Qo

Definition_and unigueness ofT;; :- 564
After hypothesisQ0 < 0,"QP > 0 and the functiongc3J™ ¥, being increasing, it follows that there
exists a unique™¥; for which "Q"Y; = 0. With this value , we obtain from the three first equations

565

"Qp = dpo 2 "Q, = ip2 3

07 (@B)+@HF 1 2T (BPEHF h
Definition _and uniqueness of,5 - 566
After hypothesis’/Q0 < 0,"QH> > 0 and the function{¢E** “Ys being increasing, it follows that there
exists a unique”Ys for which"Q"¥; = 0. With this value , we obta from the three first equations
"Q, = ips 4 Qs "Qp = ips 4 Qs

AT ORTY Y 67 (@) 4 (BT Y
Definition and uniqueness of5q :- 567
After hypothesis Q0 < 0,"QH> > 0 and the functiong¢&Ef® Y, being increasing, it follows that there
exists a unique”Y, for which "Q"Y, = 0. With this value , we obtain from the three first equations
"Qg = pg ° Qg "Qp = B0 ° Qg

87 (W@RSHEHTS b T 0T (@R S HGEHTS o
Definition and uniqueness of35 :- 568
After hypothesis’Q0 < 0,"QH> > 0 and the functiong (¢ “Y; being increasing, it follows that there
exists a unique”¥; for which"Q"Y; = 0. With this value , we obtain from the three first equations
"Q _ (1}32 6“@3 “Q _ (1)34 6 Qg

27 (@B OHEBTS h T T (@B S (BT %
(H By the same argument, the equations 92,93 admit solliens), if 569
* 0= (@B T(E " Qs toat

(GF) ' (6fHF' O+ (GF) * (GBF! 'O +(GBF' Oy 0=0
Where in'0"Q;,"Q4,"Qs , @3, " Q@5 must be replaced by their values fr@B It is easy to see thgtis a
decreasing function itQ, taking into account the hypothesis0 > 0, H < 0 it follows that there exists ¢
unique'’@, suchthas "0 =0
(g) By the same argument, the equations 92,93 admit soli@gn§); if 570

3 'Q :(af%)z(aﬁ)z als 2 (717 2
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(C) > (GFF? "Qo + (4F) ? (GRRF> "Qe +(CHF* "Q (GFEF> "Q =0

Where in "Qy "Q5,"@;,"Qs ,"Qg, Qs must be replaced by their values from 96. It is easy to seg tkat 571
decreasing function ifQ, taking into account the hypothesgs 0 > 0, H < 0t follows that there exists ¢
uniqueGy, suchthag @, * =0

(a) By the same argument, teencatenated equatioregimit solutionsQ,,"Q; if 572
* Qs :(&%)3(&%)3 a&o 3 a&l 3

(6R) ° (GFF® Qs + () ® (RF° Qs +(&HF® Qs (FHF® Q@ =0

Where iNQ; "Qy,"0;,"Q, ,"Qy,"Q, must be replaced by their values from 96. It is easy to seé that

decreasing function ifQ; taking into account the hypothesis0 > 0,« B < 0t follows that there exists a

ique’ hthat "Q; * =0
unique'@, such that "Qg 573

(b) By the same argument, the equatioofmodulesadmit solutionsQ,, Qs if 574
e :(@3)4(&%)4 6%4 4 a&s 4
(03) * (G527% "Q; + (&) * (GHF* Q@ +(65F* @ (FEF* @ =0

Where in "Q; "Q,,"Qs,"Qs ,"Q,4,"Qs must be replaced by their values from 96. It is easy to seezhata
decreasing function ifQs taking into account the hypothesis 0 > 0, H < 0t follows that there exists
auniqueQs suchthat "Q; ©* =0

(c) By the same argument, the equatiofmodules)admit solutionsQg, "Q, if 575

e =((I§%)5(J§%)5 ‘1%8 > ‘Iég >
(3) ° (GRF® Q@ + (6R) ° (HBF° Q. +(@FBF° "Q (FEF° Q =0

Where in "Q; "Qg,"Qq,"Qy ,"'Qg,"Qy must be replaced by their values from 96. It is easy to seezhata
decreasing function ifQq taking into account the hypottsise 0 > 0, H < 0 it follows that there exists
a unique'gy suchthat "Q; * =0

(d) By the same argument, the equatiofmodules)admit solutionsQ,,"Q; if 578

. . . . 579
* Qs = (B) ° (aRB) © o © oy °

(G8) © (GBF°® "Qs + (6B) ° ((HBF® Qs +(GHF® "Qs (GBF° "Q =0

580

581
Where in "'Qs "Q,,"Q3,"Q, ,"'Q,,"Q, must be replaced by their vads It is easy to see thgtis a decreasing
function in"Q; taking into account the hypothesis 0 > 0, Hb < 0it follows that there exists a unique
"@; suchthatr "0 =0

Finally we obtain the unique solution of 89 to 94 582

"Q, givenbys "0 = 0,"Y, givenby"Q"Y, = 0and

"G, = iz 1dy Q - s Gy
3T @R L@RF e T BT (@R LORF Y
Y, = g 1Yy Yo = s 1Y

37T ()l (RBFL O BT @@ Ggrr o

WWW.ijmer.com 2096| Page



International Journal of Modern Engineering Research (IJMER)

WWW.ijmer.com Vol.2, Issue.4, JubAug. 2012 pp20282109

Obviously, these values represent an equilibrium solution

Finally we olain the unigue solution

G; givenby3 "Qy ° = 0, T;; givenby 'QT;; = 0 and

Gi — aie 2 Gz C‘i — ajg 2 Gz
67 @R 2+@RF2 Tiy | BT (af) 2 +(@®F2 Tiy

T = big 2 Ti7 T = big 2 Ti7
7 %) 2 (bEF2 Qo ° T bRH)2 bHF2 Qo ”

Obviously, these values representeguilibrium solution
Finally we obtain the unique solution
"G, givenbye "Q; * = 0,"¥; givenby™Q"¥, = 0and

Q — épo 2 Gy Q - ép2 %Gy
07 (@R 3+(BFS Y | 2T (0B (BT

"Y - (:QO 3"31 "Y - ‘IEZ 3"31
07 ()3 (BF @ ' T (B3 (BFS Qs

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

"Qs givenbye "Q; = 0,"Y; givenby ' Q"¥; = Oand

‘G, = ipq 4G "Qe = dps 4 'Gs
AT @B A H@ETY Y 0T (@R T Ys

Y= Gpa " 45 Y, = des 4 "¥s
CT@ Y @ e T @) (BP e

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

"Qq givenbye "Q; ° =0,"Y, givenby ' QYy, = 0and

Gy = dps ° "o "Gy = 5o ° "Gg
8T @R SHOHTS Yo 1 0T (6H) S +(@BFS Yo

Y — S ° Yo g — I
87 (@RS (BF° a1’ TS0 T GBS (GRFS orC

Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution
"Q; givenbye "Qgs * = 0,"Y; givenby"Q"Y; = Oand

"G, = i ©dg "G, = n4 Qs
27 (@) C+(@BFE T ST (@B S +(GEBTS %

"Y, = @32 ® "% Y, = ag 8%
27 (B¢ @HBFS e’ T T (@B (BFS Qs

Obviously, these values represent an equilibrium solution
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ASYMPTOTIC STABILITY ANALYSIS

Theorem 4: If the conditions of the previous theorem are satisfied and if the fun¢tigjigd ¢ QS
Belong tod ! (51.) then the above equilibrium point is asymptotically stable.

Proof: _Denote
Definition of M g1 -
QF Gt Mg L Bt 1g

TOEFL . . TP s
T Yo = N " T 0 =ig

Then taking int@account equation@@lobal)and neglecting the terms of power 2, we obtain

o " . . , "

,(;3 = (@)1 + M P Mgt Qs TV e TGy,

o " . . , "

,(;4 = (@)Y Mg P Mt Qg PVMiz g TG4
-9\(1;5 = (G®R)1+ s P Vst Qs TMyy s 1Gs14
% = (@)¢ iz 1 1zt Qs Y11+ BB 13 9 VsV
% = (a@)! g b Tt Qg Y13+ BRI 9 YV
[oy] 5. \ 5 y o
?ﬁ% (6FR)r s P Tist Qs P11+ BEis i 15 9 sV

If the conditions of the previous theorem are satisfied and if the fun¢agj€ and (bE? Belong to
C? (a,) then the above equilibrium poiist asymptotically stable

Denote

Definition of M g1 -

GQ: GQ"‘ \JQ ’T"Q: Tz)"‘ 1 0

ROEF? 2~ La o) :

?T—;Tn-nnz ’TGLTQ Q  =iw

taking into account equatioriglobaland neglecting the terms of power 2, we obtain
du v, \ v, ,

716: (6f3) 2 + Me 2 Vig+ Qe *M1z e *Gielar

du . . . ,
717: (@)% + My 2 Mpp+ Q7 *Mie My 2Giylyy

du . ‘ . .
718: (6f5) 2 + fs ® Vig+ Qg *M1y Mg *Gislay

d116 _ 7 2 \ 2 5 2 18 , z
- - (af) g © Tie+ We “ 117+ Bgie i 16 0TieV0
d1 17 _ 7 2 N 2 7 2 18 1 z
- - (o) li7 2 117+ @7 “ 146+ Bgie 117 (9Ti7 Vo
d1 18 _ 7 2 \ 2 7 2 18 4 z
- - (af) lig © Tig*+ W “ 117+ Bgie 1 15 (9TisV0

If the conditions of the previous theorem are satisfied and if the fun¢t@i® x'Q(¢E® Belong to
6 3 (a,) then the above equilibrium pointasymptotically stabl
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_Denote
Definition of Vg1 -
Q= Gt Vg %= Tt 1

TEEFS vy _ o 3 TE@F® o4 2 _
Ty Yi = N " Qs = lm

Then taking into account equatiofgdobal) and neglecting the terms of power 2, we obtain

o " . . , "
Tfo: (GF) 3 + My 3 M+ Gy Mo N *Golan

WMoy

o - (GF) 3+ My 3 My + Gy 3V N 2 Gily
o " . . , "
,(;2 = (@B + My 3 Mgt Gy My fp 3Gy
oj 5. . el ’ o
Tfo = (a3 i 2 10+ G 315+ BEy i 20 0 YoV
(o] 5 \ 5 y -
Tfl = (033) 3 i 3 T+ @y 315+ B’zézo L 21 (g Y1V
(o] 5 \ 5 y -
sz = (a)°3 ip 2 Mop+ @y 31 +B%E, i, R ALY

If the conditions of the previous theorem are satisfied and if the funct{of®* (Ié’Q((I%)*“ Belong to
6 * (a,) then the above equilibrium point is asymptotically stabl

_Denote
Definition of \l -¢1 -
QF Gt Vo ¥ ht Tg

TERFY vy _ @B o 2 _
R = e MR e =i
Then taking into account equatiofjglobal)and neglecting the terms of power 2, we obtain

o] " . " , N
T&M: (GF) 4+ Mag * Mgt g *Mos Moy 4G5

o] . . " , N
- (GB)* + Mas 4 Mgt Qs *VMps M5 G515

;

WMo _ v, \ v, , o,

o (GF)* + Moe * Mpet+ s *Mps  Moe * "Gplys
Ao _ 7, \ 7 26 ; w
== (@)Yl f Tat @ P15+ By 12 oMo
Do _ k2 ; 5 2% ¢ "
== (6BB)* ias t Tast s Tt BRay i 0 ¥sV0
Mo _ 7, \ 7 26 ; w

™ (a33) * s * Tagt e * 155+ BRos i 26 9 VeV

If the conditions of the previous theorem are satisfied and if tnecfions(¢E*®° ¢&'Q(E® Belong to
0 5 (a,) then the above equilibrium point is asymptotically stable
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Denote
Definition of\ -¢1 - 634

QF @t Mg 6= %t T

T(:)ZL?::S Yo = Mo ° T(;&%f Q@ =i

Then taking into account equatioljglobal)and neglecting the terms of power 2, we obtain 635
&(;8 = (GBR)° + Mg ° Mpg+ Ghg °Mpg g °Ggly 636
Q\:ﬁg = (GRR)° + My ° Mo+ Gpg Mg Moo ° "Gyl 637
Q,u% = (68%)° + Nz °> Mg+ @ Mz Mao °Colog 638
% = (G8)° i ° Tat Gy T+ By i v YV 639
% = (6B)° G ° Tat+ Qg 15+ BRyg (9 0 VeV 640
% = (6B))° Gz ° Tgt Gy T+ BHEyg i 50 oV 641
If the conditions of the previousheorem are satisfied and if the functio(GEf* (J(.*,'Q(&%)ae6 Belong to 642

6 6 (a,) then the above equilibrium point is asymptotically st
Denote
Definition of \l -¢1 - 643

QF @t Mg 6 %t T

T(T(%Lie Y = A ® T(;Ei;% QL =i
Then taking into account equatiofggobal)and neglecting the terms of power 2, we obtain 644
‘Q.u% = (6B)°%+ Ny ® Mg+ @ Vg Ny ©Golg 645
‘Q.uf = (6)°% + Mgz ® Mgg+ g ®Vgp  Mas ' Galg 646
% = (68) %+ Mg © Mgg+ Gy ®Vgz Mgy °'Gylg 647
% = (6B)°®  igp ® Mgt Gy g+ BHy i oYV 648
% = (6B)°® iz © Mgt Gy Clg+ BHy i 0%V 649
% (%) © fag © Tag+ Gy 133+ By 04 9 ¥aVo o
Obviously, these values represent an equilibrium solution of 79,20,36,22,23, 651

If the conditions of the previous theorem are isdied and if the function&asg ¢&'Q(cE*’ Belong to
6 7 (a,) then the above equilibrium point is asymptotically stable.

Proof: Denote
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Definition of\ -¢1 -

(o e S T
T(m$ o — I T(h‘&? o, 22 _

Then taking into account equatiogf®OLUMNALnd neglecting the terms of power 2, we obtain

o] . . . , "
,(;6 = (GF) T+ Mg " Mget Gy "Mzz Nz " Gelay
o] . . . , "
,(;7 = (@) 4+ Mgy T Mgt Wy TMge My TGl
o . . . , N
T?S: (GFa) " + Nag / Mgg+ Gyg "Mz  Nzg ' "Gl
m 5 \ ol ’ o
Tie = (a®) iss  Taet O3 " Ta7+ BEss i 35 0 ¥V
o

%: (c®)’ a7 7 Mar+ @y T1as+ BEag i 57 0¥ Vy
o

T g+ Gyg " 13+ By i 9 YV

The characteristic equation of this system is

R R DU G (7 A
_ @)+ ong

+ r]15
1

! I’113 "Q3

. 1, .
n14 Q4 oWy

¥, 1 . , - ¥ , v
=1+(0i) 13 i 14,20 Yat Qa T 1514 Ya
+ (@) Mt e TG+ Qg P TG
. 1 . , o 5 , o
=1+(0f§) l13 f1a,3Yat @ 113 13"Ys
2 w 1 v 1 . 1 . 1
(@) +(E) o+ o, o+ Ny, _ !
2 7 1 . 1 N N
_ b+ (Uoﬁ) "‘(Qi) g iy bt
+ b (@) (@) e P e bt s TG
+ _ ()t ot Qs ' Mg POt Qg P s P Nz TG
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