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ABSTRACT: A state register that stores the state of the Turing machine, one of finitely many. There is one special start state 

with which the state register is initialized. These states, writes Turing, replace the "state of mind" a person performing 

computations would ordinarily be in.It is like bank ledger, which has Debits and Credits. Note that in double entry 
computation, both debits and credits are entered in to the systems, namely the Bank Ledger and balance is posted. Individual 

Debits are equivalent to individual credits. On a generalizational and globalist scale, a ñGeneral Ledgerò is written which 

records in all its wide ranging manifestation the Debits and Credits. This is also conservative. In other words Assets is 

equivalent to Liabilities. True, Profit is distributed among overheads and charges, and there shall be another account in the 

General ledger that is the account of Profit. This account is credited with the amount earned as commission, exchange, or 

discount of bills. Now when we write the ñGeneral Ledgerò of Turing machine, the Primma Donna and terra firma of the 

model, we are writing the General Theory of all the variables that are incorporated in the model. So for every variable, we 

have an anti variable. This is the dissipation factor. Conservation laws do hold well in computers. They do not break the 

conservation laws. Thus energy is not dissipated in to the atmosphere when computation is being performed. To repeat we 

are suggesting a General Theory Of working of a simple Computer and in further papers, we want to extend this theory to 

both nanotechnology and Quantum Computation. Turingôs work is the proponent, precursor, primogeniture, progenitor and 

promethaleon for the development of Quantum Computers. Computers follow conservation laws. This work is one which 
formed the primordial concept of diurnal dynamics and hypostasized dynamism of Quantum computers which is the locus of 

essence, sense and expression of the present day to day musings and mundane drooling. Verily Turing and Churchill stand 

out like connoisseurs, rancouteurs, and cognescenti of eminent persons, who strode like colossus the screen of collective 

consciousness of people. We dedicate this paper on the eve of one hundred years of Turing innovation. Model is based on 

Hill and Peterson diagram. 

 

INTRODUCTION  
Turing machine ïA beckoning begorra (Extensive excerpts from Wikipedia AND PAGES OF Turing,Churchill,and 

other noted personalities-Emphasis is mine) 
A Turing machine is a device that manipulates symbols on a strip of tape according to a table of rules. Despite its 

simplicity, a Turing machine can be adapted to simulate the logic of any computer algorithm, and is particularly useful in 

explaining the functions of a CPU inside a computer. 

The "Turing" machine was described by Alan Turing in 1936 who called it an "a (automatic)-machine". The Turing 

machine is not intended as a practical computing technology, but rather as a hypothetical device representing a computing 

machine. Turing machines help computer scientists understand the limits of mechanical computation. 

Turing gave a succinct and candid definition of the experiment in his 1948 essay, "Intelligent Machinery". Referring to his 

1936 publication, Turing wrote that the Turing machine, here called a Logical Computing Machine, consisted of: 

...an infinite memory capacity obtained in the form of an infinite tape marked out into squares, on each of which a symbol 

could be printed. At any moment there is one symbol in the machine; it is called the scanned symbol. The machine can alter 

the scanned symbol and its behavior is in part determined by that symbol, but the symbols on the tape elsewhere do not 

affect the behaviour of the machine. However, the tape can be moved back and forth through the machine, this being one of 

the elementary operations of the machine. Any symbol on the tape may therefore eventually have an innings. (Turing 1948, 

p. 61) 

A Turing machine that is able to simulate any other Turing machine is called a universal Turing machine (UTM, or simply 

a universal machine). A more mathematically oriented definition with a similar "universal" nature was introduced by Alonzo 

Church, whose work on calculus intertwined with  Turing's in a formal theory of computation known as the ChurchïTuring 

thesis. The thesis states that Turing machines indeed capture the informal notion of effective method 

in logic and mathematics, and provide a precise definition of an algorithm or 'mechanical procedure'. 

In computability theory, the ChurchïTuring thesis (also known as the ChurchïTuring conjecture, Church's thesis, Church's 

conjecture, and Turing's thesis) is a combined hypothesis ("thesis") about the nature of functions whose values 

are effectively calculable; or, in more modern terms, functions whose values are algorithmically computable. In simple 

terms, the ChurchïTuring thesis states that "everything algorithmically computable is computable by a Turing machine.ò 
American mathematician Alonzo Church created a method for defining functions called the ɚ-calculus, 

Church, along with mathematician Stephen Kleene and logician J.B. Rosser created a formal definition of a class of 

functions whose values could be calculated by recursion. 

All three computational processes (recursion, the ɚ-calculus, and the Turing machine) were shown to be equivalentðall 

three approaches define the same class of functions this has led mathematicians and computer scientists to believe that the 

concept of computability is accurately characterized by these three equivalent processes. Informally the ChurchïTuring 

thesis states that if some method (algorithm) exists to carry out a calculation, then the same calculation can also be carried 

out by a Turing machine (as well as by a recursively definable function, and by a ɚ-function). 

The ChurchïTuring thesis is a statement that characterizes the nature of computation and cannot be formally proven. Even 

though the three processes mentioned above proved to be equivalent, the fundamental premise behind the thesisðthe 

Turing Machine Operation-A Checks and Balances Model 
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notion of what it means for a function to be "effectively calculable" (computable)ðis "a somewhat vague intuitive 

one" Thus, the "thesis" remains a hypothesis. 

 

Desultory Bureaucratic burdock or a Driving dromedary? 
The Turing machine mathematically models a machine that mechanically operates on a tape. On this tape are symbols 

which the machine can read and write, one at a time, using a tape head. Operation is fully determined by a finite set of 

elementary instructions such as "in state 42, if the symbol seen is 0, write a 1; if the symbol seen is 1, change into state 17; in 

state 17, if the symbol seen is 0, write a 1 and change to state 6;" etc. In the original article, Turing imagines not a 

mechanism, but a person whom he calls the "computer", who executes these deterministic mechanical rules slavishly (or as 

Turing puts it, "in a desultory manner"). 

 
 

The head is always over a particular square of the tape; only a finite stretch of squares is shown. The instruction to be 

performed (q4) is shown over the scanned square. (Drawing after Kleene (1952) p.375.) 

 
 

Here, the internal state (q1) is shown inside the head, and the illustration describes the tape as being infinite and pre-filled 
with "0", the symbol serving as blank. The system's full state (its configuration) consists of the internal state, the contents of 

the shaded squares including the blank scanned by the head ("11B"), and the position of the head. (Drawing after Minsky 

(1967) p. 121). 

 

Sequestration dispensation: 

A tape which is divided into cells, one next to the other. Each cell contains a symbol from some finite alphabet. The 

alphabet contains a special blank symbol (here written as 'B') and one or more other symbols. The tape is assumed to be 

arbitrarily extendable to the left and to the right, i.e., the Turing machine is always supplied with as much tape as it needs 

for its computation. Cells that have not been written to before are assumed to be filled with the blank symbol. In some 

models the tape has a left end marked with a special symbol; the tape extends or is indefinitely extensible to the right. 

A head that can read and write symbols on the tape and move the tape left and right one (and only one) cell at a time. In 

some models the head moves and the tape is stationary. 
A state register that stores the state of the Turing machine, one of finitely many. There is one special start state with which 

the state register is initialized. These states, writes Turing, replace the "state of mind" a person performing computations 

would ordinarily be in.It is like bank ledger, which has Debits and Credits. Note that in double entry computation, both 

debits and credits are entered in to the systems, namely the Bank Ledger and balance is posted. Individual Debits are 

equivalent to individual Credits. On a generalizational and globalist scale, a ñGeneral Ledgerò is written which records in all 

its wide ranging manifestation the Debits and Credits. This is also conservative. In other words Assets is equivalent to 

Liabilities. True, Profit is distributed among overheads and charges, and there shall be another account in the General ledger 

that is the account of Profit. This account is credited with the amount earned as commission, exchange, or discount of bills. 

Now when we write the ñGeneral Ledgerò of Turing machine, the Primma Donna and terra firma of the model, we are 

writing the General Theory of all the variables that are incorporated in the model. So for every variable, we have an anti 

variable. This is the dissipation factor. Conservation laws do hold well in computers. They do not break the conservation 
laws. Thus energy is not dissipated in to the atmosphere when computation is being performed. To repeat we are suggesting 

a General Theory Of working of a simple Computer and in further papers, we want to extend this theory to both 

nanotechnology and Quantum Computation. 

A finite table (occasionally called an action table or transition function) of instructions (usually quintuples [5-tuples]: 

qiajŸqi1aj1dk, but sometimes 4-tuples) that, given the state (qi) the machine is currently in and the symbol (aj) it is reading 

on the tape (symbol currently under the head) tells the machine to do the following in sequence (for the 5-tuple models): 

Either erase or write a symbol (replacing aj with aj1), and then 

Move the head (which is described by dk and can have values: 'L' for one step left or 'R' for one step right or 'N' for staying 

in the same place), and then 

Assume the same or a new state as prescribed (go to state qi1). 

In the 4-tuple models, erasing or writing a symbol (aj1) and moving the head left or right (dk) are specified as separate 

instructions. Specifically, the table tells the machine to (ia) erase or write a symbol or (ib) move the head left or right , and 
then (ii) assume the same or a new state as prescribed, but not both actions (ia) and (ib) in the same instruction. In some 

models, if there is no entry in the table for the current combination of symbol and state then the machine will halt; other 

models require all entries to be filled. 

http://en.wikipedia.org/wiki/File:Turing_machine_2b.svg
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Note that every part of the machineðits state and symbol-collectionsðand its actionsðprinting, erasing and tape motionð

is finite, discrete and distinguishable; Only a virus can act as a predator to it. It is the potentially unlimited amount of tape 

that gives it an unbounded amount of storage space. 

Quantum mechanical Hamiltonian models of Turing machines are constructed here on a finite lattice of spin-½ systems. The 
models do not dissipate any energy and they operate at the quantum limit in that the system (energy uncertainty) / 

(computation speed) is close to the limit given by the time-energy uncertainty principle. 

 Regarding finite state machines as Markov chains facilitates the application of probabilistic methods to very large logic 

synthesis and formal verification problems.Variational concepts and exegetic evanescence of the subject matter is done by 

Hachtel, G.D. Macii, E. ;  Pardo, A. ;  Somenzi, F.  with symbolic algorithms to compute the steady-state probabilities for 

very large finite state machines (up to 1027 states). These algorithms, based on Algebraic Decision Diagrams (ADD's)  -an 

extension of   BDD's that allows arbitrary values to be associated with the terminal nodes of the diagrams-determine the 

steady-state probabilities by regarding finite state machines as homogeneous, discrete-parameter Markov chains with finite 

state spaces, and by solving the corresponding Chapman-Kolmogorov equations. Finite state machines with state graphs 

composed of a single terminal strongly connected component systems authors have used two solution techniques: One is 

based on the Gauss-Jacobi iteration, the other one is based on simple matrix multiplication. Extension of the treatment is 

done to the most general case of systems which can be modeled as finite state machines with arbitrary transition structures; 
until a certain temporal point, having no relevant options and effects for the decision maker beyond that point. Structural 

morphology and easy decomposition is resorted to towards the consummation of results. Conservations Laws powerhouse 

performance and no breakage is done with heterogeneous synthesis of conditionalities. Accumulation. Formulation and 

experimentation are by word and watch word. 

 

Logistics of misnomerliness and anathema: 

In any scientific discipline there are many reasons to use terms that have precise definitions. Understanding the terminology 

of a discipline is essential to learning a subject and precise terminology enables us to communicate ideas clearly with other 

people. In computer science the problem is even more acute: we need to construct software and hardware components that 

must smoothly interoperate across interfaces with clients and other components in distributed systems. The definitions of 

these interfaces need to be precisely specified for interoperability and good systems performance. 
Using the term "computation" without qualification often generates a lot of confusion. Part of the problem is that the nature 

of systems exhibiting computational behavior is varied and the term computation means different things to different people 

depending on the kinds of computational systems they are studying and the kinds of problems they are investigating. Since 

computation refers to a process that is defined in terms of some underlying model of computation, we would achieve clearer 

communication if we made clear what the underlying model is. 

Rather than talking about a vague notion of "computation," suggestion is to use the term in conjunction with a well-defined 

model of computation whose semantics is clear and which matches the problem being investigated. Computer science 

already has a number of useful clearly defined models of computation whose behaviors and capabilities are well understood. 

We should use such models as part of any definition of the term computation. However, for new domains of investigation 

where there are no appropriate models it may be necessary to invent new formalisms to represent the systems under study. 

 

Courage of conviction and will for vindication: 
We consider computational thinking to be the thought processes involved in formulating problems so their solutions can be 

represented as computational steps and algorithms. An important part of this process is finding appropriate models of 

computation with which to formulate the problem and derive its solutions. A familiar example would be the use of finite 

automata to solve string pattern matching problems. A less familiar example might be the quantum circuits and order finding 

formulation that Peter Schor used to devise an integer-factoring algorithm that runs in polynomial time on a quantum 

computer. Associated with the basic models of computation in computer science is a wealth of well-known algorithm-design 

and problem-solving techniques that can be used to solve common problems arising in computing. 

However, as the computer systems we wish to build become more complex and as we apply computer science abstractions to 

new problem domains, we discover that we do not always have the appropriate models to devise solutions. In these cases, 

computational thinking becomes a research activity that includes inventing appropriate new models of computation. 

Corrado Priami and his colleagues at the Centre for Computational and Systems Biology in Trento, Italy have been using 
process calculi as a model of computation to create programming languages to simulate biological processes. Priami states 

"the basic feature of computational thinking is abstraction of reality in such a way that the neglected details in the model 

make it executable by a machine." [Priami, 2007] 

As we shall see, finding or devising appropriate models of computation to formulate problems is a central and often 

nontrivial part of computational thinking. 

 

Hero or Zero? 

In the last half century, what we think of as a computational system has expanded dramatically. In the earliest days of 

computing, a computer was an isolated machine with limited memory to which programs were submitted one at a time to be 

compiled and run. Today, in the Internet era, we have networks consisting of millions of interconnected computers and as 

we move into cloud computing, many foresee a global computing environment with billions of clients having universal on-
demand access to computing services and data hosted in gigantic data centers located around the planet. Anything from a 

PC or a phone or a TV or a sensor can be a client and a data center may consist of hundreds of thousands of servers. 
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Needless to say, the models for studying such a universally accessible, complex, highly concurrent distributed system are 

very different from the ones for a single isolated computer. In fact, our aim is to build the model for infinite number of 

interconnected ness of computers. 

Another force at play is that because of heat dissipation considerations the architecture of computers is changing. An 
ordinary PC today has many different computing elements such as multicore chips and graphics processing units, and an 

exascale supercomputer by the end of this decade is expected to be a giant parallel machine with up to a million nodes each 

with possibly a thousand processors. Our understanding of how to write efficient programs for these machines is limited. 

Good models of parallel computation and parallel algorithm design techniques are a vital open research area for effective 

parallel computing. 

In addition, there is increasing interest in applying computation to studying virtually all areas of human endeavor. One 

fascinating example is simulating the highly parallel biological processes found in human cells and organs for the purposes 

of understanding disease and drug design. Good computational models for biological processes are still in their infancy. And 

it is not clear we will ever be able to find a computational model for the human brain that would account for emergent 

phenomena such as consciousness or intelligence. 

 

Queen or show piece: 
The theory of computation has been and still is one of the core areas of computer science. It explores the fundamental 

capabilities and limitations of models of computation. A model of computation is a mathematical abstraction of a 

computing system. The most important model of sequential computation studied in computer science is the Turing machine, 

first proposed by Alan Turing in 1936. 

We can think of a Turing machine as a finite -state control attached to a tape head that can read and write symbols on the 

squares of a semi-infinite tape. Initially, a finite string of length n representing the input is in the leftmost n squares of the 

tape. An infinite sequence of blanks follows the input string. The tape head is reading the symbol in the leftmost square and 

the finite control is in a predefined initial state. 

The Turing machine then makes a sequence of moves. In a move it reads the symbol on the tape under the tape head and 

consults a transition table in the finite-state control which specifies a symbol to be overprinted on the square under the tape 

head, a direction the tape head is to move (one square to the left or right), and a state to enter next. If the Turing machine 
enters an accepting halting state (one with no next move), the string of nonblank symbols remaining on the input tape at that 

point in time is its output. 

Mathematically, a Turing machine consists of seven components: a finite set of states; a finite input alphabet (not 

containing the blank); a finite tape alphabet (which includes the input alphabet and the blank); a transition function that maps 

a state and a tape symbol into a state, tape symbol, and direction (left or right); a start state; an accept state from which there 

are no further moves; and a reject state from which there are no further moves. 

We can characterize the configuration of a Turing machine at a given moment in time by three quantities: 

1. the state of the finite-state control, 

2. the string of nonblank symbols on the tape, and 

3. the location of the input head on the tape. 

A computation of a Turing machine on an input w is a sequence of configurations the machine can go through starting from 

the initial configuration with w on the tape and terminating (if the computation terminates) in a halting configuration. We say 
a function f from strings to strings is computable if there is some Turing machine M that given any input string w always 

halts in the accepting state with just f (w) on its tape. We say that M computes f. 

The Turing machine provides a precise definition for  the term algorithm: an algorithm for a function f is just a Turing 

machine that computes f. 

There are scores of models of computation that are equivalent to Turing machines in the sense that these models compute 

exactly the same set of functions that Turing machines can compute. Among these Turing-complete models of computation 

are multitape Turing machines, lambda-calculus, random access machines, production systems, cellular automata, 

and all general-purpose programming languages. 

The reason there are so many different models of computation equivalent to Turing machines is that we rarely want to 

implement an algorithm as a Turing machine program; we would like to use a computational notation such as a 

programming language that is easy to write and easy to understand. But no matter what notation we choose, the famous 
Church-Turing thesis hypothesizes that any function that can be computed can be computed by a Turing machine. 

Note that if there is one algorithm to compute a function f, then there is an infinite number. Much of computer science is 

devoted to finding efficient algorithms to compute a given function. 

For clarity, we should point out that we have defined a computation as a sequence of configurations a Turing machine can go 

through on a given input. This sequence could be infinite if the machine does not halt or one of a number of possible 

sequences in case the machine is nondeterministic. 

The reason we went through this explanation is to point out how much detail is involved in precisely defining the term 

computation for the Turing machine, one of the simplest models of computation. It is not surprising, then, as we move to 

more complex models, the amount of effort needed to precisely formulate computation in terms of those models grows 

substantially. 
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Sublime synthesis  not dismal anchorage: 

Many real-world computational systems compute more than just a single functionðthe world has moved to interactive 

computing [Goldin, Smolka, Wegner, 2006]. The term reactive system is used to describe a system that maintains an 

ongoing interaction with its environment. Examples of reactive systems include operating systems and embedded systems. 
A distributed system is one that consists of autonomous computing systems that communicate with one another through 

some kind of network using message passing. Examples of distributed systems include telecommunications systems, the 

Internet, air-traffic control systems, and parallel computers. Many distributed systems are also reactive systems. 

Perhaps the most intriguing examples of reactive distributed computing systems are biological systems such as cells and 

organisms. We could even consider the human brain to be a biological computing system. Formulation of appropriate 

models of computation for understanding biological processes is a formidable scientific challenge in the intersection of 

biology and computer science. 

Distributed systems can exhibit behaviors such as deadlock, live lock, race conditions, and the like that cannot be usefully 

studied using a sequential model of computation. Moreover, solving problems such as determining the throughput, latency, 

and performance of a distributed system cannot be productively formulated with a single-thread model of computation. For 

these reasons, computer scientists have developed a number of models of concurrent computation which can be used to 

study these phenomena and to architect tools and components for building distributed systems. Many authors have studied 
these aspects in wider detail (See for example Alfred V. Aho), 

There are many theoretical models for concurrent computation. One is the message-passing Actor model, consisting of 

computational entities called actors [Hewitt, Bishop, Steiger, 1973]. 

An actor can send and receive messages, make local decisions, create more actors, and fix the behavior to be used for the 

next message it receives. These actions may be executed in parallel and in no fixed order. The Actor model was devised to 

study the behavioral properties of parallel computing machines consisting of large numbers of independent processors 

communicating by passing messages through a network. Other well-studied models of concurrent computation include Petri 

nets and the process calculi such as pi-calculus and mu-calculus. 

Many variants of computational models for distributed systems are being devised to study and understand the behaviors of 

biological systems. For example, Dematte, Priami, and Romanel [2008] describe a language called BlenX that is based on a 

process calculus called Beta-binders for modeling and simulating biological systems. 
We do not have the space to describe these concurrent models in any detail. However, it is still an open research area to find 

practically useful concurrent models of computation that combine control and data for many areas of distributed computing. 

Comprehensive envelope of expression not an identarian instance of semantic jugglery: 

In addition to aiding education and understanding, there are many practical benefits to having appropriate models of 

computation for the systems we are trying to build. In cloud computing, for example, there are still a host of poorly 

understood concerns for systems of this scale. We need to better understand the architectural tradeoffs needed to achieve the 

desired levels of reliability, performance, scalability and adaptivity in the services these systems are expected to provide. We 

do not have appropriate abstractions to describe these properties in such a way that they can be automatically mapped from a 

model of computation into an implementation (or the other way around). 

In cloud computing, there are a host of research challenges for system developers and tool builders. As examples, we need 

programming languages, compilers, verification tools, defect detection tools, and service management tools that can scale to 

the huge number of clients and servers involved in the networks and data centers of the future. Cloud computing is one 
important area that can benefit from innovative computational thinking. 

 

The Finale: 

Mathematical abstractions called models of computation are at the heart of computation and computational thinking. 

Computation is a process that is defined in terms of an underlying model of computation and computational thinking is the 

thought processes involved in formulating problems so their solutions can be represented as computational steps and 

algorithms. Useful models of computation for solving problems arising in sequential computation can range from 

simple finite-state machines to Turing-complete models such as random access machines. Useful models of concurrent 

computation for solving problems arising in the design and analysis of complex distributed systems are still a subject of 

current research. 

The P versus NP problem is to determine whether every language accepted by some nondeterministic algorithm in 
polynomial time is also accepted by some (deterministic) algorithm in polynomial time. To deýne the problem precisely it is 

necessary to give a formal model of a computer. The standard computer model in computability theory is the Turing 

machine, introduced by Alan Turing in 1936 [Tur36]. Although the model was introduced before physical computers were 

built, it nevertheless continues to be accepted as the proper computer model for the purpose of deýning the notion of 

computable function. 

 

Examples of Turing machines 

3-state busy beaver 

Formal definition 

Hopcroft and Ullman (1979, p. 148) formally define a (one-tape) Turing machine as a 7-

tuple  where 

 Is a finite, non-empty set of states 
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 Is a finite, non-empty set of the tape alphabet/symbols 

 is the blank symbol (the only symbol allowed to occur on the tape infinitely often at any step during the 
computation) 

 is the set of input symbols 

 is the initial state 

 is the set of final or accepting states. 

 is a partial function called the transition function, where L is left shift, R 
is right shift. (A relatively uncommon variant allows "no shift", say N, as a third element of the latter set.) 

Anything that operates according to these specifications is a Turing machine. 

The 7-tuple for the 3-state busy beaver looks like this (see more about this busy beaver at Turing machine examples): 

 

 
 ("Blank") 

 

 (the initial state) 

 
 see state-table below 

Initially all tape cells are marked with 0. 

State table for 3 state, 2 symbol busy beaver 

Tape symbol-Current state A-Current state B-Current state C 
-Write symbol-Move tape-Next state-Write symbol-Move tape-Next state-Write symbol-Move tape-Next state 

0-1-R-B-1-L-A-1-L-B 

1-1-L-C-1-R-B-1-R-HALT  

In the words of van Emde Boas (1990), p. 6: "The set-theoretical object his formal seven-tuple description similar to the 

above] provides only partial information on how the machine will behave and what its computations will look like." 

For instance, 

There will need to be some decision on what the symbols actually look like, and a failproof way of reading and writing 

symbols indefinitely. 

The shift left and shift right operations may shift the tape head across the tape, but when actually building a Turing machine 

it is more practical to make the tape slide back and forth under the head instead. 

The tape can be finite, and automatically extended with blanks as needed (which is closest to the mathematical definition), 
but it is more common to think of it as stretching infinitely at both ends and being pre-filled with blanks except on the 

explicitly given finite fragment the tape head is on. (This is, of course, not implementable in practice.) The tape cannot be 

fixed in length, since that would not correspond to the given definition and would seriously limit the range of computations 

the machine can perform to those of alinear bounded automaton. 

 

Contradictions and complementarities: 

Definitions in literature sometimes differ slightly, to make arguments or proofs easier or clearer, but this is always done in 

such a way that the resulting machine has the same computational power. For example, changing the set 

 to , where N ("None" or "No-operation") would allow the machine to stay on the same tape cell instead of 
moving left or right, does not increase the machine's computational power. 

The most common convention represents each "Turing instruction" in a "Turing table" by one of nine 5-tuples, per the 

convention of Turing/Davis (Turing (1936) in Undecidable, p. 126-127 and Davis (2000) p. 152): 

(Definition 1): (qi, Sj, Sk/E/N, L/R/N, qm) 

(Current state qi , symbol scanned Sj , print symbol Sk/erase E/none N , move_tape_one_square left L/right R/none N , new 

state qm ) 

Other authors (Minsky (1967) p. 119, Hopcroft and Ullman (1979) p. 158, Stone (1972) p. 9) adopt a different convention, 

with new state qm listed immediately after the scanned symbol Sj: 

(Definition 2): (qi, Sj, qm, Sk/E/N, L/R/N) 

(Current state qi , symbol scanned Sj , new state qm , print symbol Sk/erase E/none N , move_tape_one_square 
left L/right R/none N ) 

For the remainder of this article "definition 1" (the Turing/Davis convention) will be used. 

Example: state table for the 3-state 2-symbol busy beaver reduced to 5-tuples 

Current state-Scanned symbol--Print symbol-Move tape-Final (i.e. next) state-5-tuples 

A-0--1-R-B-(A, 0, 1, R, B) 

A-1--1-L-C-(A, 1, 1, L, C) 

B-0--1-L-A-(B, 0, 1, L, A) 

B-1--1-R-B-(B, 1, 1, R, B) 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.4, July-Aug. 2012 pp-2028-2109             ISSN: 2249-6645 

www.ijmer.com                                                                            2034 | Page 

C-0--1-L-B-(C, 0, 1, L, B) 

C-1--1-N-H-(C, 1, 1, N, H) 

In the following table, Turing's original model allowed only the first three lines that he called N1, N2, N3 (cf Turing 

in Undecidable, p. 126). He allowed for erasure of the "scanned square" by naming a 0th symbol S0 = "erase" or "blank", 
etc. However, he did not allow for non-printing, so every instruction-line includes "print symbol Sk" or "erase" (cf footnote 

12 in Post (1947), Undecidable p. 300). The abbreviations are Turing's (Undecidable p. 119). Subsequent to Turing's original 

paper in 1936ï1937, machine-models have allowed all nine possible types of five-tuples: 

-Current m-configuration (Turing state)-Tape symbol-Print-operation-Tape-motion-Final m-configuration (Turing state)-5-

tuple-5-tuple comments-4-tuple 

N1-qi-Sj-Print(Sk)-Left L-qm-(qi, Sj, Sk, L, qm)-"blank" = S0, 1=S1, etc.- 

N2-qi-Sj-Print(Sk)-Right R-qm-(qi, Sj, Sk, R, qm)-"blank" = S0, 1=S1, etc.- 

N3-qi-Sj-Print(Sk)-None N-qm-(qi, Sj, Sk, N, qm)-"blank" = S0, 1=S1, etc.-(qi, Sj, Sk, qm) 

4-qi-Sj-None N-Left L-qm-(qi, Sj, N, L, qm)--(qi, Sj, L, qm) 

5-qi-Sj-None N-Right R-qm-(qi, Sj, N, R, qm)--(qi, Sj, R, qm) 

6-qi-Sj-None N-None N-qm-(qi, Sj, N, N, qm)-Direct "jump"-(qi, Sj, N, qm) 

7-qi-Sj-Erase-Left L-qm-(qi, Sj, E, L, qm)-- 
8-qi-Sj-Erase-Right R-qm-(qi, Sj, E, R, qm)-- 

9-qi-Sj-Erase-None N-qm-(qi, Sj, E, N, qm)--(qi, Sj, E, qm) 

Any Turing table (list of instructions) can be constructed from the above nine 5-tuples. For technical reasons, the three non-

printing or "N" instructions (4, 5, 6) can usually be dispensed with. For examples see Turing machine examples. 

Less frequently the use of 4-tuples is encountered: these represent a further atomization of the Turing instructions (cf Post 

(1947), Boolos & Jeffrey (1974, 1999), Davis-Sigal-Weyuker (1994)); also see more at PostïTuring machine. 

The "state"  

The word "state" used in context of Turing machines can be a source of confusion, as it can mean two things. Most 

commentators after Turing have used "state" to mean the name/designator of the current instruction to be performedði.e. the 

contents of the state register. But Turing (1936) made a strong distinction between a record of what he called the machine's 

"m-configuration", (its internal state) and the machine's (or person's) "state of progress" through the computation - the 
current state of the total system. What Turing called "the state formula" includes both the current instruction and all the 

symbols on the tape: 

Thus the state of progress of the computation at any stage is completely determined by the note of instructions and the 

symbols on the tape. That is, the state of the system may be described by a single expression (sequence of symbols) 

consisting of the symbols on the tape followed by ȹ (which we suppose not to appear elsewhere) and then by the note of 

instructions. This expression is called the 'state formula'. 

ðUndecidable, p.139ï140, emphasis added 

Earlier in his paper Turing carried this even further: he gives an example where he places a symbol of the current "m-

configuration"ðthe instruction's labelðbeneath the scanned square, together with all the symbols on the tape (Undecidable, 

p. 121); this he calls "the complete configuration" (Undecidable, p. 118). To print the "complete configuration" on one line 

he places the state-label/m-configuration to the left of the scanned symbol. 

A variant of this is seen in Kleene (1952) where Kleene shows how to write the Gödel number of a machine's "situation": he 
places the "m-configuration" symbol q4 over the scanned square in roughly the center of the 6 non-blank squares on the tape 

(see the Turing-tape figure in this article) and puts it to the right of the scanned square. But Kleene refers to "q4" itself as 

"the machine state" (Kleene, p. 374-375). Hopcroft and Ullman call this composite the "instantaneous description" and 

follow the Turing convention of putting the "current state" (instruction-label, m-configuration) to the left of the scanned 

symbol (p. 149). 

Example: total state of 3-state 2-symbol busy beaver after 3 "moves" (taken from example "run" in the figure below): 

1A1 

This means: after three moves the tape has ... 000110000 ... on it, the head is scanning the right-most 1, and the state is A. 

Blanks (in this case represented by "0"s) can be part of the total state as shown here: B01 ; the tape has a single 1 on it, but 

the head is scanning the 0 ("blank") to its left and the state is B. 

"State" in the context of Turing machines should be clarified as to which is being described: (i) the current instruction, or (ii) 
the list of symbols on the tape together with the current instruction, or (iii) the list of symbols on the tape together with the 

current instruction placed to the left of the scanned symbol or to the right of the scanned symbol. 

Turing's biographer Andrew Hodges (1983: 107) has noted and discussed this confusion. 

Turing machine "state" diagrams 

The table for the 3-state busy beaver ("P" = print/write a "1") 

Tape symbol-Current state A-Current state B-Current state C 

-Write symbol-Move tape-Next state-Write symbol-Move tape-Next state-Write symbol-Move tape-Next state 

0-P-R-B-P-L-A-P-L-B 

1-P-L-C-P-R-B-P-R-HALT  
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The "3-state busy beaver" Turing machine in a finite state representation. Each circle represents a "state" of the 

TABLEðan "m-configuration" or "instruction". "Direction" of a state  transition is shown by an arrow. The label 

(e.g. 0/P, R) near the outgoing state (at the "tail" of the arrow) specifies the scanned symbol that causes a particular 

transition (e.g. 0) followed by a slash /, followed by the subsequent "behaviors" of the machine, e.g. "P Print" then 

move tape "R Right". No general accepted format exists. The convention shown is after McClusky (1965), Booth 

(1967), Hill and Peterson (1974). 

To the right: the above TABLE as expressed as a "state transition" diagram. 

Usually large TABLES are better left as tables (Booth, p. 74). They are more readily simulated by computer in tabular form 
(Booth, p. 74). However, certain conceptsðe.g. machines with "reset" states and machines with repeating patterns (cf Hill 

and Peterson p. 244ff)ðcan be more readily seen when viewed as a drawing. 

Whether a drawing represents an improvement on its TABLE must be decided by the reader for the particular context. 

See Finite state machine for more. 

 

 
 

The evolution of the busy-beaver's computation starts at the top and proceeds to the bottom. 

The reader should again be cautioned that such diagrams represent a snapshot of their TABLE frozen in time, not the course 

("trajectory") of a computation through time and/or space. While every time the busy beaver machine "runs" it will always 

follow the same state-trajectory, this is not true for the "copy" machine that can be provided with variable input 
"parameters". 

The diagram "Progress of the computation" shows the 3-state busy beaver's "state" (instruction) progress through its 

computation from start to finish. On the far right is the Turing "complete configuration" (Kleene "situation", Hopcroftï

Ullman "instantaneous description") at each step. If the machine were to be stopped and cleared to blank both the "state 

register" and entire tape, these "configurations" could be used to rekindle a computation anywhere in its progress (cf Turing 

(1936) Undecidable pp. 139ï140). 

Register machine,  

 Machines that might be thought to have more computational capability than a simple universal Turing machine can be 

shown to have no more power (Hopcroft and Ullman p. 159, cf Minsky (1967)). They might compute faster, perhaps, or use 

less memory, or their instruction set might be smaller, but they cannot compute more powerfully (i.e. more mathematical 

functions). (Recall that the ChurchïTuring thesis hypothesizes this to be true for any kind of machine: that anything that can 
be "computed" can be computed by some Turing machine.) 
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A Turing machine is equivalent to a pushdown automaton that has been made more flexible and concise by relaxing the last-

in-first-out requirement of its stack. 

At the other extreme, some very simple models turn out to be Turing-equivalent, i.e. to have the same computational power 

as the Turing machine model. 
Common equivalent models are the multi-tape Turing machine, multi-track Turing machine, machines with input and output, 

and the non-deterministic Turing machine(NDTM) as opposed to the deterministic Turing machine (DTM) for which the 

action table has at most one entry for each combination of symbol and state. 

Read-only, right-moving Turing machines are equivalent to NDFAs (as well as DFAs by conversion using the NDFA to 

DFA conversion algorithm). 

For practical and didactical intentions the equivalent register machine can be used as a usual assembly programming 

language. 

 

Choice c-machines, Oracle o-machines 

Early in his paper (1936) Turing makes a distinction between an "automatic machine"ðits "motion ... completely 

determined by the configuration" and a "choice machine": 

...whose motion is only partially determined by the configuration ... When such a machine reaches one of these ambiguous 
configurations; it cannot go on until some arbitrary choice has been made by an external operator. This would be the case if 

we were using machines to deal with axiomatic systems. 

ðUndecidable, p. 118 

Turing (1936) does not elaborate further except in a footnote in which he describes how to use an a-machine to "find all the 

provable formulae of the [Hilbert] calculus" rather than use a choice machine. He "supposes[s] that the choices are always 

between two possibilities 0 and 1. Each proof will then be determined by a sequence of choices i1, i2, ..., in (i1 = 0 or 1, i2 = 

0 or 1, ..., in = 0 or 1), and hence the number 2n + i12n-1 + i22n-2 + ... +in completely determines the proof. The automatic 

machine carries out successively proof 1, proof 2, proof 3, ..." (Footnote ÿ, Undecidable, p. 138) 

This is indeed the technique by which a deterministic (i.e. a-) Turing machine can be used to mimic the action of 

a nondeterministic Turing machine; Turing solved the matter in a footnote and appears to dismiss it from further 

consideration. 
An oracle machine or o-machine is a Turing a-machine that pauses its computation at state "o" while, to complete its 

calculation, it "awaits the decision" of "the oracle"ðan unspecified entity "apart from saying that it cannot be a machine" 

(Turing (1939), Undecidable p. 166ï168). The concept is now actively used by mathematicians. 

 

Universal Turing machines 

As Turing wrote in Undecidable, p. 128 (italics added): 

It is possible to invent a single machine which can be used to compute any computable sequence. If this machine U is 

supplied with the tape on the beginning of which is written the string of quintuples separated by semicolons of some 

computing machine M, then U will compute the same sequence as M. 

This finding is now taken for granted, but at the time (1936) it was considered astonishing. The model of computation that 

Turing called his "universal machine"ð"U" for shortðis considered by some (cf Davis (2000)) to have been the 

fundamental theoretical breakthrough that led to the notion of the Stored-program computer. 
Turing's paper ... contains, in essence, the invention of the modern computer and some of the programming techniques that 

accompanied it. 

ðMinsky (1967), p. 104 

In terms of computational complexity, a multi-tape universal Turing machine need only be slower by logarithmic factor 

compared to the machines it simulates. This result was obtained in 1966 by F. C. Hennie and R. E. Stearns. (Arora and 

Barak, 2009, theorem 1.9) 

 

Comparison with real machines 

It is often said that Turing machines, unlike simpler automata, are as powerful as real machines, and are able to execute any 

operation that a real program can. What is missed in this statement is that, because a real machine can only be in finitely 

many configurations, in fact this "real machine" is nothing but a linear bounded automaton. On the other hand, Turing 
machines are equivalent to machines that have an unlimited amount of storage space for their computations. In fact, Turing 

machines are not intended to model computers, but rather they are intended to model computation itself; historically, 

computers, which compute only on their (fixed) internal storage, were developed only later. 

There are a number of ways to explain why Turing machines are useful models of real computers: 

Anything a real computer can compute, a Turing machine can also compute. For example: "A Turing machine can simulate 

any type of subroutine found in programming languages, including recursive procedures and any of the known parameter-

passing mechanisms" (Hopcroft and Ullman p. 157). A large enough FSA can also model any real computer, disregarding 

IO. Thus, a statement about the limitations of Turing machines will also apply to real computers. 

The difference lies only with the ability of a Turing machine to manipulate an unbounded amount of data. However, given a 

finite amount of time, a Turing machine (like a real machine) can only manipulate a finite amount of data. 

Like a Turing machine, a real machine can have its storage space enlarged as needed, by acquiring more disks or other 
storage media. If the supply of these runs short, the Turing machine may become less useful as a model. But the fact is that 
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neither Turing machines nor real machines need astronomical amounts of storage space in order to perform useful 

computation. The processing time required is usually much more of a problem. 

Descriptions of real machine programs using simpler abstract models are often much more complex than descriptions using 

Turing machines. For example, a Turing machine describing an algorithm may have a few hundred states, while the 
equivalent deterministic finite automaton on a given real machine has quadrillions. This makes the DFA representation 

infeasible to analyze. 

Turing machines describe algorithms independent of how much memory they use. There is a limit to the memory possessed 

by any current machine, but this limit can rise arbitrarily in time. Turing machines allow us to make statements about 

algorithms which will (theoretically) hold forever, regardless of advances in conventional computing machine architecture. 

Turing machines simplify the statement of algorithms. Algorithms running on Turing-equivalent abstract machines are 

usually more general than their counterparts running on real machines, because they have arbitrary-precision data types 

available and never have to deal with unexpected conditions (including, but not limited to, running out of memory). 

One way in which Turing machines are a poor model for programs is that many real programs, such as operating 

systems and word processors, are written to receive unbounded input over time, and therefore do not halt. Turing machines 

do not model such ongoing computation well (but can still model portions of it, such as individual procedures). 

 

Computational complexity theory 

A limitation of Turing machines is that they do not model the strengths of a particular arrangement well. For instance, 

modern stored-program computers are actually instances of a more specific form of abstract machine known as the random 

access stored program machine or RASP machine model. Like the Universal Turing machine the RASP stores its "program" 

in "memory" external to its finite-state machine's "instructions". Unlike the universal Turing machine, the RASP has an 

infinite number of distinguishable, numbered but unbounded "registers"ðmemory "cells" that can contain any integer (cf. 

Elgot and Robinson (1964), Hartmanis (1971), and in particular Cook-Rechow (1973); references at random access 

machine). The RASP's finite-state machine is equipped with the capability for indirect addressing (e.g. the contents of one 

register can be used as an address to specify another register); thus the RASP's "program" can address any register in the 

register-sequence. The upshot of this distinction is that there are computational optimizations that can be performed based on 

the memory indices, which are not possible in a general Turing machine; thus when Turing machines are used as the basis 
for bounding running times, a 'false lower bound' can be proven on certain algorithms' running times (due to the false 

simplifying assumption of a Turing machine). An example of this is binary search, an algorithm that can be shown to 

perform more quickly when using the RASP model of computation rather than the Turing machine model. 

 

Concurrency 

Another limitation of Turing machines is that they do not model concurrency well. For example, there is a bound on the size 

of integer that can be computed by an always-halting nondeterministic Turing machine starting on a blank tape. (See article 

on unbounded nondeterminism.) By contrast, there are always-halting concurrent systems with no inputs that can compute an 

integer of unbounded size. (A process can be created with local storage that is initialized with a count of 0 that concurrently 

sends itself both a stop and a go message. When it receives a go message, it increments its count by 1 and sends itself a go 

message. When it receives a stop message, it stops with an unbounded number in its local storage.) 

 

 ñAò AND ñBò(SEE FIGURE REPRESENTS  AN  ñM CONFIGURATIONò OR ñINSTRUCTIONS) OR STATE: 

THE CONVENTION SHOWN IS AFTER MCCLUSKY,BOOTH,HILL AND PETERSON.  

 

MODULE NUMBERED ONE  

NOTATION :  

Ὃ13  : CATEGORY ONE OFòAò                 

Ὃ14  : CATEGORY TWO OFòAò 

Ὃ15  : CATEGORY THREE OF óAô       

Ὕ13  : CATEGORY ONE OF óBô 

Ὕ14  : CATEGORY TWO OF óBô 

Ὕ15  :CATEGORY THREE OF óBô  

 

ñBò AND ñAò(SEE FIGURE REPRESENTS  AN  ñM CONFIGURATIONò OR ñINSTRUCTIONS) OR STATE: 

THE CONVENTION SHOWN IS AFTER MCCLUSKY,BOOTH,HILL AND PETERSON.  

MODULE NU MBERED TWO  

NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME 

,IT MAY BE ZERO, OR MIGHT BE SAME,I ALL THE THREE CASES THE MODEL COULD BE CHANGED 

EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION  OF 

ZERO. 

================================================================= 

Ὃ16  : CATEGORY ONE OF óBô    (NOTE THAT THEY REPRESENT CONFIGURATIONS,INSTRUCTIONS OR 

STATES) 

Ὃ17  : CATEGORY TWO OF óBô 
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Ὃ18  : CATEGORY THREE OF óBô 

Ὕ16  :CATEGORY ONE OF óAô 

Ὕ17  : CATEGORY TWO OF óAô  
Ὕ18  : CATEGORY THREE OFôAô 

=============================================================================  

Aò AND ñCò(SEE FIGURE REPRESENTS  AN  ñM CONFIGURATIONò OR ñINSTRUCTIONS) OR STATE: 

THE CONVENTION SHOWN IS AFTER MCCLUSKY,BOOTH,HILL AND PETERSON.  

MODULE NUMBERED THREE  

======================================================================= 

 

Ὃ20  : CATEGORY ONE OFôAô 

Ὃ21  :CATEGORY TWO OFôAô 

Ὃ22  : CATEGORY THREE OFôAô 

Ὕ20  : CATEGORY ONE OF óCô 

Ὕ21  :CATEGORY TWO OF óCô 

Ὕ22  : CATEGORY THREE OF óCô 

 

ñCò AND ñBò(SEE FIGURE REPRESENTS  AN  ñM CONFIGURATIONò OR ñINSTRUCTIONS) OR STATE: 

THE CONVENTION SHOWN IS AFTER MCCLUSKY,BOOTH,HILL AND PETERSON.  

MODULE NUMBERED FOUR  

NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME 

,IT MAY BE ZERO, OR MIGHT BE SAME,I ALL THE THREE CASES THE MODEL COULD BE CHAN GED 

EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF 

ZERO 
: 

============================================================================ 

 

Ὃ24  : CATEGORY ONE OF ñCò(EVALUATIVE PARAMETRICIZATION OF SITUATIONAL ORIENTATIONS AND 

ESSENTIAL COGNITIVE ORIENTATION AND CHOICE VARIABLES OF THE SYSTEM TO WHICH 

CONFIGURATION IS APPLICABLE) 

Ὃ25  : CATEGORY TWO OF ñCò 

Ὃ26  : CATEGORY THREE OF ñCò 

Ὕ24  :CATEGORY ONE OF  ñBò 

Ὕ25  :CATEGORY TWO OF ñBò(SYSTEMIC INSTRUMENTAL CHARACTERISATIONS AND ACTION 

ORIENTATIONS AND FUNCTIONAL IMPERATIVES OF CHANGE MANIFESTED THEREIN )  
Ὕ26  : CATEGORY THREE OFòBò 

ñCò AND ñHò(SEE FIGURE REPRESENTS  AN  ñM CONFIGURATIONò OR ñINSTRUCTIONS) OR STATE: 

THE CONVENTION SHOWN IS AFTER MCCLUSKY,BOOTH,HILL AND PETERSON.  

MODULE NUMBERED FIVE  

NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME 

,IT MAY BE ZERO, OR MIGHT BE SAME,I ALL THE THREE CASES THE MODEL COULD BE CHANGED 

EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF 

ZERO: 

=============================================================================  

Ὃ28  : CATEGORY ONE OF ñCò 

Ὃ29  : CATEGORY TWO OFòCò 

Ὃ30  :CATEGORY THREE OF ñCò  

Ὕ28  :CATEGORY ONE OF ñHò 

Ὕ29  :CATEGORY TWO OF ñHò 

Ὕ30  :CATEGORY THREE OF ñHò 

========================================================================= 

ñBò AND ñBò(SEE FIGURE REPRESENTS  AN  ñM CONFIGURATIONò OR ñINSTRUCTIONS) OR STATE: 

THE CONVENTION SHOWN IS AFTER MCCLUSKY,BOOTH,HILL AND PETERSON.  

THE SYSTEM HERE IS ONE OF SELF TRANSFORMATIONAL,SYSTEM CHANGING,STRUCTURALLY 

MUTATIONAL,SYLLOGISTICALLY CHANGE ABLE AND CONFIGURATIONALLY ALTERABLE(VERY 

VERY IMPORTANT SYSTEM IN ALMOST ALL SUBJECTS BE IT IN QUANTUM SYSTEMS OR 

DISSIPATIVE STRUCTURES 

MODULE NUMBERED SIX  

NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME 

,IT MAY BE ZER O, OR MIGHT BE SAME,I ALL THE THREE CASES THE MODEL COULD BE CHANGED 
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EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF 

ZERO: 

 

=============================================================================  

Ὃ32  : CATEGORY ONE OF ñBò 

Ὃ33  : CATEGORY TWO OF ñBò 

Ὃ34  : CATEGORY THREE OFòBò 

INTERACTS WITH :ITSELF : 

Ὕ32  : CATEGORY ONE OF ñBò 

Ὕ33  : CATEGORY TWO OFòBò  
Ὕ34  : CATEGORY THREE OF ñBò 

ñINPUTò AND ñAò(SEE FIGURE REPRESENTS  AN  ñM CONFIGURATIONò OR ñINSTRUCTIONS) OR 

STATE:  THE CONVENTION SHOWN IS AFTER MCCLUSKY,BOOTH,HILL AND PETERSON.  

MODULE NUMBERED SEVEN  

NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME 

,IT MAY BE ZERO, OR MIGHT BE SAME,I ALL THE THREE CASES THE MODEL COULD BE CHANGED 

EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF 

ZERO: 

========================================================================== 

Ὃ36  : CATEGORY ONE OF ñINPUTò 

Ὃ37  : CATEGORY TWO OF ñINPUTò 

Ὃ38  : CATEGORY THREE OFòINPUTò (INPUT FEEDING AND CONCOMITANT GENERATION OF ENERGY 
DIFFERENTIAL-TIME LAG OR INSTANTANEOUSNESSMIGHT EXISTS WHEREBY ACCENTUATION AND 

ATTRITIONS MODEL MAY ASSUME ZERO POSITIONS) 

Ὕ36  : CATEGORY ONE OF ñAò  

Ὕ37  : CATEGORY TWO OF  "A" 
Ὕ38  : CATEGORY THREE OFòAò 

=============================================================================== 

 

ὥ13
1 , ὥ14

1 , ὥ15
1 , ὦ13

1 , ὦ14
1 , ὦ15

1  ὥ16
2 , ὥ17

2 , ὥ18
2  ὦ16

2 , ὦ17
2 , ὦ18

2 : 

ὥ20
3 , ὥ21

3 , ὥ22
3  , ὦ20

3 , ὦ21
3 , ὦ22

3  

ὥ24
4 , ὥ25

4 , ὥ26
4 , ὦ24

4 , ὦ25
4 , ὦ26

4 , ὦ28
5 , ὦ29

5 , ὦ30
5 , ὥ28

5 , ὥ29
5 , ὥ30

5 , 

ὥ32
6 , ὥ33

6 , ὥ34
6 , ὦ32

6 , ὦ33
6 , ὦ34

6  
are Accentuation coefficients  

ὥ13
ǋ 1 , ὥ14

ǋ 1 , ὥ15
ǋ 1

, ὦ13
ǋ 1 , ὦ14

ǋ 1 , ὦ15
ǋ 1

, ὥ16
ǋ 2 , ὥ17

ǋ 2 , ὥ18
ǋ 2 ,   ὦ16

ǋ 2 , ὦ17
ǋ 2 , ὦ18

ǋ 2  

, ὥ20
ǋ 3 , ὥ21

ǋ 3 , ὥ22
ǋ 3 , ὦ20

ǋ 3 , ὦ21
ǋ 3 , ὦ22

ǋ 3   

ὥ24
ǋ 4 , ὥ25

ǋ 4
, ὥ26
ǋ 4 , ὦ24

ǋ 4 , ὦ25
ǋ 4

, ὦ26
ǋ 4 , ὦ28

ǋ 5 , ὦ29
ǋ 5 , ὦ30

ǋ 5  ὥ28
ǋ 5 , ὥ29

ǋ 5 , ὥ30
ǋ 5  , 

ὥ32
ǋ 6 , ὥ33

ǋ 6 , ὥ34
ǋ 6 , ὦ32

ǋ 6 , ὦ33
ǋ 6 , ὦ34

ǋ 6  

are Dissipation coefficients- 
 

ñAò AND ñBò(SEE FIGURE REPRESENTS  AN  ñM CONFIGURATIONò OR ñINSTRUCTIONS) OR STATE: 

THE CONVENTION SHOWN IS AFTER MCCLUSKY,BOOTH,HILL AND PETERSON.  

 

MODULE NUMBERED ONE  
 

The differential system of this model is now (Module Numbered one)-1 
ὨὋ13

Ὠὸ
= ὥ13

1 Ὃ14 ὥ13
ǋ 1 + ὥ13

ǋǋ 1 Ὕ14 ,ὸὋ13  -2 
ὨὋ14

Ὠὸ
= ὥ14

1 Ὃ13 ὥ14
ǋ 1 + ὥ14

ǋǋ 1 Ὕ14 ,ὸὋ14  -3 

ὨὋ15

Ὠὸ
= ὥ15

1 Ὃ14 ὥ15
ǋ 1

+ ὥ15
ǋǋ 1

Ὕ14 ,ὸ Ὃ15  -4 

ὨὝ13

Ὠὸ
= ὦ13

1 Ὕ14 ὦ13
ǋ 1 ὦ13

ǋǋ1 Ὃ,ὸὝ13  -5 
ὨὝ14

Ὠὸ
= ὦ14

1 Ὕ13 ὦ14
ǋ 1 ὦ14

ǋǋ1 Ὃ,ὸὝ14   -6 

ὨὝ15

Ὠὸ
= ὦ15

1 Ὕ14 ὦ15
ǋ 1

ὦ15
ǋǋ 1

Ὃ,ὸ Ὕ15   -7 

+ ὥ13
ǋǋ 1 Ὕ14 ,ὸ=   First augmentation factor -8 
ὦ13
ǋǋ1 Ὃ,ὸ=    First detritions factor- 
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ñBò AND ñAò(SEE FIGURE REPRESENTS  AN  ñM CONFIGURATIONò OR ñINSTRUCTIONS) OR STATE: 

THE CONVENTION SHOWN IS AFTER MCCLUSKY,BOOTH,HILL AND PETERSON.  

MODULE NUMBERED TWO  

NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME 

,IT MAY BE ZERO, OR MIGHT BE SAME,I ALL THE THREE CASES THE MODEL COULD BE CHANGED 

EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF 

ZERO. 

 

The differential system of this model is now ( Module numbered two)-9 
ὨὋ16

Ὠὸ
= ὥ16

2 Ὃ17 ὥ16
ǋ 2 + ὥ16

ǋǋ 2 Ὕ17 ,ὸὋ16  -10 
ὨὋ17

Ὠὸ
= ὥ17

2 Ὃ16 ὥ17
ǋ 2 + ὥ17

ǋǋ 2 Ὕ17 ,ὸὋ17  -11 
ὨὋ18

Ὠὸ
= ὥ18

2 Ὃ17 ὥ18
ǋ 2 + ὥ18

ǋǋ 2 Ὕ17 ,ὸὋ18  -12 
ὨὝ16

Ὠὸ
= ὦ16

2 Ὕ17 ὦ16
ǋ 2 ὦ16

ǋǋ2 Ὃ19 ,ὸὝ16  -13 
ὨὝ17

Ὠὸ
= ὦ17

2 Ὕ16 ὦ17
ǋ 2 ὦ17

ǋǋ2 Ὃ19 ,ὸὝ17   -14 
ὨὝ18

Ὠὸ
= ὦ18

2 Ὕ17 ὦ18
ǋ 2 ὦ18

ǋǋ2 Ὃ19 ,ὸὝ18   -15 

+ ὥ16
ǋǋ 2 Ὕ17 ,ὸ=   First augmentation factor -16 

ὦ16
ǋǋ2 Ὃ19 ,ὸ=    First detritions factor -17 

: 

============================================================================= Aò AND 

ñCò(SEE FIGURE REPRESENTS  AN  ñM CONFIGURATIONò OR ñINSTRUCTIONS) OR STATE: THE 

CONVENTION SHOWN IS AFTER MCCLUSKY,BOOTH,HILL AND PETERSON.  

MODULE NUMBERED THREE  

 
The differential system of this model is now (Module numbered three)-18 
ὨὋ20

Ὠὸ
= ὥ20

3 Ὃ21 ὥ20
ǋ 3 + ὥ20

ǋǋ 3 Ὕ21 ,ὸὋ20  -19 
ὨὋ21

Ὠὸ
= ὥ21

3 Ὃ20 ὥ21
ǋ 3 + ὥ21

ǋǋ 3 Ὕ21 ,ὸὋ21  -20 
ὨὋ22

Ὠὸ
= ὥ22

3 Ὃ21 ὥ22
ǋ 3 + ὥ22

ǋǋ 3 Ὕ21 ,ὸὋ22  -21 
ὨὝ20

Ὠὸ
= ὦ20

3 Ὕ21 ὦ20
ǋ 3 ὦ20

ǋǋ3 Ὃ23 ,ὸὝ20  -22 
ὨὝ21

Ὠὸ
= ὦ21

3 Ὕ20 ὦ21
ǋ 3 ὦ21

ǋǋ3 Ὃ23 ,ὸὝ21   -23 
ὨὝ22

Ὠὸ
= ὦ22

3 Ὕ21 ὦ22
ǋ 3 ὦ22

ǋǋ3 Ὃ23 ,ὸὝ22   -24 

+ ὥ20
ǋǋ 3 Ὕ21 ,ὸ=   First augmentation factor- 

ὦ20
ǋǋ 3 Ὃ23 ,ὸ=    First detritions factor -25 

 

ñCò AND ñBò(SEE FIGURE REPRESENTS  AN  ñM CONFIGURATIONò OR ñINSTRUCTIONS) OR STATE: 

THE CONVENTION SHOWN IS AFTER MCCLUSKY,BOOTH,HILL AND PETERSON.  

MODULE NUMBERED FOUR  

NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME 

,IT MAY BE ZERO, OR MIGHT BE SAM E,I ALL THE THREE CASES THE MODEL COULD BE CHANGED 

EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF 

ZERO 
 

 
The differential system of this model is now (Module numbered  Four)-26 
ὨὋ24

Ὠὸ
= ὥ24

4 Ὃ25 ὥ24
ǋ 4 + ὥ24

ǋǋ 4 Ὕ25 ,ὸὋ24  -27 

ὨὋ25

Ὠὸ
= ὥ25

4 Ὃ24 ὥ25
ǋ 4

+ ὥ25
ǋǋ 4

Ὕ25 ,ὸ Ὃ25 -28 
ὨὋ26

Ὠὸ
= ὥ26

4 Ὃ25 ὥ26
ǋ 4 + ὥ26

ǋǋ 4 Ὕ25 ,ὸὋ26  -29 
ὨὝ24

Ὠὸ
= ὦ24

4 Ὕ25 ὦ24
ǋ 4 ὦ24

ǋǋ4 Ὃ27 ,ὸὝ24  -30 

ὨὝ25

Ὠὸ
= ὦ25

4 Ὕ24 ὦ25
ǋ 4

ὦ25
ǋǋ 4

Ὃ27 ,ὸ Ὕ25   -31 

ὨὝ26

Ὠὸ
= ὦ26

4 Ὕ25 ὦ26
ǋ 4 ὦ26

ǋǋ4 Ὃ27 ,ὸὝ26   -32 

+ ὥ24
ǋǋ 4 Ὕ25 ,ὸ=   First augmentation factor-33 

ὦ24
ǋǋ 4 Ὃ27 ,ὸ=    First detritions factor  -34 
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ñCò AND ñHò(SEE FIGURE REPRESENTS  AN  ñM CONFIGURATIONò OR ñINSTRUCTIONS) OR STATE: 

THE CONVENTION SHOWN IS AFTER MCCLUSKY,BOOTH,HILL AND PETERSON.  

MODULE NUMBERED FIVE  

NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME 

,IT MAY BE ZERO, OR MI GHT BE SAME,I ALL THE THREE CASES THE MODEL COULD BE CHANGED 

EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF 

ZERO 
 

The differential system of this model is now (Module number five)-35 
ὨὋ28

Ὠὸ
= ὥ28

5 Ὃ29 ὥ28
ǋ 5 + ὥ28

ǋǋ 5 Ὕ29 ,ὸὋ28  -36 
ὨὋ29

Ὠὸ
= ὥ29

5 Ὃ28 ὥ29
ǋ 5 + ὥ29

ǋǋ 5 Ὕ29 ,ὸὋ29 -37 
ὨὋ30

Ὠὸ
= ὥ30

5 Ὃ29 ὥ30
ǋ 5 + ὥ30

ǋǋ 5 Ὕ29 ,ὸὋ30  -38 
ὨὝ28

Ὠὸ
= ὦ28

5 Ὕ29 ὦ28
ǋ 5 ὦ28

ǋǋ 5 Ὃ31 ,ὸὝ28  -39 
ὨὝ29

Ὠὸ
= ὦ29

5 Ὕ28 ὦ29
ǋ 5 ὦ29

ǋǋ5 Ὃ31 ,ὸὝ29  -40 
ὨὝ30

Ὠὸ
= ὦ30

5 Ὕ29 ὦ30
ǋ 5 ὦ30

ǋǋ 5 Ὃ31 ,ὸὝ30   -41 

+ ὥ28
ǋǋ 5 Ὕ29 ,ὸ=   First augmentation factor -42 

ὦ28
ǋǋ 5 Ὃ31 ,ὸ=    First detritions factor  -43 

 

Bò AND ñBò(SEE FIGURE REPRESENTS  AN  ñM CONFIGURATIONò OR ñINSTRUCTIONS) OR STATE: 

THE CONVENTION SHOWN IS AFTER MCCLUSKY,BOOTH,HILL AND PETERSON.  

THE SYSTEM HERE IS ONE OF SELF TRANSFORMATIONAL,SYSTEM CHANGING,STRUCTURALLY 

MUTATIONAL,SYLLOGISTICALLY CHANGEABLE AND CONFIGUR ATIONALLY ALTERABLE(VERY 

VERY IMPORTANT SYSTEM IN ALMOST ALL SUBJECTS BE IT IN QUANTUM SYSTEMS OR 

DISSIPATIVE STRUCTURES 

MODULE NUMBERED SIX  

NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME 

,IT MAY BE ZERO, OR MIGHT BE SA ME,I ALL THE THREE CASES THE MODEL COULD BE CHANGED 

EAILY BY REPLACING THE COEFFICIENTS BY EQUALITY SIGN OR GIVING IT THE POSITION OF 

ZERO 

: 

 

 

The differential system of this model is now (Module numbered Six)-44 

45 
ὨὋ32

Ὠὸ
= ὥ32

6 Ὃ33 ὥ32
ǋ 6 + ὥ32

ǋǋ 6 Ὕ33 ,ὸὋ32  -46 
ὨὋ33

Ὠὸ
= ὥ33

6 Ὃ32 ὥ33
ǋ 6 + ὥ33

ǋǋ 6 Ὕ33 ,ὸὋ33  -47 
ὨὋ34

Ὠὸ
= ὥ34

6 Ὃ33 ὥ34
ǋ 6 + ὥ34

ǋǋ 6 Ὕ33 ,ὸὋ34  -48 
ὨὝ32

Ὠὸ
= ὦ32

6 Ὕ33 ὦ32
ǋ 6 ὦ32

ǋǋ6 Ὃ35 ,ὸὝ32  -49 
ὨὝ33

Ὠὸ
= ὦ33

6 Ὕ32 ὦ33
ǋ 6 ὦ33

ǋǋ6 Ὃ35 ,ὸὝ33   -50 
ὨὝ34

Ὠὸ
= ὦ34

6 Ὕ33 ὦ34
ǋ 6 ὦ34

ǋǋ6 Ὃ35 ,ὸὝ34   -51 

+ ὥ32
ǋǋ 6 Ὕ33 ,ὸ=   First augmentation factor-52 

 

ñINPUTò AND ñAò(SEE FIGURE REPRESENTS  AN  ñM CONFIGURATIONò OR ñINSTRUCTIONS) OR 

STATE:  THE CONVENTION SHOWN IS AFTER MCCLU SKY,BOOTH,HILL AND PETERSON.  

MODULE NUMBERED SEVEN  

NOTE: THE ACCENTUATION COEFFICIENT AND DISSIPATION COEFFICIENT NEED NOT BE THE SAME 

,IT MAY BE ZERO, OR MIGHT BE SAME,I ALL THE THREE CASES THE MODEL COULD BE CHANGED 

EAILY BY REPLACING THE COEFFICIENTS BY  EQUALITY SIGN OR GIVING IT THE POSITION OF 

ZERO 

============================================================================= 

: 
The differential system of this model is now (SEVENTH MODULE) 

-53 
ὨὋ36

Ὠὸ
= ὥ36

7 Ὃ37 ὥ36
ǋ 7 + ὥ36

ǋǋ 7 Ὕ37 ,ὸὋ36  -54 
ὨὋ37

Ὠὸ
= ὥ37

7 Ὃ36 ὥ37
ǋ 7 + ὥ37

ǋǋ 7 Ὕ37 ,ὸὋ37  -55 
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ὨὋ38

Ὠὸ
= ὥ38

7 Ὃ37 ὥ38
ǋ 7 + ὥ38

ǋǋ 7 Ὕ37 ,ὸὋ38  -56 
ὨὝ36

Ὠὸ
= ὦ36

7 Ὕ37 ὦ36
ǋ 7 ὦ36

ǋǋ7 Ὃ39 ,ὸὝ36  -57 
ὨὝ37

Ὠὸ
= ὦ37

7 Ὕ36 ὦ37
ǋ 7 ὦ37

ǋǋ7 Ὃ39 ,ὸὝ37  -58 

 

59 
ὨὝ38

Ὠὸ
= ὦ38

7 Ὕ37 ὦ38
ǋ 7 ὦ38

ǋǋ7 Ὃ39 ,ὸὝ38   -60 

+ ὥ36
ǋǋ 7 Ὕ37 ,ὸ=   First augmentation factor -61 

ὦ36
ǋǋ 7 Ὃ39 ,ὸ=    First detritions factor  

 

FIRST MODULE CONCATE NATION:  

ὨὋ13

Ὠὸ
= ὥ13

1 Ὃ14

ụ
Ụ
Ụ
Ụ
ợ
 
ὥ13
ǋ 1 + ὥ13

ǋǋ 1 Ὕ14 ,ὸ + ὥ16
ǋǋ 2,2, Ὕ17 ,ὸ + ὥ20

ǋǋ 3,3, Ὕ21 ,ὸ  

+ ὥ24
ǋǋ 4,4,4,4, Ὕ25 ,ὸ + ὥ28

ǋǋ 5,5,5,5, Ὕ29 ,ὸ + ὥ32
ǋǋ 6,6,6,6, Ὕ33 ,ὸ 

+ ὥ36
ǋǋ 7 Ὕ37 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὃ13   

ὨὋ14

Ὠὸ
= ὥ14

1 Ὃ13

ụ
Ụ
Ụ
Ụ
ợ

 

ὥ14
ǋ 1 + ὥ14

ǋǋ 1 Ὕ14 ,ὸ + ὥ17
ǋǋ 2,2, Ὕ17 ,ὸ + ὥ21

ǋǋ 3,3, Ὕ21 ,ὸ  

+ ὥ25
ǋǋ 4,4,4,4,

Ὕ25 ,ὸ + ὥ29
ǋǋ 5,5,5,5, Ὕ29 ,ὸ + ὥ33

ǋǋ 6,6,6,6, Ὕ33 ,ὸ 

+ ὥ37
ǋǋ 7 Ὕ37 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὃ14   

ὨὋ15

Ὠὸ
= ὥ15

1 Ὃ14

ụ
Ụ
Ụ
Ụ
Ụ
ợ
 
ὥ15
ǋ 1

+ ὥ15
ǋǋ 1

Ὕ14 ,ὸ + ὥ18
ǋǋ 2,2, Ὕ17 ,ὸ + ὥ22

ǋǋ 3,3, Ὕ21 ,ὸ 

+ ὥ26
ǋǋ 4,4,4,4, Ὕ25 ,ὸ + ὥ30

ǋǋ 5,5,5,5, Ὕ29 ,ὸ + ὥ34
ǋǋ 6,6,6,6, Ὕ33 ,ὸ

 

+ ὥ38
ǋǋ 7 Ὕ37 ,ὸ

 Ứ
ủ
ủ
ủ
ủ
Ủ

Ὃ15   

Where ὥ13
ǋǋ 1 Ὕ14 ,ὸ , ὥ14

ǋǋ 1 Ὕ14 ,ὸ , ὥ15
ǋǋ 1

Ὕ14 ,ὸ  are first augmentation coefficients for category 1, 2 and 3  

 + ὥ16
ǋǋ 2,2, Ὕ17 ,ὸ , + ὥ17

ǋǋ 2,2, Ὕ17 ,ὸ , + ὥ18
ǋǋ 2,2, Ὕ17 ,ὸ are second  augmentation coefficient for category 1, 2 and 

3   

 + ὥ20
ǋǋ 3,3, Ὕ21 ,ὸ , + ὥ21

ǋǋ 3,3, Ὕ21 ,ὸ , + ὥ22
ǋǋ 3,3, Ὕ21 ,ὸ are third  augmentation coefficient for category 1, 2 and 3  

+ ὥ24
ǋǋ 4,4,4,4, Ὕ25 ,ὸ  , + ὥ25

ǋǋ 4,4,4,4,
Ὕ25 ,ὸ , + ὥ26

ǋǋ 4,4,4,4, Ὕ25 ,ὸ are fourth augmentation coefficient for category 1, 

2 and 3 

+ ὥ28
ǋǋ 5,5,5,5, Ὕ29 ,ὸ, + ὥ29

ǋǋ 5,5,5,5, Ὕ29,ὸ , + ὥ30
ǋǋ 5,5,5,5, Ὕ29 ,ὸ  are fifth  augmentation coefficient for category 1, 2 

and 3 

+ ὥ32
ǋǋ 6,6,6,6, Ὕ33 ,ὸ, + ὥ33

ǋǋ 6,6,6,6, Ὕ33 ,ὸ , + ὥ34
ǋǋ 6,6,6,6, Ὕ33 ,ὸ  are sixth augmentation coefficient for category 1, 2 

and 3 

+ ὥ36
ǋǋ 7 Ὕ37 ,ὸ + ὥ37

ǋǋ 7 Ὕ37 ,ὸ + ὥ38
ǋǋ 7 Ὕ37 ,ὸARESEVENTHAUGMENTATION COEFFICIENTS 

ὨὝ13

Ὠὸ
= ὦ13

1 Ὕ14

ụ
Ụ
Ụ
Ụ
Ụ
ợ
 
ὦ13
ǋ 1 ὦ16

ǋǋ1 Ὃ,ὸ  ὦ36
ǋǋ 7, Ὃ39,ὸ ɀὦ20

ǋǋ3,3, Ὃ23 ,ὸ 

ὦ24
ǋǋ 4,4,4,4, Ὃ27 ,ὸ ὦ28

ǋǋ 5,5,5,5, Ὃ31 ,ὸ ɀὦ32
ǋǋ 6,6,6,6, Ὃ35 ,ὸ 

 

 ὦ36
ǋǋ 7, Ὃ39,ὸ Ứ

ủ
ủ
ủ
ủ
Ủ

Ὕ13   

ὨὝ14

Ὠὸ
= ὦ14

1 Ὕ13

ụ
Ụ
Ụ
Ụ
Ụ
ợ
 
ὦ14
ǋ 1 ὦ14

ǋǋ1 Ὃ,ὸ  ὦ17
ǋǋ2,2, Ὃ19,ὸ ɀὦ21

ǋǋ3,3, Ὃ23 ,ὸ  

ὦ25
ǋǋ 4,4,4,4,

Ὃ27 ,ὸ ɀὦ29
ǋǋ5,5,5,5, Ὃ31 ,ὸ ɀὦ33

ǋǋ 6,6,6,6, Ὃ35 ,ὸ
 

 ὦ37
ǋǋ7, Ὃ39 ,ὸ Ứ

ủ
ủ
ủ
ủ
Ủ

Ὕ14   

ὨὝ15

Ὠὸ
= ὦ15

1 Ὕ14

ụ
Ụ
Ụ
Ụ
ợ
 
ὦ15
ǋ 1

ὦ15
ǋǋ 1

Ὃ,ὸ  ὦ18
ǋǋ2,2, Ὃ19,ὸ ɀὦ22

ǋǋ 3,3, Ὃ23 ,ὸ 

ɀὦ26
ǋǋ4,4,4,4, Ὃ27 ,ὸ ɀὦ30

ǋǋ5,5,5,5, Ὃ31 ,ὸ ɀὦ34
ǋǋ6,6,6,6, Ὃ35 ,ὸ

 

 ὦ38
ǋǋ7, Ὃ39,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὕ15  

Where ὦ13
ǋǋ1 Ὃ,ὸ , ὦ14

ǋǋ1 Ὃ,ὸ , ὦ15
ǋǋ 1

Ὃ,ὸ are first detritions coefficients for category 1, 2 and 3    

ὦ16
ǋǋ2,2, Ὃ19,ὸ , ὦ17

ǋǋ2,2, Ὃ19,ὸ , ὦ18
ǋǋ2,2, Ὃ19,ὸ  are second detritions coefficients for category 1, 2 and 3    
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ὦ20
ǋǋ 3,3, Ὃ23 ,ὸ , ὦ21

ǋǋ 3,3, Ὃ23 ,ὸ , ὦ22
ǋǋ 3,3, Ὃ23 ,ὸ are third  detritions coefficients for category 1, 2 and 3    

ὦ24
ǋǋ 4,4,4,4, Ὃ27 ,ὸ , ὦ25

ǋǋ 4,4,4,4,
Ὃ27 ,ὸ , ὦ26

ǋǋ4,4,4,4, Ὃ27 ,ὸ are fourth  detritions coefficients for category 1, 2 

and 3    

ὦ28
ǋǋ 5,5,5,5, Ὃ31 ,ὸ , ὦ29

ǋǋ5,5,5,5, Ὃ31 ,ὸ , ὦ30
ǋǋ5,5,5,5, Ὃ31 ,ὸ are fifth detritions coefficients for category 1, 2 

and 3    

ὦ32
ǋǋ 6,6,6,6, Ὃ35 ,ὸ , ὦ33

ǋǋ 6,6,6,6, Ὃ35,ὸ , ὦ34
ǋǋ6,6,6,6, Ὃ35 ,ὸ are sixth detritions coefficients for category 1, 2 

and 3   

ὦ36
ǋǋ 7, Ὃ39,ὸ ὦ36

ǋǋ 7, Ὃ39,ὸ ὦ36
ǋǋ 7, Ὃ39,ὸARE SEVENTH DETRITION COEFFICIENTS 

-62 

ὨὝ15

Ὠὸ
= ὦ15

1 Ὕ14  
ὦ15
ǋ 1

ὦ15
ǋǋ 1

Ὃ,ὸ  ὦ18
ǋǋ2,2, Ὃ19,ὸ ɀὦ22

ǋǋ3,3, Ὃ23 ,ὸ 

ὦ26
ǋǋ4,4,4,4, Ὃ27 ,ὸ ὦ30

ǋǋ 5,5,5,5, Ὃ31 ,ὸ ὦ34
ǋǋ 6,6,6,6, Ὃ35,ὸ

 Ὕ15  -63 

Where ὦ13
ǋǋ1 Ὃ,ὸ , ὦ14

ǋǋ1 Ὃ,ὸ , ὦ15
ǋǋ 1

Ὃ,ὸ are first detrition coefficients for category 1, 2 and 3    

ὦ16
ǋǋ2,2, Ὃ19,ὸ , ὦ17

ǋǋ2,2, Ὃ19,ὸ , ὦ18
ǋǋ2,2, Ὃ19,ὸ  are second detritions coefficients for category 1, 2 and 3    

ὦ20
ǋǋ 3,3, Ὃ23 ,ὸ , ὦ21

ǋǋ 3,3, Ὃ23 ,ὸ , ὦ22
ǋǋ 3,3, Ὃ23 ,ὸ are third  detritions coefficients for category 1, 2 and 3    

ὦ24
ǋǋ 4,4,4,4, Ὃ27 ,ὸ , ὦ25

ǋǋ 4,4,4,4,
Ὃ27 ,ὸ , ὦ26

ǋǋ4,4,4,4, Ὃ27 ,ὸ are fourth  detritions coefficients for category 1, 2 

and 3    

ὦ28
ǋǋ 5,5,5,5, Ὃ31 ,ὸ , ὦ29

ǋǋ5,5,5,5, Ὃ31 ,ὸ , ὦ30
ǋǋ5,5,5,5, Ὃ31 ,ὸ are fifth detritions coefficients for category 1, 2 

and 3    

ὦ32
ǋǋ 6,6,6,6, Ὃ35 ,ὸ , ὦ33

ǋǋ 6,6,6,6, Ὃ35,ὸ , ὦ34
ǋǋ6,6,6,6, Ὃ35 ,ὸ are sixth detritions coefficients for category 1, 2 

and 3  -64 

 
SECOND MODULE CONCATENATION :-

65
ὨὋ16

Ὠὸ
= ὥ16

2 Ὃ17

ụ
Ụ
Ụ
Ụ
ợ
  
ὥ16
ǋ 2 + ὥ16

ǋǋ 2 Ὕ17 ,ὸ + ὥ13
ǋǋ 1,1, Ὕ14 ,ὸ + ὥ20

ǋǋ 3,3,3 Ὕ21 ,ὸ  

+ ὥ24
ǋǋ 4,4,4,4,4 Ὕ25 ,ὸ + ὥ28

ǋǋ 5,5,5,5,5 Ὕ29 ,ὸ + ὥ32
ǋǋ 6,6,6,6,6 Ὕ33 ,ὸ

 

+ ὥ36
ǋǋ 7,7, Ὕ37 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὃ16  -66 

ὨὋ17

Ὠὸ
= ὥ17

2 Ὃ16

ụ
Ụ
Ụ
Ụ
ợ
 
ὥ17
ǋ 2 + ὥ17

ǋǋ 2 Ὕ17 ,ὸ + ὥ14
ǋǋ 1,1, Ὕ14 ,ὸ + ὥ21

ǋǋ 3,3,3 Ὕ21 ,ὸ  

+ ὥ25
ǋǋ 4,4,4,4,4

Ὕ25 ,ὸ + ὥ29
ǋǋ 5,5,5,5,5 Ὕ29 ,ὸ + ὥ33

ǋǋ 6,6,6,6,6 Ὕ33 ,ὸ
 

+ ὥ37
ǋǋ 7,7, Ὕ37 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὃ17  -67 

ὨὋ18

Ὠὸ
= ὥ18

2 Ὃ17

ụ
Ụ
Ụ
Ụ
ợ
  
ὥ18
ǋ 2 + ὥ18

ǋǋ 2 Ὕ17 ,ὸ + ὥ15
ǋǋ 1,1,

Ὕ14 ,ὸ + ὥ22
ǋǋ 3,3,3 Ὕ21 ,ὸ  

+ ὥ26
ǋǋ 4,4,4,4,4 Ὕ25 ,ὸ + ὥ30

ǋǋ 5,5,5,5,5 Ὕ29 ,ὸ + ὥ34
ǋǋ 6,6,6,6,6 Ὕ33 ,ὸ

 

+ ὥ38
ǋǋ 7,7, Ὕ37 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὃ18  -68 

Where + ὥ16
ǋǋ 2 Ὕ17 ,ὸ , + ὥ17

ǋǋ 2 Ὕ17 ,ὸ , + ὥ18
ǋǋ 2 Ὕ17 ,ὸ are first augmentation coefficients for category 1, 2 and 3   

+ ὥ13
ǋǋ 1,1, Ὕ14 ,ὸ , + ὥ14

ǋǋ 1,1, Ὕ14 ,ὸ , + ὥ15
ǋǋ 1,1,

Ὕ14 ,ὸ  are second augmentation coefficient for category 1, 2 and 3    

+ ὥ20
ǋǋ 3,3,3 Ὕ21 ,ὸ , + ὥ21

ǋǋ 3,3,3 Ὕ21 ,ὸ , + ὥ22
ǋǋ 3,3,3 Ὕ21 ,ὸ are third  augmentation coefficient for category 1, 2 and 

3   

+ ὥ24
ǋǋ 4,4,4,4,4 Ὕ25 ,ὸ, + ὥ25

ǋǋ 4,4,4,4,4
Ὕ25 ,ὸ, + ὥ26

ǋǋ 4,4,4,4,4 Ὕ25 ,ὸ  are fourth augmentation coefficient for category 

1, 2 and 3   

+ ὥ28
ǋǋ 5,5,5,5,5 Ὕ29 ,ὸ, + ὥ29

ǋǋ 5,5,5,5,5 Ὕ29,ὸ , + ὥ30
ǋǋ 5,5,5,5,5 Ὕ29 ,ὸ  are fifth  augmentation coefficient for category 

1, 2 and 3   

+ ὥ32
ǋǋ 6,6,6,6,6 Ὕ33 ,ὸ, + ὥ33

ǋǋ 6,6,6,6,6 Ὕ33 ,ὸ , + ὥ34
ǋǋ 6,6,6,6,6 Ὕ33 ,ὸ  are sixth augmentation coefficient for category 

1, 2 and 3  -69 
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70 

+ ὥ36
ǋǋ 7,7, Ὕ37 ,ὸ + ὥ37

ǋǋ 7,7, Ὕ37 ,ὸ + ὥ38
ǋǋ 7,7, Ὕ37 ,ὸARE SEVENTH DETRITION COEFFICIENTS-71 

ὨὝ16

Ὠὸ
= ὦ16

2 Ὕ17

ụ
Ụ
Ụ
Ụ
ợ
 
ὦ16
ǋ 2 ὦ16

ǋǋ2 Ὃ19,ὸ  ὦ13
ǋǋ1,1, Ὃ,ὸ ɀὦ20

ǋǋ 3,3,3, Ὃ23 ,ὸ  

ὦ24
ǋǋ 4,4,4,4,4 Ὃ27 ,ὸ ɀὦ28

ǋǋ 5,5,5,5,5 Ὃ31 ,ὸ ɀὦ32
ǋǋ 6,6,6,6,6 Ὃ35 ,ὸ

 

ὦ36
ǋǋ7,7 Ὃ39,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὕ16  -72 

ὨὝ17

Ὠὸ
= ὦ17

2 Ὕ16

ụ
Ụ
Ụ
Ụ
ợ
 
ὦ17
ǋ 2 ὦ17

ǋǋ2 Ὃ19,ὸ  ὦ14
ǋǋ1,1, Ὃ,ὸ ɀὦ21

ǋǋ 3,3,3, Ὃ23 ,ὸ 

ɀὦ25
ǋǋ 4,4,4,4,4

Ὃ27 ,ὸ ɀὦ29
ǋǋ5,5,5,5,5 Ὃ31 ,ὸ ɀὦ33

ǋǋ6,6,6,6,6 Ὃ35 ,ὸ
 

ὦ37
ǋǋ 7,7 Ὃ39,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὕ17  -73 

ὨὝ18

Ὠὸ
= ὦ18

2 Ὕ17

ụ
Ụ
Ụ
Ụ
ợ
 
ὦ18
ǋ 2 ὦ18

ǋǋ2 Ὃ19 ,ὸ  ὦ15
ǋǋ 1,1,

Ὃ,ὸ ɀὦ22
ǋǋ3,3,3, Ὃ23 ,ὸ  

ὦ26
ǋǋ 4,4,4,4,4 Ὃ27 ,ὸ ɀὦ30

ǋǋ 5,5,5,5,5 Ὃ31 ,ὸ ɀὦ34
ǋǋ 6,6,6,6,6 Ὃ35 ,ὸ

 

ὦ38
ǋǋ7,7 Ὃ39,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὕ18  -74 

where  b16
ǋǋ 2 G19,t    , b17

ǋǋ 2 G19,t   , b18
ǋǋ 2 G19,t    are first detrition coefficients for category 1, 2 and 3  

ὦ13
ǋǋ1,1, Ὃ,ὸ , ὦ14

ǋǋ1,1, Ὃ,ὸ , ὦ15
ǋǋ 1,1,

Ὃ,ὸ  are second detrition coefficients for category 1,2 and 3  

ὦ20
ǋǋ 3,3,3, Ὃ23 ,ὸ , ὦ21

ǋǋ 3,3,3, Ὃ23 ,ὸ , ὦ22
ǋǋ 3,3,3, Ὃ23 ,ὸ  are  third  detrition coefficients for category 1,2 and 3  

ὦ24
ǋǋ 4,4,4,4,4 Ὃ27 ,ὸ, ὦ25

ǋǋ 4,4,4,4,4
Ὃ27 ,ὸ, ὦ26

ǋǋ 4,4,4,4,4 Ὃ27 ,ὸ  are  fourth detritions coefficients for category 1,2 

and 3  

ὦ28
ǋǋ 5,5,5,5,5 Ὃ31 ,ὸ , ὦ29

ǋǋ5,5,5,5,5 Ὃ31 ,ὸ , ὦ30
ǋǋ5,5,5,5,5 Ὃ31 ,ὸ are  fifth detritions coefficients for category 1,2 

and 3  

ὦ32
ǋǋ 6,6,6,6,6 Ὃ35 ,ὸ, ὦ33

ǋǋ6,6,6,6,6 Ὃ35 ,ὸ , ὦ34
ǋǋ6,6,6,6,6 Ὃ35 ,ὸ  are  sixth detritions coefficients for category 1,2 

and 3  

ὦ36
ǋǋ 7,7 Ὃ39,ὸ ὦ36

ǋǋ7,7 Ὃ39,ὸ ὦ36
ǋǋ 7,7 Ὃ39,ὸὥὶὩ ίὩὺὩὲὸὬ ὨὩὸὶὭὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸί 

 

 

THIRD MO DULE CONCATENATION :-75 

ὨὋ20

Ὠὸ
= ὥ20

3 Ὃ21

ụ
Ụ
Ụ
Ụ
ợ
 
ὥ20
ǋ 3 + ὥ20

ǋǋ 3 Ὕ21 ,ὸ + ὥ16
ǋǋ 2,2,2 Ὕ17 ,ὸ + ὥ13

ǋǋ 1,1,1, Ὕ14 ,ὸ 

+ ὥ24
ǋǋ 4,4,4,4,4,4 Ὕ25 ,ὸ + ὥ28

ǋǋ 5,5,5,5,5,5 Ὕ29,ὸ + ὥ32
ǋǋ 6,6,6,6,6,6 Ὕ33 ,ὸ

 

 

 + ὥ36
ǋǋ 7.7.7. Ὕ37 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὃ20  -76 

ὨὋ21

Ὠὸ
= ὥ21

3 Ὃ20

ụ
Ụ
Ụ
Ụ
ợ ὥ21

ǋ 3 + ὥ21
ǋǋ 3 Ὕ21 ,ὸ + ὥ17

ǋǋ 2,2,2 Ὕ17 ,ὸ + ὥ14
ǋǋ 1,1,1, Ὕ14 ,ὸ  

+ ὥ25
ǋǋ 4,4,4,4,4,4

Ὕ25 ,ὸ + ὥ29
ǋǋ 5,5,5,5,5,5 Ὕ29,ὸ + ὥ33

ǋǋ 6,6,6,6,6,6 Ὕ33 ,ὸ

 + ὥ37
ǋǋ 7.7.7. Ὕ37 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὃ21  -77 

ὨὋ22

Ὠὸ
= ὥ22

3 Ὃ21

ụ
Ụ
Ụ
Ụ
ợ ὥ22

ǋ 3 + ὥ22
ǋǋ 3 Ὕ21 ,ὸ + ὥ18

ǋǋ 2,2,2 Ὕ17 ,ὸ + ὥ15
ǋǋ 1,1,1,

Ὕ14 ,ὸ  

+ ὥ26
ǋǋ 4,4,4,4,4,4 Ὕ25 ,ὸ + ὥ30

ǋǋ 5,5,5,5,5,5 Ὕ29,ὸ + ὥ34
ǋǋ 6,6,6,6,6,6 Ὕ33 ,ὸ

 + ὥ38
ǋǋ 7.7.7. Ὕ37 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὃ22  -78 

 

+ ὥ20
ǋǋ 3 Ὕ21 ,ὸ, + ὥ21

ǋǋ 3 Ὕ21 ,ὸ, + ὥ22
ǋǋ 3 Ὕ21 ,ὸ  are  first  augmentation coefficients for category 1, 2 and 3  

+ ὥ16
ǋǋ 2,2,2 Ὕ17 ,ὸ , + ὥ17

ǋǋ 2,2,2 Ὕ17 ,ὸ , + ὥ18
ǋǋ 2,2,2 Ὕ17 ,ὸ are second augmentation coefficients for category 1, 2 

and 3    

+ ὥ13
ǋǋ 1,1,1, Ὕ14 ,ὸ , + ὥ14

ǋǋ 1,1,1, Ὕ14 ,ὸ , + ὥ15
ǋǋ 1,1,1,

Ὕ14 ,ὸ   are third augmentation coefficients for category 1, 2 

and 3    

+ ὥ24
ǋǋ 4,4,4,4,4,4 Ὕ25 ,ὸ , + ὥ25

ǋǋ 4,4,4,4,4,4
Ὕ25 ,ὸ , + ὥ26

ǋǋ 4,4,4,4,4,4 Ὕ25 ,ὸ are fourth augmentation coefficients for 

category 1, 2 and 3   
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+ ὥ28
ǋǋ 5,5,5,5,5,5 Ὕ29 ,ὸ, + ὥ29

ǋǋ 5,5,5,5,5,5 Ὕ29 ,ὸ , + ὥ30
ǋǋ 5,5,5,5,5,5 Ὕ29,ὸ are fifth augmentation coefficients for 

category 1, 2 and 3   

+ ὥ32
ǋǋ 6,6,6,6,6,6 Ὕ33 ,ὸ , + ὥ33

ǋǋ 6,6,6,6,6,6 Ὕ33 ,ὸ, + ὥ34
ǋǋ 6,6,6,6,6,6 Ὕ33 ,ὸ are sixth augmentation coefficients for 

category 1, 2 and 3   -79 

 

80 

+ ὥ36
ǋǋ 7.7.7. Ὕ37 ,ὸ + ὥ37

ǋǋ 7.7.7. Ὕ37 ,ὸ + ὥ38
ǋǋ 7.7.7. Ὕ37 ,ὸare seventh augmentation coefficient-81 

ὨὝ20

Ὠὸ
= ὦ20

3 Ὕ21

ụ
Ụ
Ụ
Ụ
ợ
 

ὦ20
ǋ 3 ὦ20

ǋǋ 3 Ὃ23 ,ὸ ɀὦ36
ǋǋ7,7,7 Ὃ19,ὸ ɀὦ13

ǋǋ1,1,1, Ὃ,ὸ  

ὦ24
ǋǋ 4,4,4,4,4,4 Ὃ27 ,ὸ ɀὦ28

ǋǋ5,5,5,5,5,5 Ὃ31 ,ὸ ɀὦ32
ǋǋ 6,6,6,6,6,6 Ὃ35 ,ὸ

 

ɀὦ36
ǋǋ 7,7,7 Ὃ39,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὕ20  -82 

ὨὝ21

Ὠὸ
= ὦ21

3 Ὕ20

ụ
Ụ
Ụ
Ụ
ợ ὦ21

ǋ 3 ὦ21
ǋǋ 3 Ὃ23 ,ὸ ɀὦ17

ǋǋ2,2,2 Ὃ19,ὸ ɀὦ14
ǋǋ1,1,1, Ὃ,ὸ  

 ὦ25
ǋǋ 4,4,4,4,4,4

Ὃ27 ,ὸ ɀὦ29
ǋǋ5,5,5,5,5,5 Ὃ31 ,ὸ ɀὦ33

ǋǋ6,6,6,6,6,6 Ὃ35,ὸ
 

ɀὦ37
ǋǋ 7,7,7 Ὃ39,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὕ21  -83 

ὨὝ22

Ὠὸ
= ὦ22

3 Ὕ21

ụ
Ụ
Ụ
Ụ
ợ
 

ὦ22
ǋ 3 ὦ22

ǋǋ 3 Ὃ23 ,ὸ ɀὦ18
ǋǋ2,2,2 Ὃ19,ὸ ɀὦ15

ǋǋ 1,1,1,
Ὃ,ὸ  

ὦ26
ǋǋ 4,4,4,4,4,4 Ὃ27 ,ὸ ɀὦ30

ǋǋ5,5,5,5,5,5 Ὃ31 ,ὸ ɀὦ34
ǋǋ 6,6,6,6,6,6 Ὃ35 ,ὸ

 

ɀὦ38
ǋǋ 7,7,7 Ὃ39,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὕ22  -84 

ὦ20
ǋǋ 3 Ὃ23 ,ὸ , ὦ21

ǋǋ 3 Ὃ23 ,ὸ  , ὦ22
ǋǋ 3 Ὃ23 ,ὸ  are first  detritions coefficients  for category 1, 2 and 3   

ὦ16
ǋǋ2,2,2 Ὃ19,ὸ , ὦ17

ǋǋ2,2,2 Ὃ19,ὸ , ὦ18
ǋǋ2,2,2 Ὃ19,ὸ  are second detritions coefficients for category 1, 2 and 

3      

ὦ13
ǋǋ1,1,1, Ὃ,ὸ , ὦ14

ǋǋ1,1,1, Ὃ,ὸ , ὦ15
ǋǋ 1,1,1,

Ὃ,ὸ  are third detrition coefficients for category 1,2 and 3  

ὦ24
ǋǋ 4,4,4,4,4,4 Ὃ27 ,ὸ, ὦ25

ǋǋ 4,4,4,4,4,4
Ὃ27 ,ὸ, ὦ26

ǋǋ4,4,4,4,4,4 Ὃ27 ,ὸ are fourth  detritions coefficients  for 

category 1, 2 and 3  

  ὦ28
ǋǋ 5,5,5,5,5,5 Ὃ31 ,ὸ, ὦ29

ǋǋ5,5,5,5,5,5 Ὃ31 ,ὸ , ὦ30
ǋǋ 5,5,5,5,5,5 Ὃ31 ,ὸ are fifth  detritions coefficients  for 

category 1, 2 and 3   

ὦ32
ǋǋ 6,6,6,6,6,6 Ὃ35 ,ὸ, ὦ33

ǋǋ6,6,6,6,6,6 Ὃ35,ὸ, ὦ34
ǋǋ 6,6,6,6,6,6 Ὃ35 ,ὸ are sixth detritions coefficients  for category 

1, 2 and 3  -85 

ɀὦ36
ǋǋ7,7,7 Ὃ39,ὸ ɀὦ37

ǋǋ 7,7,7 Ὃ39,ὸ ɀὦ38
ǋǋ 7,7,7 Ὃ39,ὸare seventh detritions coefficients 

==================================================================================== 

 

FOURTH MODULE CONCATENATION :-86 

ὨὋ24

Ὠὸ
= ὥ24

4 Ὃ25

ụ
Ụ
Ụ
Ụ
ợ
 
ὥ24
ǋ 4 + ὥ24

ǋǋ 4 Ὕ25 ,ὸ + ὥ28
ǋǋ 5,5, Ὕ29 ,ὸ + ὥ32

ǋǋ 6,6, Ὕ33 ,ὸ  

+ ὥ13
ǋǋ 1,1,1,1 Ὕ14 ,ὸ + ὥ16

ǋǋ 2,2,2,2 Ὕ17 ,ὸ + ὥ20
ǋǋ 3,3,3,3 Ὕ21 ,ὸ

 

+ ὥ36
ǋǋ 7,7,7,7, Ὕ37 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὃ24  -87 

ὨὋ25

Ὠὸ
= ὥ25

4 Ὃ24

ụ
Ụ
Ụ
Ụ
ợ
 
ὥ25
ǋ 4

+ ὥ25
ǋǋ 4

Ὕ25 ,ὸ + ὥ29
ǋǋ 5,5, Ὕ29 ,ὸ + ὥ33

ǋǋ 6,6 Ὕ33 ,ὸ  

+ ὥ14
ǋǋ 1,1,1,1 Ὕ14 ,ὸ + ὥ17

ǋǋ 2,2,2,2 Ὕ17 ,ὸ + ὥ21
ǋǋ 3,3,3,3 Ὕ21 ,ὸ

 

+ ὥ37
ǋǋ 7,7,7,7, Ὕ37 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὃ25  -88 

ὨὋ26

Ὠὸ
= ὥ26

4 Ὃ25

ụ
Ụ
Ụ
Ụ
Ụ
ợ
 
ὥ26
ǋ 4 + ὥ26

ǋǋ 4 Ὕ25 ,ὸ + ὥ30
ǋǋ 5,5, Ὕ29 ,ὸ + ὥ34

ǋǋ 6,6, Ὕ33 ,ὸ 

+ ὥ15
ǋǋ 1,1,1,1

Ὕ14 ,ὸ + ὥ18
ǋǋ 2,2,2,2 Ὕ17 ,ὸ + ὥ22

ǋǋ 3,3,3,3 Ὕ21 ,ὸ
 

+ ὥ38
ǋǋ 7,7,7,7, Ὕ37 ,ὸ

 Ứ
ủ
ủ
ủ
ủ
Ủ

Ὃ26  -89 

 

ὡὬὩὶὩ ὥ24
ǋǋ 4 Ὕ25 ,ὸ , ὥ25

ǋǋ 4
Ὕ25 ,ὸ , ὥ26

ǋǋ 4 Ὕ25 ,ὸ  ὥὶὩ ὪὭὶίὸ ὥόὫάὩὲὸὥὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸί Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3  

 + ὥ28
ǋǋ 5,5, Ὕ29,ὸ , + ὥ29

ǋǋ 5,5, Ὕ29,ὸ , + ὥ30
ǋǋ 5,5, Ὕ29 ,ὸ ὥὶὩ ίὩὧέὲὨ  ὥόὫάὩὲὸὥὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸ Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3   
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 + ὥ32
ǋǋ 6,6, Ὕ33 ,ὸ , + ὥ33

ǋǋ 6,6, Ὕ33 ,ὸ , + ὥ34
ǋǋ 6,6, Ὕ33 ,ὸ ὥὶὩ ὸὬὭὶὨ  ὥόὫάὩὲὸὥὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸ Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3    

+ ὥ13
ǋǋ 1,1,1,1 Ὕ14 ,ὸ, + ὥ14

ǋǋ 1,1,1,1 Ὕ14 ,ὸ, + ὥ15
ǋǋ 1,1,1,1

Ὕ14 ,ὸ   are fourth augmentation coefficients for category  1, 

2,and  3  

+ ὥ16
ǋǋ 2,2,2,2 Ὕ17 ,ὸ, + ὥ17

ǋǋ 2,2,2,2 Ὕ17 ,ὸ, + ὥ18
ǋǋ 2,2,2,2 Ὕ17 ,ὸ  are fifth augmentation coefficients for category  1, 

2,and  3  

+ ὥ20
ǋǋ 3,3,3,3 Ὕ21 ,ὸ, + ὥ21

ǋǋ 3,3,3,3 Ὕ21 ,ὸ, + ὥ22
ǋǋ 3,3,3,3 Ὕ21 ,ὸ are sixth augmentation coefficients for category  1, 

2,and  3  

+ ὥ36
ǋǋ 7,7,7,7, Ὕ37 ,ὸ + ὥ36

ǋǋ 7,7,7,7, Ὕ37 ,ὸ + ὥ36
ǋǋ 7,7,7,7, Ὕ37 ,ὸARE SEVENTH augmentation coefficients-90 

 

91 

-92 

ὨὝ24

Ὠὸ
= ὦ24

4 Ὕ25

ụ
Ụ
Ụ
Ụ
ợὦ24
ǋ 4 ὦ24

ǋǋ4 Ὃ27 ,ὸ  ὦ28
ǋǋ5,5, Ὃ31 ,ὸ ɀὦ32

ǋǋ 6,6, Ὃ35,ὸ  

ὦ13
ǋǋ1,1,1,1 Ὃ,ὸ  ὦ16

ǋǋ2,2,2,2 Ὃ19,ὸ ɀὦ20
ǋǋ3,3,3,3 Ὃ23 ,ὸ

ὦ36
ǋǋ7,7,7,7,,, Ὃ39,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὕ24  -93 

ὨὝ25

Ὠὸ
= ὦ25

4 Ὕ24

ụ
Ụ
Ụ
Ụ
ợὦ25
ǋ 4

ὦ25
ǋǋ 4

Ὃ27 ,ὸ  ὦ29
ǋǋ5,5, Ὃ31 ,ὸ ɀὦ33

ǋǋ 6,6, Ὃ35,ὸ  

ὦ14
ǋǋ1,1,1,1 Ὃ,ὸ  ὦ17

ǋǋ2,2,2,2 Ὃ19,ὸ ɀὦ21
ǋǋ 3,3,3,3 Ὃ23 ,ὸ

ὦ37
ǋǋ7,7,7,77,, Ὃ39,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὕ25  -94 

ὨὝ26

Ὠὸ
= ὦ26

4 Ὕ25

ụ
Ụ
Ụ
Ụ
ợ
 
ὦ26
ǋ 4 ὦ26

ǋǋ 4 Ὃ27 ,ὸ  ὦ30
ǋǋ 5,5, Ὃ31 ,ὸ ɀὦ34

ǋǋ 6,6, Ὃ35 ,ὸ  

ὦ15
ǋǋ 1,1,1,1

Ὃ,ὸ  ὦ18
ǋǋ2,2,2,2 Ὃ19,ὸ ɀὦ22

ǋǋ 3,3,3,3 Ὃ23 ,ὸ

ὦ38
ǋǋ 7,7,7,,7,, Ὃ39,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὕ26  -95 

ὡὬὩὶὩ ὦ24
ǋǋ 4 Ὃ27 ,ὸ , ὦ25

ǋǋ 4
Ὃ27 ,ὸ , ὦ26

ǋǋ4 Ὃ27 ,ὸ ὥὶὩ ὪὭὶίὸ ὨὩὸὶὭὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸί Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3    

ὦ28
ǋǋ 5,5, Ὃ31 ,ὸ , ὦ29

ǋǋ5,5, Ὃ31 ,ὸ , ὦ30
ǋǋ5,5, Ὃ31 ,ὸ  ὥὶὩ ίὩὧέὲὨ ὨὩὸὶὭὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸί Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3    

ὦ32
ǋǋ 6,6, Ὃ35 ,ὸ , ὦ33

ǋǋ 6,6, Ὃ35 ,ὸ , ὦ34
ǋǋ 6,6, Ὃ35 ,ὸ ὥὶὩ ὸὬὭὶὨ ὨὩὸὶὭὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸί Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3    

ὦ13
ǋǋ1,1,1,1 Ὃ,ὸ, ὦ14

ǋǋ1,1,1,1 Ὃ,ὸ , ὦ15
ǋǋ 1,1,1,1

Ὃ,ὸ  

ὥὶὩ ὪέόὶὸὬ  ὨὩὸὶὭὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸί Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3    

ὦ16
ǋǋ2,2,2,2 Ὃ19,ὸ, ὦ17

ǋǋ2,2,2,2 Ὃ19,ὸ, ὦ18
ǋǋ2,2,2,2 Ὃ19,ὸ 

ὥὶὩ ὪὭὪὸὬ ὨὩὸὶὭὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸί Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3    

ɀὦ20
ǋǋ3,3,3,3 Ὃ23 ,ὸ, ɀὦ21

ǋǋ 3,3,3,3 Ὃ23 ,ὸ, ɀὦ22
ǋǋ3,3,3,3 Ὃ23 ,ὸ 

ὥὶὩ ίὭὼὸὬ ὨὩὸὶὭὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸί Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3    

ὦ36
ǋǋ 7,7,7,7,7,, Ὃ39,ὸ ὦ37

ǋǋ 7,7,7,7,7,, Ὃ39,ὸ ὦ38
ǋǋ7,7,7,7,7,, Ὃ39,ὸ ὃὙὉ SEVENTH DETRITION 

COEFFICIENTS-96 

-97 

FIFTH MODULE CONCATENATION: -

98
ὨὋ28

Ὠὸ
= ὥ28

5 Ὃ29

ụ
Ụ
Ụ
Ụ
ợ
 
ὥ28
ǋ 5 + ὥ28

ǋǋ 5 Ὕ29 ,ὸ + ὥ24
ǋǋ 4,4, Ὕ25 ,ὸ + ὥ32

ǋǋ 6,6,6 Ὕ33 ,ὸ  

+ ὥ13
ǋǋ 1,1,1,1,1 Ὕ14 ,ὸ + ὥ16

ǋǋ 2,2,2,2,2 Ὕ17 ,ὸ + ὥ20
ǋǋ 3,3,3,3,3 Ὕ21 ,ὸ

 

+ ὥ36
ǋǋ 7,7,,7,,7,7 Ὕ37 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὃ28  -99 

ὨὋ29

Ὠὸ
= ὥ29

5 Ὃ28

ụ
Ụ
Ụ
Ụ
ợ
 
ὥ29
ǋ 5 + ὥ29

ǋǋ 5 Ὕ29 ,ὸ + ὥ25
ǋǋ 4,4,

Ὕ25 ,ὸ + ὥ33
ǋǋ 6,6,6 Ὕ33 ,ὸ  

+ ὥ14
ǋǋ 1,1,1,1,1 Ὕ14 ,ὸ + ὥ17

ǋǋ 2,2,2,2,2 Ὕ17 ,ὸ + ὥ21
ǋǋ 3,3,3,3,3 Ὕ21 ,ὸ

 

+ ὥ37
ǋǋ 7,7,,,7,,7,7 Ὕ37 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὃ29  -100 

ὨὋ30

Ὠὸ
= ὥ30

5 Ὃ29

ụ
Ụ
Ụ
Ụ
Ụ
ợ
 

ὥ30
ǋ 5 + ὥ30

ǋǋ 5 Ὕ29,ὸ + ὥ26
ǋǋ 4,4, Ὕ25 ,ὸ + ὥ34

ǋǋ 6,6,6 Ὕ33 ,ὸ  

+ ὥ15
ǋǋ 1,1,1,1,1

Ὕ14 ,ὸ + ὥ18
ǋǋ 2,2,2,2,2 Ὕ17 ,ὸ + ὥ22

ǋǋ 3,3,3,3,3 Ὕ21 ,ὸ
 

 

+ ὥ38
ǋǋ 7,7,,7,,7,7 Ὕ37 ,ὸ Ứ

ủ
ủ
ủ
ủ
Ủ

Ὃ30  -101 
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ὡὬὩὶὩ + ὥ28
ǋǋ 5 Ὕ29,ὸ , + ὥ29

ǋǋ 5 Ὕ29,ὸ , + ὥ30
ǋǋ 5 Ὕ29 ,ὸ ὥὶὩ ὪὭὶίὸ ὥόὫάὩὲὸὥὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸί Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3   

ὃὲὨ + ὥ24
ǋǋ 4,4, Ὕ25 ,ὸ , + ὥ25

ǋǋ 4,4,
Ὕ25 ,ὸ , + ὥ26

ǋǋ 4,4, Ὕ25 ,ὸ  ὥὶὩ ίὩὧέὲὨ ὥόὫάὩὲὸὥὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸ Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3    

+ ὥ32
ǋǋ 6,6,6 Ὕ33 ,ὸ , + ὥ33

ǋǋ 6,6,6 Ὕ33 ,ὸ , + ὥ34
ǋǋ 6,6,6 Ὕ33 ,ὸ ὥὶὩ ὸὬὭὶὨ  ὥόὫάὩὲὸὥὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸ Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3   

+ ὥ13
ǋǋ 1,1,1,1,1 Ὕ14 ,ὸ, + ὥ14

ǋǋ 1,1,1,1,1 Ὕ14 ,ὸ, + ὥ15
ǋǋ 1,1,1,1,1

Ὕ14 ,ὸ  are fourth augmentation coefficients for category 

1,2, and 3 

+ ὥ16
ǋǋ 2,2,2,2,2 Ὕ17 ,ὸ, + ὥ17

ǋǋ 2,2,2,2,2 Ὕ17 ,ὸ, + ὥ18
ǋǋ 2,2,2,2,2 Ὕ17 ,ὸ are fifth augmentation coefficients for category 

1,2,and  3 

+ ὥ20
ǋǋ 3,3,3,3,3 Ὕ21 ,ὸ, + ὥ21

ǋǋ 3,3,3,3,3 Ὕ21 ,ὸ, + ὥ22
ǋǋ 3,3,3,3,3 Ὕ21 ,ὸ  are sixth augmentation coefficients for category 

1,2, 3   -102 

-103 

ὨὝ28

Ὠὸ
= ὦ28

5 Ὕ29

ụ
Ụ
Ụ
Ụ
ợ
 
ὦ28
ǋ 5 ὦ28

ǋǋ5 Ὃ31 ,ὸ  ὦ24
ǋǋ4,4, Ὃ23 ,ὸ ɀὦ32

ǋǋ 6,6,6 Ὃ35,ὸ  

ὦ13
ǋǋ1,1,1,1,1 Ὃ,ὸ  ὦ16

ǋǋ2,2,2,2,2 Ὃ19 ,ὸ ɀὦ20
ǋǋ 3,3,3,3,3 Ὃ23 ,ὸ

 

 ὦ36
ǋǋ 7,7,,7,7,7, Ὃ38 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὕ28  -104 

ὨὝ29

Ὠὸ
= ὦ29

5 Ὕ28

ụ
Ụ
Ụ
Ụ
ợ
 
ὦ29
ǋ 5 ὦ29

ǋǋ5 Ὃ31 ,ὸ  ὦ25
ǋǋ 4,4,

Ὃ27 ,ὸ ɀὦ33
ǋǋ6,6,6 Ὃ35 ,ὸ  

ὦ14
ǋǋ1,1,1,1,1 Ὃ,ὸ  ὦ17

ǋǋ2,2,2,2,2 Ὃ19 ,ὸ ɀὦ21
ǋǋ 3,3,3,3,3 Ὃ23 ,ὸ

 

 ὦ37
ǋǋ 7,7,7,7,7, Ὃ38 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὕ29  -105 

ὨὝ30

Ὠὸ
= ὦ30

5 Ὕ29

ụ
Ụ
Ụ
Ụ
ợ
 
ὦ30
ǋ 5 ὦ30

ǋǋ5 Ὃ31 ,ὸ  ὦ26
ǋǋ4,4, Ὃ27 ,ὸ ɀὦ34

ǋǋ 6,6,6 Ὃ35,ὸ  

ὦ15
ǋǋ 1,1,1,1,1,

Ὃ,ὸ  ὦ18
ǋǋ2,2,2,2,2 Ὃ19,ὸ ɀὦ22

ǋǋ 3,3,3,3,3 Ὃ23 ,ὸ 

 ὦ38
ǋǋ 7,7,7,7,7, Ὃ38 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὕ30  -106 

ύὬὩὶὩ ɀὦ28
ǋǋ 5 Ὃ31 ,ὸ   , ὦ29

ǋǋ5 Ὃ31 ,ὸ  , ὦ30
ǋǋ 5 Ὃ31 ,ὸ    ὥὶὩ ὪὭὶίὸ ὨὩὸὶὭὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸί  

Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3   

ὦ24
ǋǋ 4,4, Ὃ27 ,ὸ , ὦ25

ǋǋ 4,4,
Ὃ27 ,ὸ , ὦ26

ǋǋ 4,4, Ὃ27 ,ὸ  ὥὶὩ ίὩὧέὲὨ ὨὩὸὶὭὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸί Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3  

ὦ32
ǋǋ 6,6,6 Ὃ35,ὸ , ὦ33

ǋǋ 6,6,6 Ὃ35,ὸ , ὦ34
ǋǋ 6,6,6 Ὃ35,ὸ  ὥὶὩ  ὸὬὭὶὨ  ὨὩὸὶὭὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸί Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3  

ὦ13
ǋǋ1,1,1,1,1 Ὃ,ὸ, ὦ14

ǋǋ1,1,1,1,1 Ὃ,ὸ  , ὦ15
ǋǋ 1,1,1,1,1,

Ὃ,ὸ  are fourth detrition coefficients for category 1,2, and 

3 

ὦ16
ǋǋ2,2,2,2,2 Ὃ19,ὸ, ὦ17

ǋǋ2,2,2,2,2 Ὃ19,ὸ, ὦ18
ǋǋ2,2,2,2,2 Ὃ19,ὸ are fifth detrition coefficients for category 1,2, 

and 3 

ɀὦ20
ǋǋ3,3,3,3,3 Ὃ23 ,ὸ, ɀὦ21

ǋǋ 3,3,3,3,3 Ὃ23 ,ὸ, ɀὦ22
ǋǋ3,3,3,3,3 Ὃ23 ,ὸ are sixth  detrition coefficients for category 1,2, 

and 3-107 

 

SIXTH MODULE CONCATENATION -108 

ὨὋ32

Ὠὸ
= ὥ32

6 Ὃ33

ụ
Ụ
Ụ
Ụ
ợ ὥ32

ǋ 6 + ὥ32
ǋǋ 6 Ὕ33 ,ὸ + ὥ28

ǋǋ 5,5,5 Ὕ29,ὸ + ὥ24
ǋǋ 4,4,4, Ὕ25 ,ὸ  

+ ὥ13
ǋǋ 1,1,1,1,1,1 Ὕ14 ,ὸ + ὥ16

ǋǋ 2,2,2,2,2,2 Ὕ17 ,ὸ + ὥ20
ǋǋ 3,3,3,3,3,3 Ὕ21 ,ὸ

+ ὥ36
ǋǋ 7,7,7,7,7,7, Ὕ37 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὃ32  -109 

ὨὋ33

Ὠὸ
= ὥ33

6 Ὃ32

ụ
Ụ
Ụ
Ụ
ợ ὥ33

ǋ 6 + ὥ33
ǋǋ 6 Ὕ33 ,ὸ + ὥ29

ǋǋ 5,5,5 Ὕ29 ,ὸ + ὥ25
ǋǋ 4,4,4,

Ὕ25 ,ὸ  

+ ὥ14
ǋǋ 1,1,1,1,1,1 Ὕ14 ,ὸ + ὥ17

ǋǋ 2,2,2,2,2,2 Ὕ17 ,ὸ + ὥ21
ǋǋ 3,3,3,3,3,3 Ὕ21 ,ὸ

+ ὥ37
ǋǋ 7,7,7,,7,7,7, Ὕ37 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὃ33  -110 

ὨὋ34

Ὠὸ
= ὥ34

6 Ὃ33

ụ
Ụ
Ụ
Ụ
ợ ὥ34

ǋ 6 + ὥ34
ǋǋ 6 Ὕ33 ,ὸ + ὥ30

ǋǋ 5,5,5 Ὕ29 ,ὸ + ὥ26
ǋǋ 4,4,4, Ὕ25 ,ὸ  

+ ὥ15
ǋǋ 1,1,1,1,1,1

Ὕ14 ,ὸ + ὥ18
ǋǋ 2,2,2,2,2,2 Ὕ17 ,ὸ + ὥ22

ǋǋ 3,3,3,3,3,3 Ὕ21 ,ὸ

+ ὥ38
ǋǋ 7,7,7,7,7,7, Ὕ37 ,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὃ34  -111 

+ ὥ32
ǋǋ 6 Ὕ33 ,ὸ, + ὥ33

ǋǋ 6 Ὕ33 ,ὸ, + ὥ34
ǋǋ 6 Ὕ33 ,ὸ  ὥὶὩ  ὪὭὶίὸ  ὥόὫάὩὲὸὥὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸί Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3  

+ ὥ28
ǋǋ 5,5,5 Ὕ29 ,ὸ , + ὥ29

ǋǋ 5,5,5 Ὕ29 ,ὸ , + ὥ30
ǋǋ 5,5,5 Ὕ29,ὸ ὥὶὩ ίὩὧέὲὨ ὥόὫάὩὲὸὥὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸί Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3    
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+ ὥ24
ǋǋ 4,4,4, Ὕ25 ,ὸ , + ὥ25

ǋǋ 4,4,4,
Ὕ25 ,ὸ , + ὥ26

ǋǋ 4,4,4, Ὕ25 ,ὸ   ὥὶὩ ὸὬὭὶὨ ὥόὫάὩὲὸὥὸὭέὲ ὧέὩὪὪὭὧὭὩὲὸί Ὢέὶ ὧὥὸὩὫέὶώ 1,2 ὥὲὨ 3    

+ ὥ13
ǋǋ 1,1,1,1,1,1 Ὕ14 ,ὸ, + ὥ14

ǋǋ 1,1,1,1,1,1 Ὕ14 ,ὸ, + ὥ15
ǋǋ 1,1,1,1,1,1

Ὕ14 ,ὸ  - are fourth augmentation coefficients 

+ ὥ16
ǋǋ 2,2,2,2,2,2 Ὕ17 ,ὸ, + ὥ17

ǋǋ 2,2,2,2,2,2 Ὕ17 ,ὸ, + ὥ18
ǋǋ 2,2,2,2,2,2 Ὕ17 ,ὸ   - fifth augmentation coefficients 

+ ὥ20
ǋǋ 3,3,3,3,3,3 Ὕ21 ,ὸ, + ὥ21

ǋǋ 3,3,3,3,3,3 Ὕ21 ,ὸ, + ὥ22
ǋǋ 3,3,3,3,3,3 Ὕ21 ,ὸ  sixth  augmentation coefficients   

+ ὥ36
ǋǋ 7,7,7,7,7,7, Ὕ37 ,ὸ + ὥ36

ǋǋ 7,7,,77,7,,7, Ὕ37 ,ὸ + ὥ36
ǋǋ 7,7,7,,7,7,7, Ὕ37 ,ὸ ARE SVENTH AUGMENTATION 

COEFFICIENTS-112 

-113 

ὨὝ32

Ὠὸ
= ὦ32

6 Ὕ33

ụ
Ụ
Ụ
Ụ
ợ ὦ32

ǋ 6 ὦ32
ǋǋ6 Ὃ35 ,ὸ ɀὦ28

ǋǋ 5,5,5 Ὃ31 ,ὸ ɀὦ24
ǋǋ 4,4,4, Ὃ27 ,ὸ  

ὦ13
ǋǋ1,1,1,1,1,1 Ὃ,ὸ  ὦ16

ǋǋ2,2,2,2,2,2 Ὃ19,ὸ ɀὦ20
ǋǋ3,3,3,3,3,3 Ὃ23 ,ὸ

ɀὦ36
ǋǋ 7,7,7,,7,7,7 Ὃ39,ὸ Ứ

ủ
ủ
ủ
Ủ

Ὕ32  -114 

ὨὝ33

Ὠὸ
= ὦ33

6 Ὕ32

ụ
Ụ
Ụ
Ụ
ợ ὦ33

ǋ 6
ὦ33
ǋǋ6

Ὃ35,ὸ  ɀὦ29
ǋǋ5,5,5

Ὃ31,ὸ  ɀὦ25
ǋǋ4,4,4,

Ὃ27,ὸ   

ὦ14
ǋǋ1,1,1,1,1,1

Ὃ,ὸ   ὦ17
ǋǋ2,2,2,2,2,2

Ὃ19,ὸ  ɀὦ21
ǋǋ3,3,3,3,3,3

Ὃ23,ὸ

ɀὦ37
ǋǋ7,7,7,,7,7,7

Ὃ39,ὸ Ứ
ủ
ủ
ủ
Ủ

Ὕ33 -115 

ὨὝ34

Ὠὸ
= ὦ34

6 Ὕ33

ụ
Ụ
Ụ
Ụ
Ụ
ợ ὦ34

ǋ 6
ὦ34
ǋǋ6

Ὃ35,ὸ  ɀὦ30
ǋǋ5,5,5

Ὃ31,ὸ  ɀὦ26
ǋǋ4,4,4,

Ὃ27,ὸ   

ὦ15
ǋǋ1,1,1,1,1,1

Ὃ,ὸ   ὦ18
ǋǋ2,2,2,2,2,2

Ὃ19,ὸ  ɀὦ22
ǋǋ3,3,3,3,3,3

Ὃ23,ὸ

ɀὦ38
ǋǋ7,7,7,,7,7,7

Ὃ39,ὸ Ứ
ủ
ủ
ủ
ủ
Ủ

Ὕ34 -116 

ὦ32
ǋǋ6

Ὃ35,ὸ  , ὦ33
ǋǋ6

Ὃ35,ὸ   , ὦ34
ǋǋ6

Ὃ35,ὸ   ὥὶὩ  ὪὭὶίὸ   ὨὩὸὶὭὸὭέὲ  ὧέὩὪὪὭὧὭὩὲὸ ί  Ὢέὶ  ὧὥὸὩὫέὶώ  1,2 ὥὲὨ  3   

ὦ28
ǋǋ5,5,5

Ὃ31,ὸ  , ὦ29
ǋǋ5,5,5

Ὃ31,ὸ  , ὦ30
ǋǋ5,5,5

Ὃ31,ὸ   ὥὶὩ  ίὩὧέὲὨ  ὨὩὸὶὭὸὭέὲ  ὧέὩὪὪὭὧὭὩὲὸί  Ὢέὶ  ὧὥὸὩὫέὶώ  1,2 ὥὲὨ  3      

ὦ24
ǋǋ4,4,4,

Ὃ27,ὸ  , ὦ25
ǋǋ4,4,4,

Ὃ27,ὸ  , ὦ26
ǋǋ4,4,4,

Ὃ27,ὸ   ὥὶὩ  ὸὬὭὶὨ  ὨὩὸὶὭὸὭέὲ  ὧέὩὪὪὭὧὭὩὲὸί  Ὢέὶ  ὧὥὸὩὫέὶώ  1,2 ὥὲὨ  3  

ὦ13
ǋǋ1,1,1,1,1,1

Ὃ,ὸ , ὦ14
ǋǋ1,1,1,1,1,1

Ὃ,ὸ , ὦ15
ǋǋ1,1,1,1,1,1

Ὃ,ὸ    are fourth detrition  coefficients for category 1, 

2, and 3 

ὦ16
ǋǋ2,2,2,2,2,2

Ὃ19,ὸ , ὦ17
ǋǋ2,2,2,2,2,2

Ὃ19,ὸ , ὦ18
ǋǋ2,2,2,2,2,2

Ὃ19,ὸ   are fifth detrition  coefficients for 

category 1, 2, and 3 

ɀὦ20
ǋǋ3,3,3,3,3,3

Ὃ23,ὸ , ɀὦ21
ǋǋ3,3,3,3,3,3

Ὃ23,ὸ , ɀὦ22
ǋǋ3,3,3,3,3,3

Ὃ23,ὸ   are sixth detrition coefficients for category 

1, 2, and 3 

ɀὦ36
ǋǋ7,7,7,7,7,7

Ὃ39,ὸ ɀὦ36
ǋǋ7,7,7,7,7,7

Ὃ39,ὸ ɀὦ36
ǋǋ7,7,7,7,7,7

Ὃ39,ὸ ARE SEVENTH DETRITION 

COEFFICIENTS-117 

-118 

 

SEVENTH MODULE CONCATENATION:-119 
ὨὋ36

Ὠὸ
=

ὥ36
7Ὃ37 ὥ36

ǋ 7
+ ὥ36

ǋǋ7
Ὕ37,ὸ +  ὥ16

ǋǋ7
Ὕ17,ὸ  +   ὥ20

ǋǋ7
Ὕ21,ὸ  +   ὥ24

ǋǋ7
Ὕ23,ὸὋ36  +

28ǋǋ7 29,      +   32ǋǋ7 33,     + 13ǋǋ7 14,  36-120 

121 
ὨὋ37

Ὠὸ
=

ὥ37
7Ὃ36 ὥ37

ǋ 7
+ ὥ37

ǋǋ7
Ὕ37,ὸ     +     ὥ14

ǋǋ7
Ὕ14,ὸ    +    ὥ21

ǋǋ7
Ὕ21,ὸ +    ὥ17

ǋǋ 7
Ὕ17,ὸ   +

   25ǋǋ7 25,    + 33ǋǋ7 33,  +  29ǋǋ7 29,         37 

-122 
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ὨὋ38

Ὠὸ
=

ὥ38
7Ὃ37 ὥ38

ǋ 7
+ ὥ38

ǋǋ7
Ὕ37,ὸ     +     ὥ15

ǋǋ7
Ὕ14,ὸ    +    ὥ22

ǋǋ7
Ὕ21,ὸ +    + ὥ18

ǋǋ7
Ὕ17,ὸ   +

   26ǋǋ7 25,    +    34ǋǋ7 33,     +  30ǋǋ7 29,    38  

-123 

124 

125 

ὨὝ36

Ὠὸ
= ὦ36

7 Ὕ37 ὦ36
ǋ 7

ὦ36
ǋǋ7

Ὃ39 ,ὸ   ὦ16
ǋǋ7

Ὃ19 ,ὸ        ὦ13
ǋǋ7

Ὃ14 ,ὸ      

20ǋǋ7 231,    ī     24ǋǋ7 27,        ī 28ǋǋ7 31,           ī 32ǋǋ7 35,                                                 36  

-126 

ὨὝ37

Ὠὸ
= ὦ37

7 Ὕ36  ὦ36
ǋ 7

ὦ37
ǋǋ7

Ὃ39 ,ὸ   ὦ17
ǋǋ 7

Ὃ19 ,ὸ        ὦ19
ǋǋ7

Ὃ14 ,ὸ      

21ǋǋ7 231,    ī     25ǋǋ7 27,        ī 29ǋǋ7 31,           ī 33ǋǋ7 35,                                                                                                

37  

 

 -127 

Where we suppose 
 

(A) ὥὭ
1 , ὥὭ

ᴂ 1 , ὥὭ
ᴂᴂ1 , ὦὭ

1 , ὦὭ
ᴂ 1 , ὦὭ

ᴂᴂ1 > 0,  
     Ὥ,Ὦ= 13,14,15 
 

(B) The functions ὥὭ
ᴂᴂ1 , ὦὭ

ᴂᴂ1  are positive continuous increasing and bounded. 

Definition of (ὴὭ)
1 ,  (ὶὭ)

1 : 
 

     ὥὭ
ᴂᴂ1 (Ὕ14 ,ὸ) (ὴὭ)

1 ( ὃ13  ) (1)  
 

     ὦὭ
ᴂᴂ1 (Ὃ,ὸ)   (ὶὭ)

1 (ὦὭ
ᴂ) 1 ( ὄ13  ) (1) 

  

(C) ὰὭάὝ2 ЊO ὥὭ
ᴂᴂ1 Ὕ14 ,ὸ= (ὴὭ)

1  

     limG ЊO ὦὭ
ᴂᴂ1 Ὃ,ὸ=   (ὶὭ)

1            
 

            Definition of ( ὃ13  ) (1) ,(  ὄ13  ) (1)  : 
 

            Where ( ὃ13  ) (1) ,(  ὄ13  ) (1) , (ὴὭ)
1 ,  (ὶὭ)

1  are positive constants     

              and   Ὥ= 13,14,15  

 
           They satisfy  Lipschitz condition: 

         |(ὥὭ
ᴂᴂ) 1 Ὕ14

ᴂ,ὸ (ὥὭ
ᴂᴂ) 1 Ὕ14 ,ὸ| ( Ὧ13  ) (1) |Ὕ14  Ὕ14

ᴂ|Ὡ( ὓ13  )(1)ὸ  
 

         |(ὦὭ
ᴂᴂ) 1 Ὃᴂ,ὸ (ὦὭ

ᴂᴂ) 1 Ὃ,Ὕ| < ( Ὧ13  ) (1) ||Ὃ Ὃᴂ||Ὡ(  ὓ13  ) (1)ὸ 
 

With the Lipschitz condition, we place a restriction on the behavior of functions (ὥὭ
ᴂᴂ) 1 Ὕ14

ᴂ,ὸ   and(ὥὭ
ᴂᴂ) 1 Ὕ14 ,ὸ  . Ὕ14

ᴂ,ὸ and 

Ὕ14 ,ὸ are points belonging to the interval  ( Ὧ13  ) (1) ,(  ὓ13 ) (1)  . It is to be noted that (ὥὭ
ᴂᴂ) 1 Ὕ14 ,ὸ is uniformly continuous. 

In the eventuality of the fact, that if ( ὓ13 ) (1) = 1 then the function  (ὥὭ
ᴂᴂ) 1 Ὕ14 ,ὸ , the first augmentation coefficient 

attributable to terrestrial organisms, would be absolutely continuous.  
 

        Definition of (  ὓ13  ) (1) ,(  Ὧ13  ) (1) : 
 

(D) ( ὓ13  ) (1) ,( Ὧ13  ) (1) ,  are positive constants 
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(ὥὭ)

1

( ὓ13  )(1)   ,
(ὦὭ)

1

( ὓ13  )(1) < 1 

 

           Definition of ( ὖ13  ) (1) ,( ὗ13  ) (1) : 
 

(E) There exists two constants (  ὖ13  ) (1)  and ( ὗ13  ) (1)  which together with ( ὓ13  ) (1) ,( Ὧ13  ) (1) ,(ὃ13) (1)ὥὲὨ ( ὄ13  ) (1)   and 

the constants (ὥὭ)
1 ,(ὥὭ

ᴂ) 1 , (ὦὭ)
1 ,(ὦὭ

ᴂ) 1 ,(ὴὭ)
1 ,  (ὶὭ)

1 ,Ὥ= 13,14,15, 
       satisfy the inequalities  
 

1

( ὓ13  ) (1)
[ (ὥὭ)

1 + (ὥὭ
ᴂ) 1 +   ( ὃ13  ) (1) +  ( ὖ13  ) (1)  ( Ὧ13  ) (1) ] < 1 

 
1

( ὓ13 ) (1)
[  (ὦὭ)

1 + (ὦὭ
ᴂ) 1 +   ( ὄ13  ) (1) +  ( ὗ13  ) (1)   ( Ὧ13  ) (1) ] < 1 

 
ὨὝ38

Ὠὸ
= ὦ38

7 Ὕ37 ὦ38
ǋ 7 ὦ38

ǋǋ 7 Ὃ39 ,ὸ  ὦ18
ǋǋ7 Ὃ19 ,ὸ        ὦ20

ǋǋ 7 Ὃ14 ,ὸ      

ὦ22ǋǋ7Ὃ23,ὸ   ī     ὦ26ǋǋ7Ὃ27,ὸ       īὦ30ǋǋ7Ὃ31,ὸ          īὦ34ǋǋ7Ὃ35,ὸ                                                                                                  

Ὕ38   

 

128 

129 

130 

131 

132 

+ ὥ36
ǋǋ 7 Ὕ37 ,ὸ=   First augmentation factor  134 

(1) ὥὭ
2 , ὥὭ

ᴂ 2 , ὥὭ
ᴂᴂ2 , ὦὭ

2 , ὦὭ
ᴂ 2 , ὦὭ

ᴂᴂ2 > 0,      Ὥ,Ὦ= 16,17,18 135 

(F) (2) The functions ὥὭ
ᴂᴂ2 , ὦὭ

ᴂᴂ2  are positive continuous increasing and bounded. 136 

Definition of  (pi )
2 ,  (r i )

2 : 137 

ὥὭ
ᴂᴂ2 Ὕ17 ,ὸ (ὴὭ)

2  ὃ16 
2

  138 

ὦὭ
ᴂᴂ2 (Ὃ19 ,ὸ)   (ὶὭ)

2 (ὦὭ
ᴂ) 2 (  ὄ16  ) (2)   139 

(G) (3)  limὝ2 ЊO ὥὭ
ᴂᴂ2 Ὕ17 ,ὸ= (ὴὭ)

2  140 

 lim ὋO Њ ὦὭ
ᴂᴂ2 Ὃ19 ,ὸ=   (ὶὭ)

2   141 

Definition of ( ὃ16  ) (2) ,( ὄ16  ) (2)  : 

Where ( ὃ16  ) (2) ,( ὄ16  ) (2) ,(ὴὭ)
2 ,  (ὶὭ)

2 are positive constants  and   Ὥ= 16,17,18  

142 

They satisfy  Lipschitz condition: 143 

|(ὥὭ
ᴂᴂ) 2 Ὕ17

ᴂ,ὸ (ὥὭ
ᴂᴂ) 2 Ὕ17 ,ὸ| ( Ὧ16  ) (2) |Ὕ17  Ὕ17

ᴂ|Ὡ( ὓ16  )(2)ὸ  144 

|(ὦὭ
ᴂᴂ) 2 Ὃ19

ᴂ,ὸ (ὦὭ
ᴂᴂ) 2 Ὃ19 ,ὸ| < ( Ὧ16  ) (2) || Ὃ19 Ὃ19

ᴂ||Ὡ( ὓ16 )(2)ὸ  145 

With the Lipschitz condition, we place a restriction on the behavior of functions (ὥὭ
ᴂᴂ) 2 Ὕ17

ᴂ,ὸ   
and(ὥὭ

ᴂᴂ) 2 Ὕ17 ,ὸ  . Ὕ17
ᴂ,ὸ And Ὕ17 ,ὸ are points belonging to the interval  ( Ὧ16  ) (2) ,(  ὓ16 ) (2)  . It is to be 

noted that (ὥὭ
ᴂᴂ) 2 Ὕ17 ,ὸ is uniformly continuous. In the eventuality of the fact, that if (  ὓ16 ) (2) = 1 then the 

function  (ὥὭ
ᴂᴂ) 2 Ὕ17 ,ὸ , the SECOND augmentation coefficient would be absolutely continuous.  

146 

Definition of ( ὓ16  ) (2) ,( Ὧ16  ) (2)  : 147 

(H) (4)  (  ὓ16 ) (2) ,( Ὧ16  ) (2) ,  are positive constants 148 
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(ὥὭ)

2

( ὓ16  )(2)   ,
(ὦὭ)

2

( ὓ16  )(2) < 1 

Definition of ( ὖ13  ) (2) ,( ὗ13  ) (2) : 

There exists two constants ( ὖ16  ) (2)  and ( ὗ16  ) (2)  which together 

with  ( ὓ16 ) (2) ,( Ὧ16  ) (2) ,(ὃ16) (2)ὥὲὨ ( ὄ16  ) (2)   and the constants 
(ὥὭ)

2 ,(ὥὭ
ᴂ) 2 ,(ὦὭ)

2 ,(ὦὭ
ᴂ) 2 ,(ὴὭ)

2 ,  (ὶὭ)
2 ,Ὥ= 16,17,18, 

  satisfy the inequalities  

149 

1

( M16  )(2) [ (ai )
2 + (ai

ᴂ) 2 +   ( A16  ) (2) +  ( P16  ) (2)  ( k16  ) (2) ] < 1  150 

1

( ὓ16  )(2) [  (ὦὭ)
2 + (ὦὭ

ᴂ) 2 +   (  ὄ16  ) (2) +  ( ὗ16  ) (2)   ( Ὧ16  ) (2) ] < 1  151 

Where we suppose 152 

(I)  (5)   ὥὭ
3 , ὥὭ

ᴂ 3 , ὥὭ
ᴂᴂ3 , ὦὭ

3 , ὦὭ
ᴂ 3 , ὦὭ

ᴂᴂ3 > 0,      Ὥ,Ὦ= 20,21,22 

The functions ὥὭ
ᴂᴂ3 , ὦὭ

ᴂᴂ3  are positive continuous increasing and bounded. 

Definition of (ὴὭ)
3 ,   (r i )

3 : 

     ὥὭ
ᴂᴂ3 (Ὕ21 ,ὸ) (ὴὭ)

3 ( ὃ20  ) (3)  

     ὦὭ
ᴂᴂ3 (Ὃ23 ,ὸ)   (ὶὭ)

3 (ὦὭ
ᴂ) 3 ( ὄ20  ) (3)  

153 

ὰὭάὝ2 ЊO ὥὭ
ᴂᴂ3 Ὕ21 ,ὸ= (ὴὭ)

3   

limG ЊO ὦὭ
ᴂᴂ3 Ὃ23 ,ὸ=   (ὶὭ)

3            

 Definition of ( ὃ20  ) (3) ,(  ὄ20  ) (3)  : 

Where ( ὃ20  ) (3) ,(  ὄ20  ) (3) , (ὴὭ)
3 ,  (ὶὭ)

3  are positive constants   and   Ὥ= 20,21,22  

154 

155 

156 

They satisfy  Lipschitz condition: 

|(ὥὭ
ᴂᴂ) 3 Ὕ21

ᴂ,ὸ (ὥὭ
ᴂᴂ) 3 Ὕ21 ,ὸ| ( Ὧ20  ) (3) |Ὕ21  Ὕ21

ᴂ|Ὡ ( ὓ20  )(3)ὸ  

|(ὦὭ
ᴂᴂ) 3 Ὃ23

ᴂ,ὸ (ὦὭ
ᴂᴂ) 3 Ὃ23 ,ὸ| < ( Ὧ20  ) (3) ||Ὃ23 Ὃ23

ᴂ||Ὡ( ὓ20  )(3)ὸ  

157 

158 

159 

With the Lipschitz condition, we place a restriction on the behavior of functions (ὥὭ
ᴂᴂ) 3 Ὕ21

ᴂ,ὸ   

and(ὥὭ
ᴂᴂ) 3 Ὕ21 ,ὸ  . Ὕ21

ᴂ,ὸ And Ὕ21 ,ὸ are points belonging to the interval  (  Ὧ20  ) (3) ,( ὓ20  ) (3)  . It is to be 

noted that (ὥὭ
ᴂᴂ) 3 Ὕ21 ,ὸ is uniformly continuous. In the eventuality of the fact, that if (  ὓ20 ) (3) = 1 then the 

function  (ὥὭ
ᴂᴂ) 3 Ὕ21 ,ὸ , the THIRD augmentation coefficient, would be absolutely continuous.  

160 

Definition of ( ὓ20  ) (3) ,( Ὧ20  ) (3)  : 

(J) (6)  (  ὓ20 ) (3) ,( Ὧ20  ) (3) ,  are positive constants 

      
(ὥὭ)

3

( ὓ20  ) (3)   ,
(ὦὭ)

3

( ὓ20  )(3) < 1 

161 

There exists two constants There exists two constants ( ὖ20  ) (3)  and ( ὗ20  ) (3) which together with 

( ὓ20  ) (3) ,( Ὧ20  ) (3) ,(ὃ20) (3)ὥὲὨ ( ὄ20  ) (3)   and the constants (ὥὭ)
3 ,(ὥὭ

ǋ) 3 ,(ὦὭ)
3 ,(ὦὭ

ǋ) 3 ,(ὴὭ)
3 ,  (ὶὭ)

3 ,Ὥ=
20,21,22,       
satisfy the inequalities  

1

( ὓ20  )(3) [ (ὥὭ)
3 + (ὥὭ

ᴂ) 3 +   ( ὃ20  ) (3) +  ( ὖ20  ) (3)  ( Ὧ20  ) (3) ] < 1  

162 

163 

164 

165 
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1

( ὓ20  )(3) [  (ὦὭ)
3 + (ὦὭ

ᴂ) 3 +   (  ὄ20  ) (3) +  ( ὗ20  ) (3)   ( Ὧ20  ) (3) ] < 1  166 

167 

Where we suppose 168 

(K) ὥὭ
4 , ὥὭ

ᴂ 4 , ὥὭ
ᴂᴂ4 , ὦὭ

4 , ὦὭ
ᴂ 4 , ὦὭ

ᴂᴂ4 > 0,      Ὥ,Ὦ= 24,25,26 
 

(L) (7)   The functions ὥὭ
ᴂᴂ4 , ὦὭ

ᴂᴂ4  are positive continuous increasing and bounded. 
 

Definition of (ὴὭ)
4 ,  (ὶὭ)

4 : 

     ὥὭ
ᴂᴂ4 (Ὕ25 ,ὸ) (ὴὭ)

4 ( ὃ24  ) (4)  

     ὦὭ
ᴂᴂ4 Ὃ27 ,ὸ   (ὶὭ)

4 (ὦὭ
ᴂ) 4 ( ὄ24  ) (4) 

169 

  

(M) (8)    ὰὭάὝ2 ЊO ὥὭ
ᴂᴂ4 Ὕ25 ,ὸ= (ὴὭ)

4  

limG ЊO ὦὭ
ᴂᴂ4 Ὃ27 ,ὸ=   (ὶὭ)

4          

Definition of ( ὃ24 ) (4) ,(  ὄ24  ) (4)  : 

Where ( ὃ24 ) (4) ,(  ὄ24  ) (4) ,(ὴὭ)
4 ,  (ὶὭ)

4  are positive constants and   Ὥ= 24,25,26  

170 

   They satisfy  Lipschitz condition: 

|(ὥὭ
ᴂᴂ) 4 Ὕ25

ᴂ,ὸ (ὥὭ
ᴂᴂ) 4 Ὕ25 ,ὸ| ( Ὧ24  ) (4) |Ὕ25  Ὕ25

ᴂ|Ὡ ( ὓ24  )(4)ὸ  

|(ὦὭ
ᴂᴂ) 4 Ὃ27

ᴂ,ὸ (ὦὭ
ᴂᴂ) 4 Ὃ27 ,ὸ| < ( Ὧ24  ) (4) || Ὃ27 Ὃ27

ᴂ||Ὡ( ὓ24  )(4)ὸ  

171 

With the Lipschitz condition, we place a restriction on the behavior of functions (ὥὭ
ᴂᴂ) 4 Ὕ25

ᴂ,ὸ   

and(ὥὭ
ᴂᴂ) 4 Ὕ25 ,ὸ  . Ὕ25

ᴂ,ὸ And Ὕ25 ,ὸ are points belonging to the interval  ( Ὧ24  ) (4) ,( ὓ24  ) (4)  . It is to be 

noted that (ὥὭ
ᴂᴂ) 4 Ὕ25 ,ὸ is uniformly continuous. In the eventuality of the fact, that if ( ὓ24  ) (4) = 4 then the 

function  (ὥὭ
ᴂᴂ) 4 Ὕ25 ,ὸ , the FOURTH augmentation coefficient WOULD be absolutely continuous.  

172 

 

 

173 

Definition of ( ὓ24 ) (4) ,( Ὧ24  ) (4) : 

(N) ( ὓ24  )176175(4) ,( Ὧ24  ) (4) ,  are positive constants 
(O)  

(ὥὭ)
4

( ὓ24  )(4)   ,
(ὦὭ)

4

( ὓ24  )(4) < 1  

174 

Definition of ( ὖ24  ) (4) ,( ὗ24  ) (4) : 

(P) (9)   There exists two constants ( ὖ24  ) (4)  and ( ὗ24  ) (4) which together with 

( ὓ24  ) (4) ,( Ὧ24  ) (4) ,(ὃ24) (4)ὥὲὨ ( ὄ24  ) (4)   and the constants 

(ὥὭ)
4 ,(ὥὭ

ᴂ) 4 ,(ὦὭ)
4 ,(ὦὭ

ᴂ) 4 ,(ὴὭ)
4 ,  (ὶὭ)

4 ,Ὥ= 24,25,26, 
satisfy the inequalities  

1

( ὓ24  )(4) [ (ὥὭ)
4 + (ὥὭ

ᴂ) 4 +   ( ὃ24  ) (4) +  ( ὖ24  ) (4)  ( Ὧ24  ) (4) ] < 1  

1

( ὓ24  )(4) [  (ὦὭ)
4 + (ὦὭ

ᴂ) 4 +   (  ὄ24  ) (4) +  ( ὗ24  ) (4)   ( Ὧ24  ) (4) ] < 1  

175 
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Where we suppose 176 

(Q) ὥὭ
5 , ὥὭ

ᴂ 5 , ὥὭ
ᴂᴂ5 , ὦὭ

5 , ὦὭ
ᴂ 5 , ὦὭ

ᴂᴂ5 > 0,     Ὥ,Ὦ= 28,29,30 

(R) (10)   The functions ὥὭ
ᴂᴂ5 , ὦὭ

ᴂᴂ5  are positive continuous increasing and bounded. 

Definition of (ὴὭ)
5 ,  (ὶὭ)

5 : 

     ὥὭ
ᴂᴂ5 (Ὕ29 ,ὸ) (ὴὭ)

5 ( ὃ28  ) (5)  

     ὦὭ
ᴂᴂ5 Ὃ31 ,ὸ   (ὶὭ)

5 (ὦὭ
ᴂ) 5 ( ὄ28  ) (5) 

177 

  

(S) (11)  ὰὭάὝ2 ЊO ὥὭ
ᴂᴂ5 Ὕ29,ὸ= (ὴὭ)

5  

     limG ЊO ὦὭ
ᴂᴂ5 Ὃ31 ,ὸ=   (ὶὭ)

5            

Definition of ( ὃ28 ) (5) ,(  ὄ28  ) (5)  : 

Where ( ὃ28 ) (5) ,(  ὄ28  ) (5) ,(ὴὭ)
5 ,  (ὶὭ)

5  are positive constants  and   Ὥ= 28,29,30  

178 

They satisfy  Lipschitz condition: 

  |(ὥὭ
ᴂᴂ) 5 Ὕ29

ᴂ,ὸ (ὥὭ
ᴂᴂ) 5 Ὕ29 ,ὸ| ( Ὧ28  ) (5) |Ὕ29  Ὕ29

ᴂ|Ὡ( ὓ28  )(5)ὸ  

|(ὦὭ
ᴂᴂ) 5 Ὃ31

ᴂ,ὸ (ὦὭ
ᴂᴂ) 5 Ὃ31 ,ὸ| < ( Ὧ28  ) (5) || Ὃ31 Ὃ31

ᴂ||Ὡ( ὓ28  )(5)ὸ  

179 

With the Lipschitz condition, we place a restriction on the behavior of functions (ὥὭ
ᴂᴂ) 5 Ὕ29

ᴂ,ὸ   

and(ὥὭ
ᴂᴂ) 5 Ὕ29,ὸ  . Ὕ29

ᴂ,ὸ and Ὕ29 ,ὸ are points belonging to the interval  ( Ὧ28  ) (5) ,(  ὓ28 ) (5)  . It is to be 

noted that (ὥὭ
ᴂᴂ) 5 Ὕ29 ,ὸ is uniformly continuous. In the eventuality of the fact, that if (  ὓ28 ) (5) = 5 then the 

function  (ὥὭ
ᴂᴂ) 5 Ὕ29 ,ὸ , theFIFTH augmentation coefficient attributable would be absolutely continuous.  

180 

Definition of ( ὓ28 ) (5) ,( Ὧ28  ) (5) : 

(T) ( ὓ28  ) (5) ,( Ὧ28  ) (5) ,  are positive constants 

      
(ὥὭ)

5

( ὓ28  )(5)   ,
(ὦὭ)

5

( ὓ28  )(5) < 1 

181 

Definition of ( ὖ28  ) (5) ,( ὗ28  ) (5) : 

(U) There exists two constants (  ὖ28  ) (5)  and (  ὗ28  ) (5) which together with 

( ὓ28  ) (5) ,( Ὧ28  ) (5) ,(ὃ28) (5)ὥὲὨ ( ὄ28  ) (5)   and the constants 

(ὥὭ)
5 ,(ὥὭ

ᴂ) 5 ,(ὦὭ)
5 ,(ὦὭ

ᴂ) 5 ,(ὴὭ)
5 ,  (ὶὭ)

5 ,Ὥ= 28,29,30,       satisfy the inequalities  
 

1

( ὓ28  )(5) [ (ὥὭ)
5 + (ὥὭ

ᴂ) 5 +   ( ὃ28  ) (5) +  ( ὖ28  ) (5)  ( Ὧ28  ) (5) ] < 1  

1

( ὓ28  )(5) [  (ὦὭ)
5 + (ὦὭ

ᴂ) 5 +   (  ὄ28  ) (5) +  ( ὗ28  ) (5)   ( Ὧ28  ) (5) ] < 1  

182 

Where we suppose 183 

ὥὭ
6 , ὥὭ

ᴂ 6 , ὥὭ
ᴂᴂ6 , ὦὭ

6 , ὦὭ
ᴂ 6 , ὦὭ

ᴂᴂ6 > 0,      Ὥ,Ὦ= 32,33,34 

(12)   The functions ὥὭ
ᴂᴂ6 , ὦὭ

ᴂᴂ6  are positive continuous increasing and bounded. 

Definition of (ὴὭ)
6 ,  (ὶὭ)

6 : 

     ὥὭ
ᴂᴂ6 (Ὕ33 ,ὸ) (ὴὭ)

6 ( ὃ32  ) (6)  

     ὦὭ
ᴂᴂ6 ( Ὃ35 ,ὸ)   (ὶὭ)

6 (ὦὭ
ᴂ) 6 ( ὄ32  ) (6) 

184 
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(13)   ὰὭάὝ2ᴼЊ ὥὭ
ᴂᴂ6 Ὕ33 ,ὸ= (ὴὭ)

6  

     limG ЊO ὦὭ
ᴂᴂ6 Ὃ35 ,ὸ=   (ὶὭ)

6            

Definition of ( ὃ32 ) (6) ,(  ὄ32  ) (6)  : 

            Where ( ὃ32 ) (6) ,(  ὄ32  ) (6) ,(ὴὭ)
6 ,  (ὶὭ)

6  are positive constants and   Ὥ= 32,33,34  

185 

They satisfy  Lipschitz condition: 

|(ὥὭ
ᴂᴂ) 6 Ὕ33

ᴂ,ὸ (ὥὭ
ᴂᴂ) 6 Ὕ33 ,ὸ| ( Ὧ32  ) (6) |Ὕ33  Ὕ33

ᴂ|Ὡ ( ὓ32  )(6)ὸ  

|(ὦὭ
ᴂᴂ) 6 Ὃ35

ᴂ,ὸ (ὦὭ
ᴂᴂ) 6 Ὃ35 ,ὸ| < ( Ὧ32  ) (6) || Ὃ35 Ὃ35

ᴂ||Ὡ( ὓ32  )(6)ὸ  

186 

With the Lipschitz condition, we place a restriction on the behavior of functions (ὥὭ
ᴂᴂ) 6 Ὕ33

ᴂ,ὸ   

and(ὥὭ
ᴂᴂ) 6 Ὕ33 ,ὸ  . Ὕ33

ᴂ,ὸ and Ὕ33 ,ὸ are points belonging to the interval  ( Ὧ32  ) (6) ,( ὓ32  ) (6)  . It is to be 

noted that (ὥὭ
ᴂᴂ) 6 Ὕ33 ,ὸ is uniformly continuous. In the eventuality of the fact, that if ( ὓ32  ) (6) = 6 then the 

function  (ὥὭ
ᴂᴂ) 6 Ὕ33 ,ὸ , the SIXTH augmentation coefficient would be absolutely continuous.  

187 

Definition of ( ὓ32 ) (6) ,( Ὧ32  ) (6) :  

( ὓ32  ) (6) ,( Ὧ32  ) (6) ,  are positive constants 

      
(ὥὭ)

6

( ὓ32  )(6)   ,
(ὦὭ)

6

( ὓ32  )(6) < 1 

188 

Definition of ( ὖ32  ) (6) ,( ὗ32  ) (6) : 

There exists two constants (  ὖ32  ) (6)  and (  ὗ32  ) (6) which together with 

( ὓ32  ) (6) ,( Ὧ32  ) (6) ,(ὃ32) (6)ὥὲὨ ( ὄ32  ) (6)   and the constants (ὥὭ)
6 ,(ὥὭ

ᴂ) 6 , (ὦὭ)
6 ,(ὦὭ

ᴂ) 6 ,(ὴὭ)
6 ,  (ὶὭ)

6 ,Ὥ=
32,33,34, 
satisfy the inequalities  

1

( ὓ32  )(6) [ (ὥὭ)
6 + (ὥὭ

ᴂ) 6 +   ( ὃ32  ) (6) +  ( ὖ32  ) (6)  ( Ὧ32  ) (6) ] < 1  

1

( ὓ32  )(6) [  (ὦὭ)
6 + (ὦὭ

ᴂ) 6 +   (  ὄ32  ) (6) +  ( ὗ32  ) (6)   ( Ὧ32  ) (6) ] < 1  

189 

Where we suppose 

 

190 

(V) ὥὭ
7 , ὥὭ

ǋ 7
, ὥὭ

ǋǋ7 , ὦὭ
7 , ὦὭ

ǋ 7
, ὦὭ
ǋǋ7 > 0,  

     Ὥ,Ὦ= 36,37,38 

(W) The functions ὥὭ
ǋǋ7 , ὦὭ

ǋǋ7  are positive continuous increasing and bounded. 

Definition of (ὴὭ)
7 ,   (ὶὭ)

7 : 

     ὥὭ
ǋǋ7

(Ὕ37 ,ὸ) (ὴὭ)
7 (  ὃ36  ) (7)  

     ὦὭ
ǋǋ7 (Ὃ,ὸ)   (ὶὭ)

7 (ὦὭ
ǋ) 7 ( ὄ36  ) (7) 

191 

 limὝ2ᴼÐ
 ὥὭ
ǋǋ7

Ὕ37 ,ὸ= (ὴὭ)
7  

     limG ÐO ὦὭ
ǋǋ7 Ὃ39 ,ὸ=   (ὶὭ)

7            

192 
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            Definition of ( ὃ36  ) (7) ,( ὄ36  ) (7)  : 

            Where ( ὃ36  ) (7) ,(  ὄ36  ) (7) , (ὴὭ)
7 ,  (ὶὭ)

7  are positive constants     

              and   Ὥ= 36,37,38  

           They satisfy  Lipschitz condition: 

         |(ὥὭ
ǋǋ) 7 Ὕ37

ǋ,ὸ (ὥὭ
ǋǋ) 7 Ὕ37 ,ὸ| ( Ὧ36  ) (7) |Ὕ37  Ὕ37

ǋ|Ὡ( ὓ36  )(7)ὸ  

         |(ὦὭ
ǋǋ) 7 Ὃ39

ǋ,ὸ (ὦὭ
ǋǋ) 7 Ὃ39 , Ὕ39 | < ( Ὧ36  ) (7) || Ὃ39 Ὃ39

ǋ||Ὡ(  ὓ36  ) (7)ὸ 

193 

With the Lipschitz condition, we place a restriction on the behavior of functions (ὥὭ
ǋǋ) 7 Ὕ37

ǋ,ὸ   

and(ὥὭ
ǋǋ) 7 Ὕ37 ,ὸ  . Ὕ37

ǋ,ὸ and Ὕ37 ,ὸ are points belonging to the interval  ( Ὧ36  ) (7) ,(  ὓ36 ) (7)  . It is to be 

noted that (ὥὭ
ǋǋ) 7 Ὕ37 ,ὸ is uniformly continuous. In the eventuality of the fact, that if ( ὓ36 ) (7) = 7 then the 

function  (ὥὭ
ǋǋ) 7 Ὕ37 ,ὸ , the first augmentation coefficient attributable to terrestrial organisms, would be 

absolutely continuous.  

194 

        Definition of ( ὓ36 ) (7) ,( Ὧ36  ) (7) : 

(X) ( ὓ36  ) (7) ,( Ὧ36  ) (7) ,  are positive constants 

      
(ὥὭ)

7

( ὓ36  ) (7)   ,
(ὦὭ)

7

( ὓ36  )(7) < 1 

195 

           Definition of (  ὖ36  ) (7) ,(  ὗ36  ) (7) : 

(Y) There exists two constants (  ὖ36  ) (7)  and ( ὗ36  ) (7) which together with 

( ὓ36  ) (7) ,( Ὧ36  ) (7) ,(ὃ36) (7)ὥὲὨ ( ὄ36  ) (7)   and the constants 

(ὥὭ)
7 ,(ὥὭ

ǋ) 7 ,(ὦὭ)
7 ,(ὦὭ

ǋ) 7 ,(ὴὭ)
7 ,  (ὶὭ)

7 ,Ὥ= 36,37,38, 
       satisfy the inequalities  

1

( ὓ36 ) (7)
[ (ὥὭ)

7 + (ὥὭ
ǋ) 7 +   ( ὃ36 ) (7) +  ( ὖ36  ) (7)  (  Ὧ36  ) (7) ] < 1 

1

( ὓ36  ) (7)
[  (ὦὭ)

7 + (ὦὭ
ǋ) 7 +   ( ὄ36  ) (7) +  ( ὗ36  ) (7)   ( Ὧ36  ) (7) ] < 1 

196 

Definition of   ὋὭ0  ,ὝὭ0  : 

 ὋὭὸ   ὖ28  
5
Ὡ ὓ28  5 ὸ   ,      ὋὭ0 = ὋὭ

0 > 0  

ὝὭ(ὸ)  ( ὗ28  ) (5)Ὡ( ὓ28  )(5)ὸ     ,       ὝὭ0 = ὝὭ
0 > 0  

197 

 

198 

Definition of   ὋὭ0  ,ὝὭ0  : 

 ὋὭὸ   ὖ32  
6
Ὡ ὓ32  6 ὸ   ,      ὋὭ0 = ὋὭ

0 > 0  

ὝὭ(ὸ)  ( ὗ32  ) (6)Ὡ( ὓ32  )(6)ὸ     ,       ὝὭ0 = ὝὭ
0 > 0  

=================================================================================== 

Definition of   ὋὭ0  ,ὝὭ0  : 

 ὋὭὸ   ὖ36  
7
Ὡ ὓ36  7 ὸ   ,      ὋὭ0 = ὋὭ

0 > 0  

199 
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ὝὭ(ὸ)  ( ὗ36  ) (7)Ὡ( ὓ36  )(7)ὸ     ,       ὝὭ0 = ὝὭ
0 > 0  

Proof: Consider operator  ꜝ(1)  defined on the space of sextuples of continuous functions ὋὭ , ὝὭ:ᴙ+ ᴼᴙ+  
which satisfy                                         

200 

ὋὭ0 = ὋὭ
0 , ὝὭ0 = ὝὭ

0 ,  ὋὭ
0 ( ὖ13  ) (1)  ,ὝὭ

0 ( ὗ13  ) (1) ,   201 

0 ὋὭὸ ὋὭ
0 ( ὖ13  ) (1)Ὡ( ὓ13  ) (1)ὸ    202 

0 ὝὭὸ ὝὭ
0 (  ὗ13  ) (1)Ὡ( ὓ13  ) (1)ὸ  203 

By 

ὋӶ13 ὸ= Ὃ13
0 +  ᷿ (ὥ13) 1 Ὃ14 ί13  (ὥ13

ᴂ ) 1 + ὥ13
ᴂᴂ) 1 Ὕ14 ί13 ,ί13 Ὃ13 ί13 Ὠί13

ὸ

0
  

204 

 ὋӶ14 ὸ= Ὃ14
0 +  ᷿ (ὥ14) 1 Ὃ13 ί13 (ὥ14

ᴂ ) 1 + (ὥ14
ᴂᴂ) 1 Ὕ14 ί13 ,ί13 Ὃ14 ί13 Ὠί13  

ὸ

0
  205 

ὋӶ15 ὸ= Ὃ15
0 +  ᷿ (ὥ15) 1 Ὃ14 ί13 (ὥ15

ᴂ ) 1 + (ὥ15
ᴂᴂ) 1 Ὕ14 ί13 ,ί13 Ὃ15 ί13 Ὠί13  

ὸ

0
  206 

Ὕ13 ὸ= Ὕ13
0 + ᷿ (ὦ13) 1 Ὕ14 ί13  (ὦ13

ᴂ) 1  (ὦ13
ᴂᴂ) 1 Ὃί13 ,ί13 Ὕ13 ί13 Ὠί13

ὸ

0
  207 

Ὕ14 ὸ= Ὕ14
0 + ᷿ (ὦ14) 1 Ὕ13 ί13  (ὦ14

ᴂ) 1  (ὦ14
ᴂᴂ) 1 Ὃί13 ,ί13 Ὕ14 ί13 Ὠί13

ὸ

0
  208 

T15 t = T15
0 + ᷿ (ὦ15) 1 Ὕ14 ί13  (ὦ15

ᴂ) 1  (ὦ15
ᴂᴂ) 1 Ὃί13 ,ί13 Ὕ15 ί13 Ὠί13

ὸ

0
  

Where ί13   is the integrand that is integrated over an interval 0,ὸ 

209 

 

 210 

 if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying the conditions 
 
          Definition of   ὋὭ0  ,ὝὭ0  : 
 

 ὋὭὸ   ὖ36  
7
Ὡ ὓ36  7 ὸ   ,      ὋὭ0 = ὋὭ

0 > 0  

ὝὭ(ὸ)  ( ὗ36  ) (7)Ὡ( ὓ36  )(7)ὸ     ,       ὝὭ0 = ὝὭ
0 > 0  

Consider operator  ꜝ (7)   defined on the space of sextuples of continuous functions ὋὭ , ὝὭ:ᴙ+ ᴼᴙ+  which satisfy                                 
                                      
ὋὭ0 = ὋὭ

0 , ὝὭ0 = ὝὭ
0 ,  ὋὭ

0 ( ὖ36  ) (7)  ,ὝὭ
0 ( ὗ36  ) (7) ,   

 

0 ὋὭὸ ὋὭ
0 ( ὖ36  ) (7)Ὡ( ὓ36  )(7)ὸ   

  

0 ὝὭὸ ὝὭ
0 (  ὗ36  ) (7)Ὡ( ὓ36  )(7)ὸ  

By 
 

ὋӶ36 ὸ= Ὃ36
0 +  ᷿ (ὥ36) 7 Ὃ37 ί36  (ὥ36

ᴂ ) 7 + ὥ36
ᴂᴂ) 7 Ὕ37 ί36 ,ί36 Ὃ36 ί36 Ὠί36

ὸ

0
  

  
ὋӶ37 ὸ= Ὃ37

0 +   

᷿ (ὥ37) 7 Ὃ36 ί36 (ὥ37
ᴂ ) 7 + (ὥ37

ᴂᴂ) 7 Ὕ37 ί36 ,ί36 Ὃ37 ί36 Ὠί36  
ὸ

0
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ὋӶ38 ὸ= Ὃ38
0 +   

᷿ (ὥ38) 7 Ὃ37 ί36 (ὥ38
ᴂ ) 7 + (ὥ38

ᴂᴂ) 7 Ὕ37 ί36 ,ί36 Ὃ38 ί36 Ὠί36  
ὸ

0
  

 
 

Ὕ36 ὸ= Ὕ36
0 + ᷿ (ὦ36) 7 Ὕ37 ί36  (ὦ36

ᴂ) 7  (ὦ36
ᴂᴂ) 7 Ὃί36 ,ί36 Ὕ36 ί36 Ὠί36

ὸ

0
  

 
 

Ὕ37 ὸ= Ὕ37
0 + ᷿ (ὦ37) 7 Ὕ36 ί36  (ὦ37

ᴂ) 7  (ὦ37
ᴂᴂ) 7 Ὃί36 ,ί36 Ὕ37 ί36 Ὠί36

ὸ

0
  

 

T38 t = T38
0 +   

᷿ (ὦ38) 7 Ὕ37 ί36  (ὦ38
ᴂ ) 7  (ὦ38

ᴂᴂ) 7 Ὃί36 ,ί36 Ὕ38 ί36 Ὠί36
ὸ

0
  

 
Where ί36   is the integrand that is integrated over an interval 0,ὸ 

 

Consider operator  ꜝ(2)   defined on the space of sextuples of continuous functions ὋὭ ,  ὝὭ:ᴙ+ ᴼᴙ+  which 

satisfy      

211 

ὋὭ0 = ὋὭ
0 , ὝὭ0 = ὝὭ

0 ,  ὋὭ
0 ( ὖ16  ) (2)  ,ὝὭ

0 ( ὗ16  ) (2) ,   212 

0 ὋὭὸ ὋὭ
0 ( ὖ16  ) (2)Ὡ( ὓ16  ) (2)ὸ    213 

0 ὝὭὸ ὝὭ
0 (  ὗ16  ) (2)Ὡ( ὓ16  ) (2)ὸ  214 

By 

ὋӶ16 ὸ= Ὃ16
0 +  ᷿ (ὥ16) 2 Ὃ17 ί16  (ὥ16

ᴂ ) 2 + ὥ16
ᴂᴂ) 2 Ὕ17 ί16 ,ί16 Ὃ16 ί16 Ὠί16

ὸ

0
  

215 

ὋӶ17 ὸ= Ὃ17
0 + ᷿ (ὥ17) 2 Ὃ16 ί16 (ὥ17

ᴂ ) 2 + (ὥ17
ᴂᴂ) 2 Ὕ17 ί16 ,ί17 Ὃ17 ί16 Ὠί16  

ὸ

0
  216 

ὋӶ18 ὸ= Ὃ18
0 + ᷿ (ὥ18) 2 Ὃ17 ί16 (ὥ18

ᴂ ) 2 + (ὥ18
ᴂᴂ) 2 Ὕ17 ί16 ,ί16 Ὃ18 ί16 Ὠί16  

ὸ

0
  217 

Ὕ16 ὸ= Ὕ16
0 + ᷿ (ὦ16) 2 Ὕ17 ί16  (ὦ16

ᴂ) 2  (ὦ16
ᴂᴂ) 2 Ὃί16 ,ί16 Ὕ16 ί16 Ὠί16

ὸ

0
  218 

Ὕ17 ὸ= Ὕ17
0 + ᷿ (ὦ17) 2 Ὕ16 ί16  (ὦ17

ᴂ) 2  (ὦ17
ᴂᴂ) 2 Ὃί16 ,ί16 Ὕ17 ί16 Ὠί16

ὸ

0
  219 

Ὕ18 ὸ= Ὕ18
0 + ᷿ (ὦ18) 2 Ὕ17 ί16  (ὦ18

ᴂ) 2  (ὦ18
ᴂᴂ) 2 Ὃί16 ,ί16 Ὕ18 ί16 Ὠί16

ὸ

0
  

Where ί16   is the integrand that is integrated over an interval 0,ὸ 

220 

Consider operator  ꜝ(3)   defined on the space of sextuples of continuous functions ὋὭ ,  ὝὭ:ᴙ+ ᴼᴙ+  which 

satisfy         

221 

ὋὭ0 = ὋὭ
0 , ὝὭ0 = ὝὭ

0 ,  ὋὭ
0 ( ὖ20  ) (3)  ,ὝὭ

0 ( ὗ20  ) (3) ,   222 

0 ὋὭὸ ὋὭ
0 ( ὖ20  ) (3)Ὡ( ὓ20  )(3)ὸ    223 

0 ὝὭὸ ὝὭ
0 (  ὗ20  ) (3)Ὡ( ὓ20  )(3)ὸ  224 

By 225 
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ὋӶ20 ὸ= Ὃ20
0 +  ᷿ (ὥ20) 3 Ὃ21 ί20  (ὥ20

ᴂ ) 3 + ὥ20
ᴂᴂ) 3 Ὕ21 ί20 ,ί20 Ὃ20 ί20 Ὠί20

ὸ

0
  

 ὋӶ21 ὸ= Ὃ21
0 + ᷿ (ὥ21) 3 Ὃ20 ί20 (ὥ21

ᴂ ) 3 + (ὥ21
ᴂᴂ) 3 Ὕ21 ί20 ,ί20 Ὃ21 ί20 Ὠί20  

ὸ

0
  226 

ὋӶ22 ὸ= Ὃ22
0 +  ᷿ (ὥ22) 3 Ὃ21 ί20 (ὥ22

ᴂ ) 3 + (ὥ22
ᴂᴂ) 3 Ὕ21 ί20 ,ί20 Ὃ22 ί20 Ὠί20  

ὸ

0
  227 

Ὕ20 ὸ= Ὕ20
0 + ᷿ (ὦ20) 3 Ὕ21 ί20  (ὦ20

ᴂ) 3  (ὦ20
ᴂᴂ) 3 Ὃί20 ,ί20 Ὕ20 ί20 Ὠί20

ὸ

0
  228 

Ὕ21 ὸ= Ὕ21
0 + ᷿ (ὦ21) 3 Ὕ20 ί20  (ὦ21

ᴂ) 3  (ὦ21
ᴂᴂ) 3 Ὃί20 ,ί20 Ὕ21 ί20 Ὠί20

ὸ

0
  229 

T22 t = T22
0 +  ᷿ (ὦ22) 3 Ὕ21 ί20  (ὦ22

ᴂ) 3  (ὦ22
ᴂᴂ) 3 Ὃί20 ,ί20 Ὕ22 ί20 Ὠί20

ὸ

0
  

Where ί20   is the integrand that is integrated over an interval 0,ὸ 

230 

 Consider operator  ꜝ (4)  defined on the space of sextuples of continuous functions ὋὭ , ὝὭ:ᴙ+ ᴼᴙ+  which 

satisfy                               

231 

ὋὭ0 = ὋὭ
0 , ὝὭ0 = ὝὭ

0 ,  ὋὭ
0 ( ὖ24  ) (4)  ,ὝὭ

0 ( ὗ24  ) (4) ,   232 

0 ὋὭὸ ὋὭ
0 ( ὖ24  ) (4)Ὡ( ὓ24  )(4)ὸ    233 

0 ὝὭὸ ὝὭ
0 (  ὗ24  ) (4)Ὡ( ὓ24  )(4)ὸ  234 

By 

ὋӶ24 ὸ= Ὃ24
0 +  ᷿ (ὥ24) 4 Ὃ25 ί24  (ὥ24

ᴂ ) 4 + ὥ24
ᴂᴂ) 4 Ὕ25 ί24 ,ί24 Ὃ24 ί24 Ὠί24

ὸ

0
  

235 

 ὋӶ25 ὸ= Ὃ25
0 + ᷿ (ὥ25) 4 Ὃ24 ί24 (ὥ25

ᴂ ) 4 + (ὥ25
ᴂᴂ) 4 Ὕ25 ί24 ,ί24 Ὃ25 ί24 Ὠί24  

ὸ

0
  236 

ὋӶ26 ὸ= Ὃ26
0 + ᷿ (ὥ26) 4 Ὃ25 ί24 (ὥ26

ᴂ ) 4 + (ὥ26
ᴂᴂ) 4 Ὕ25 ί24 ,ί24 Ὃ26 ί24 Ὠί24  

ὸ

0
  237 

Ὕ24 ὸ= Ὕ24
0 + ᷿ (ὦ24) 4 Ὕ25 ί24  (ὦ24

ᴂ) 4  (ὦ24
ᴂᴂ) 4 Ὃί24 ,ί24 Ὕ24 ί24 Ὠί24

ὸ

0
   238 

Ὕ25 ὸ= Ὕ25
0 + ᷿ (ὦ25) 4 Ὕ24 ί24  (ὦ25

ᴂ) 4  (ὦ25
ᴂᴂ) 4 Ὃί24 ,ί24 Ὕ25 ί24 Ὠί24

ὸ

0
  239 

T26 t = T26
0 + ᷿ (ὦ26) 4 Ὕ25 ί24  (ὦ26

ᴂ ) 4  (ὦ26
ᴂᴂ) 4 Ὃί24 ,ί24 Ὕ26 ί24 Ὠί24

ὸ

0
  

Where ί24   is the integrand that is integrated over an interval 0,ὸ 

240 

Consider operator  ꜝ (5)   defined on the space of sextuples of continuous functions ὋὭ , ὝὭ:ᴙ+ ᴼᴙ+  which 

satisfy               

241 

242 

ὋὭ0 = ὋὭ
0 , ὝὭ0 = ὝὭ

0 ,  ὋὭ
0 ( ὖ28  ) (5)  ,ὝὭ

0 ( ὗ28  ) (5) ,   243 

0 ὋὭὸ ὋὭ
0 ( ὖ28  ) (5)Ὡ( ὓ28  )(5)ὸ    244 

0 ὝὭὸ ὝὭ
0 (  ὗ28  ) (5)Ὡ( ὓ28  )(5)ὸ  245 

By 

ὋӶ28 ὸ= Ὃ28
0 +  ᷿ (ὥ28) 5 Ὃ29 ί28  (ὥ28

ᴂ ) 5 + ὥ28
ᴂᴂ) 5 Ὕ29 ί28 ,ί28 Ὃ28 ί28 Ὠί28

ὸ

0
  

246 
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 ὋӶ29 ὸ= Ὃ29
0 + ᷿ (ὥ29) 5 Ὃ28 ί28 (ὥ29

ᴂ ) 5 + (ὥ29
ᴂᴂ) 5 Ὕ29 ί28 ,ί28 Ὃ29 ί28 Ὠί28  

ὸ

0
  247 

ὋӶ30 ὸ= Ὃ30
0 + ᷿ (ὥ30) 5 Ὃ29 ί28 (ὥ30

ᴂ ) 5 + (ὥ30
ᴂᴂ) 5 Ὕ29 ί28 ,ί28 Ὃ30 ί28 Ὠί28  

ὸ

0
  248 

Ὕ28 ὸ= Ὕ28
0 + ᷿ (ὦ28) 5 Ὕ29 ί28  (ὦ28

ᴂ) 5  (ὦ28
ᴂᴂ) 5 Ὃί28 ,ί28 Ὕ28 ί28 Ὠί28

ὸ

0
  249 

Ὕ29 ὸ= Ὕ29
0 + ᷿ (ὦ29) 5 Ὕ28 ί28  (ὦ29

ᴂ) 5  (ὦ29
ᴂᴂ) 5 Ὃί28 ,ί28 Ὕ29 ί28 Ὠί28

ὸ

0
  250 

T30 t = T30
0 +  ᷿ (ὦ30) 5 Ὕ29 ί28  (ὦ30

ᴂ) 5  (ὦ30
ᴂᴂ) 5 Ὃί28 ,ί28 Ὕ30 ί28 Ὠί28

ὸ

0
 

Where ί28   is the integrand that is integrated over an interval 0,ὸ 

251 

Consider operator  ꜝ (6)   defined on the space of sextuples of continuous functions ὋὭ , ὝὭ:ᴙ+ ᴼᴙ+  which 

satisfy      

252 

ὋὭ0 = ὋὭ
0 , ὝὭ0 = ὝὭ

0 ,  ὋὭ
0 ( ὖ32  ) (6)  ,ὝὭ

0 ( ὗ32  ) (6) ,    253 

0 ὋὭὸ ὋὭ
0 ( ὖ32  ) (6)Ὡ( ὓ32  )(6)ὸ    254 

0 ὝὭὸ ὝὭ
0 (  ὗ32  ) (6)Ὡ( ὓ32  )(6)ὸ  255 

By 

ὋӶ32 ὸ= Ὃ32
0 +  ᷿ (ὥ32) 6 Ὃ33 ί32  (ὥ32

ᴂ ) 6 + ὥ32
ᴂᴂ) 6 Ὕ33 ί32 ,ί32 Ὃ32 ί32 Ὠί32

ὸ

0
  

256 

 ὋӶ33 ὸ= Ὃ33
0 + ᷿ (ὥ33) 6 Ὃ32 ί32 (ὥ33

ᴂ ) 6 + (ὥ33
ᴂᴂ) 6 Ὕ33 ί32 ,ί32 Ὃ33 ί32 Ὠί32  

ὸ

0
  257 

ὋӶ34 ὸ= Ὃ34
0 + ᷿ (ὥ34) 6 Ὃ33 ί32 (ὥ34

ᴂ ) 6 + (ὥ34
ᴂᴂ) 6 Ὕ33 ί32 ,ί32 Ὃ34 ί32 Ὠί32  

ὸ

0
  258 

Ὕ32 ὸ= Ὕ32
0 + ᷿ (ὦ32) 6 Ὕ33 ί32  (ὦ32

ᴂ) 6  (ὦ32
ᴂᴂ) 6 Ὃί32 ,ί32 Ὕ32 ί32 Ὠί32

ὸ

0
  259 

Ὕ33 ὸ= Ὕ33
0 + ᷿ (ὦ33) 6 Ὕ32 ί32  (ὦ33

ᴂ) 6  (ὦ33
ᴂᴂ) 6 Ὃί32 ,ί32 Ὕ33 ί32 Ὠί32

ὸ

0
  260 

T34 t = T34
0 +  ᷿ (ὦ34) 6 Ὕ33 ί32  (ὦ34

ᴂ) 6  (ὦ34
ᴂᴂ) 6 Ὃί32 ,ί32 Ὕ34 ί32 Ὠί32

ὸ

0
 

Where ί32   is the integrand that is integrated over an interval 0,ὸ 

261 

: if the conditions IN THE FOREGOING are fulfilled, there exists a solution satisfying the conditions 

          Definition of   ὋὭ0  ,ὝὭ0  : 

 ὋὭὸ   ὖ36  
7
Ὡ ὓ36  7 ὸ   ,      ὋὭ0 = ὋὭ

0 > 0  

ὝὭ(ὸ)  ( ὗ36  ) (7)Ὡ( ὓ36  )(7)ὸ     ,       ὝὭ0 = ὝὭ
0 > 0  

Proof:  

Consider operator  ꜝ (7)   defined on the space of sextuples of continuous functions ὋὭ ,  ὝὭ:ᴙ+ ᴼᴙ+  which 

satisfy                                 

                                      

262 
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ὋὭ0 = ὋὭ
0 , ὝὭ0 = ὝὭ

0 ,  ὋὭ
0 ( ὖ36  ) (7)  ,ὝὭ

0 ( ὗ36  ) (7) ,   

 

263 

0 ὋὭὸ ὋὭ
0 ( ὖ36  ) (7)Ὡ( ὓ36  )(7)ὸ   

  

264 

0 ὝὭὸ ὝὭ
0 (  ὗ36  ) (7)Ὡ( ὓ36  )(7)ὸ  265 

By 

 

ὋӶ36 ὸ= Ὃ36
0 +  ᷿ (ὥ36) 7 Ὃ37 ί36  (ὥ36

ǋ ) 7 + ὥ36
ǋǋ) 7 Ὕ37 ί36 ,ί36 Ὃ36 ί36 Ὠί36

ὸ

0
  

266 

  

ὋӶ37 ὸ= Ὃ37
0 +   

᷿ (ὥ37) 7 Ὃ36 ί36 (ὥ37
ǋ ) 7 + (ὥ37

ǋǋ) 7 Ὕ37 ί36 ,ί36 Ὃ37 ί36 Ὠί36  
ὸ

0
  

 

267 

ὋӶ38 ὸ= Ὃ38
0 +   

᷿ (ὥ38) 7 Ὃ37 ί36 (ὥ38
ǋ ) 7 + (ὥ38

ǋǋ) 7 Ὕ37 ί36 ,ί36 Ὃ38 ί36 Ὠί36  
ὸ

0
  

 

268 

 

Ὕ36 ὸ= Ὕ36
0 + ᷿ (ὦ36) 7 Ὕ37 ί36  (ὦ36

ǋ) 7  (ὦ36
ǋǋ) 7 Ὃί36 ,ί36 Ὕ36 ί36 Ὠί36

ὸ

0
  

 

 

269 

Ὕ37 ὸ= Ὕ37
0 + ᷿ (ὦ37) 7 Ὕ36 ί36  (ὦ37

ǋ) 7  (ὦ37
ǋǋ) 7 Ὃί36 ,ί36 Ὕ37 ί36 Ὠί36

ὸ

0
  

 

270 

T38 t = T38
0 +   

᷿ (ὦ38) 7 Ὕ37 ί36  (ὦ38
ǋ ) 7  (ὦ38

ǋǋ) 7 Ὃί36 ,ί36 Ὕ38 ί36 Ὠί36
ὸ

0
  

 

Where ί36   is the integrand that is integrated over an interval 0,ὸ 

 

271 

Analogous inequalities hold also for  Ὃ21  ,Ὃ22 ,Ὕ20 ,Ὕ21 ,Ὕ22  272 

(a) The operator ꜝ (4) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is 
obvious that 

273 
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 Ὃ24 ὸ Ὃ24
0 + ᷿ (ὥ24) 4 Ὃ25

0 + ( ὖ24  ) (4)Ὡ( ὓ24  )(4)ί24  
ὸ

0
Ὠί24 =   

           1 + (ὥ24) 4 ὸὋ25
0 +

(ὥ24 ) 4 ( ὖ24  )(4)

( ὓ24  )(4) Ὡ( ὓ24  )(4)ὸ 1   

 From which it follows that 

Ὃ24 ὸ Ὃ24
0 Ὡ(  ὓ24  ) (4)ὸ (ὥ24 ) 4

( ὓ24  )(4) ( ὖ24  ) (4) + Ὃ25
0 Ὡ

 
( ὖ24 )(4)+Ὃ25

0

Ὃ25
0

+ ( ὖ24  ) (4)   

ὋὭ
0  is as defined in the statement of theorem 1 

274 

(b) The operator ꜝ (5) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is 
obvious that 

 Ὃ28 ὸ Ὃ28
0 + ᷿ (ὥ28) 5 Ὃ29

0 + ( ὖ28  ) (5)Ὡ( ὓ28  )(5)ί28  
ὸ

0
Ὠί28 =   

           1 + (ὥ28) 5 ὸὋ29
0 +

(ὥ28 ) 5 ( ὖ28  )(5)

( ὓ28  )(5) Ὡ( ὓ28  )(5)ὸ 1   

275 

 From which it follows that 

Ὃ28 ὸ Ὃ28
0 Ὡ(  ὓ28  ) (5)ὸ (ὥ28 ) 5

( ὓ28  )(5) ( ὖ28  ) (5) + Ὃ29
0 Ὡ

 
(  ὖ28 )(5)+Ὃ29

0

Ὃ29
0

+ ( ὖ28  ) (5)   

ὋὭ
0  is as defined in the statement of theorem 1 

276 

(c) The operator ꜝ (6) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is 
obvious that 

  

 Ὃ32 ὸ Ὃ32
0 + ᷿ (ὥ32) 6 Ὃ33

0 + ( ὖ32  ) (6)Ὡ( ὓ32  )(6)ί32  
ὸ

0
Ὠί32 =   

           1 + (ὥ32) 6 ὸὋ33
0 +

(ὥ32 ) 6 ( ὖ32  )(6)

( ὓ32  )(6) Ὡ( ὓ32  )(6)ὸ 1   

277 

 From which it follows that 

Ὃ32 ὸ Ὃ32
0 Ὡ(  ὓ32  ) (6)ὸ (ὥ32 ) 6

( ὓ32  )(6) ( ὖ32  ) (6) + Ὃ33
0 Ὡ

 
( ὖ32 )(6)+Ὃ33

0

Ὃ33
0

+ ( ὖ32  ) (6)   

ὋὭ
0  is as defined in the statement of theorem1 

Analogous inequalities hold also for  Ὃ25  ,Ὃ26 ,Ὕ24 ,Ὕ25 ,Ὕ26  

278 

(d) The operator ꜝ (7) maps the space of functions satisfying 37,35,36 into itself .Indeed it is obvious that 
 

 Ὃ36 ὸ Ὃ36
0 + ᷿ (ὥ36) 7 Ὃ37

0 + ( ὖ36  ) (7)Ὡ( ὓ36  )(7)ί36  
ὸ

0
Ὠί36 =   

           1 + (ὥ36) 7 ὸὋ37
0 +

(ὥ36 ) 7 ( ὖ36  )(7)

( ὓ36  )(7) Ὡ( ὓ36  )(7)ὸ 1   

 

279 

 280 
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 From which it follows that 

Ὃ36 ὸ Ὃ36
0 Ὡ(  ὓ36  ) (7)ὸ (ὥ36 ) 7

( ὓ36  )(7) ( ὖ36  ) (7) + Ὃ37
0 Ὡ

 
( ὖ36 )(7)+Ὃ37

0

Ὃ37
0

+ ( ὖ36  ) (7)   

ὋὭ
0  is as defined in the statement of theorem 7 

 

It is now sufficient to take 
(ὥὭ)

1

( ὓ13  )(1)   ,
(ὦὭ)

1

( ὓ13  )(1) < 1  and to choose 

( P13  ) (1)  and ( Q13  ) (1) large to have 

281 

 

282 

(ὥὭ)
1

(ὓ13 ) 1 ( ὖ13) 1 + ( ὖ13  ) (1) + ὋὮ
0 Ὡ

( ὖ13 )(1)+ὋὮ
0

ὋὮ
0

( ὖ13  ) (1)   

283 

(ὦὭ)
1

(ὓ13 ) 1 ( ὗ13  ) (1) + ὝὮ
0 Ὡ

  
( ὗ13 )(1)+ὝὮ

0

ὝὮ
0

+ ( ὗ13  ) (1) ( ὗ13  ) (1)   

284 

In order that the operator ꜝ(1)  transforms the space of sextuples of functions ὋὭ ,ὝὭ satisfying GLOBAL 

EQUATIONS into itself 

285 

The operator ꜝ(1) is a contraction with respect to the metric  

Ὠ Ὃ1 ,Ὕ1 , Ὃ2 ,Ὕ2 =   

ίόὴ
Ὥ

{άὥὼ
ὸɴᴙ+

 

 ὋὭ
1 ὸ ὋὭ

2 ὸὩ(ὓ13 ) 1 ὸ,άὥὼ
ὸɴᴙ+

 ὝὭ
1 ὸ ὝὭ

2 ὸὩ(ὓ13 ) 1 ὸ}  

286 

 Indeed if we denote   

Definition of  Ὃ,Ὕ : 

 Ὃ,Ὕ = ꜝ(1) (Ὃ,Ὕ) 

It results 

Ὃ13
1 ὋὭ

2 (᷿ὥ13) 1ὸ

0
Ὃ14

1 Ὃ14
2 Ὡ( ὓ13 ) 1 ί13 Ὡ( ὓ13 ) 1 ί13 Ὠί13 +   

{᷿(ὥ13
ᴂ ) 1 Ὃ13

1
Ὃ13

2
Ὡ( ὓ13 ) 1 ί13 Ὡ( ὓ13 ) 1 ί13

ὸ

0
+   

(ὥ13
ᴂᴂ) 1 Ὕ14

1
,ί13 Ὃ13

1
Ὃ13

2
Ὡ( ὓ13 ) 1 ί13 Ὡ( ὓ13 ) 1 ί13 +  

Ὃ13
2 |(ὥ13

ᴂᴂ) 1 Ὕ14
1 ,ί13 (ὥ13

ᴂᴂ) 1 Ὕ14
2 ,ί13 |  Ὡ( ὓ13 ) 1 ί13 Ὡ( ὓ13 ) 1 ί13 }Ὠί13   

Where ί13  represents integrand that is integrated over the interval 0,t  

From the hypotheses  it follows 

287 

Ὃ1 Ὃ2 Ὡ( ὓ13 ) 1 ὸ

1

( ὓ13 ) 1 (ὥ13) 1 +  (ὥ13
ᴂ ) 1 + ( ὃ13) 1 + ( ὖ13 ) 1 ( Ὧ13) 1 Ὠ Ὃ1 ,Ὕ1 ; Ὃ2 ,Ὕ2   

And analogous inequalities for ὋὭ ὥὲὨ ὝὭ. Taking into account the hypothesis  the result follows 

288 

Remark 1: The fact that we supposed (ὥ13
ᴂᴂ) 1  and (ὦ13

ᴂᴂ) 1  depending also on t can be considered as not 289 
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conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by ( ὖ13 ) 1 Ὡ( ὓ13 ) 1 ὸ ὥὲὨ ( ὗ13) 1 Ὡ( ὓ13 ) 1 ὸ 

respectively of ᴙ+ . 

If instead of proving the existence of the solution on ᴙ+ , we have to prove it only on a compact then it suffices to 

consider that (ὥὭ
ᴂᴂ) 1  and (ὦὭ

ᴂᴂ) 1 ,Ὥ= 13,14,15 depend only on T14 and respectively on Ὃ(ὥὲὨ ὲέὸ έὲ  ὸ) and 
hypothesis can replaced by a usual Lipschitz condition. 

Remark 2: There does not exist any ὸ  where ὋὭ ὸ= 0 ὥὲὨ ὝὭ ὸ= 0   

From 19 to 24 it results  

ὋὭ ὸ ὋὭ
0Ὡ ᷿ (ὥὭ

ᴂ) 1 (ὥὭ
ᴂᴂ) 1 Ὕ14 ί13 ,ί13 Ὠί13

ὸ
0 0  

ὝὭ ὸ ὝὭ
0Ὡ (ὦὭ

ᴂ) 1 ὸ > 0   for t > 0 

290 

 

291 

Definition of   ( ὓ13) 1
1
, ὥὲὨ ( ὓ13) 1

3
 : 

Remark 3: if Ὃ13  is bounded, the same property have also  Ὃ14  ὥὲὨ Ὃ15 . indeed if  

Ὃ13 < ( ὓ13) 1  it follows 
ὨὋ14

Ὠὸ
( ὓ13) 1

1
(ὥ14
ᴂ ) 1 Ὃ14  and by integrating  

Ὃ14 ( ὓ13) 1
2

= Ὃ14
0 + 2(ὥ14) 1 ( ὓ13) 1

1
/ (ὥ14

ᴂ ) 1   

In the same way , one can obtain 

Ὃ15 ( ὓ13) 1
3

= Ὃ15
0 + 2(ὥ15) 1 ( ὓ13) 1

2
/ (ὥ15

ᴂ ) 1   

 If Ὃ14  έὶ Ὃ15   is bounded, the same property follows for Ὃ13  ,  Ὃ15 and  Ὃ13  , Ὃ14  respectively. 

292 

Remark 4: If Ὃ13   Ὥί bounded, from below, the same property holds for Ὃ14 ὥὲὨ Ὃ15  .  The proof is analogous 

with the preceding one. An analogous property is true if Ὃ14 is bounded from below. 

293 

 Remark 5: If  T13  is bounded from below and lim ὸO Њ((ὦὭ
ᴂᴂ) 1 (Ὃὸ,ὸ)) = (ὦ14

ᴂ) 1  then Ὕ14 ᴼЊ. 

Definition of   ά 1  and ‐1 : 

Indeed let ὸ1  be so that for ὸ > ὸ1  

(ὦ14) 1 (ὦὭ
ᴂᴂ) 1 (Ὃὸ,ὸ) < ‐1,Ὕ13 (ὸ) > ά 1   

294 

Then  
ὨὝ14 

Ὠὸ
(ὥ14) 1 ά 1 ‐1Ὕ14 which leads to  

Ὕ14 
(ὥ14 ) 1 ά 1

‐1
1 Ὡ‐1ὸ + Ὕ14

0Ὡ‐1ὸ  If we take t  such that Ὡ‐1ὸ=   
1

2
  it results  

Ὕ14 
(ὥ14 ) 1 ά 1

2
,    ὸ= ὰέὫ

2

‐1
  By taking now  ‐1  sufficiently small one sees that T14  is unbounded. The 

same property holds for Ὕ15  if lim ὸO Њ(ὦ15
ᴂᴂ) 1 Ὃὸ,ὸ= (ὦ15

ᴂ) 1  

We now state a more precise theorem about the behaviors at infinity of the solutions  

295 

 296 

It is now sufficient to take 
(ὥὭ)

2

( ὓ16  )(2)   ,
(ὦὭ)

2

( ὓ16  )(2) < 1  and to choose 

( ὖ16  ) (2)  ὥὲὨ ( ὗ16  ) (2)  large to have 

297 
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(ὥὭ)
2

(ὓ16 ) 2 ( ὖ16) 2 + ( ὖ16  ) (2) + ὋὮ
0 Ὡ

( ὖ16 )(2)+ὋὮ
0

ὋὮ
0

( ὖ16  ) (2)   

298 

 

(ὦὭ)
2

(ὓ16 ) 2 ( ὗ16  ) (2) + ὝὮ
0 Ὡ

  
( ὗ16 )(2)+ὝὮ

0

ὝὮ
0

+ ( ὗ16  ) (2) ( ὗ16  ) (2)   

299 

In order that the operator ꜝ(2)  transforms the space of sextuples of functions ὋὭ ,ὝὭ satisfying  300 

The operator ꜝ(2) is a contraction with respect to the metric  

Ὠ Ὃ19
1 , Ὕ19

1 , Ὃ19
2 , Ὕ19

2 =   

ίόὴ
Ὥ

{άὥὼ
ὸɴᴙ+

 

 ὋὭ
1 ὸ ὋὭ

2 ὸὩ(ὓ16 ) 2 ὸ,άὥὼ
ὸɴᴙ+

 ὝὭ
1 ὸ ὝὭ

2 ὸὩ(ὓ16 ) 2 ὸ}  

301 

Indeed if we denote   

Definition of  Ὃ19 ,Ὕ19  :    Ὃ19 ,Ὕ19  = ꜝ(2) (Ὃ19 ,Ὕ19) 

302 

It results 

Ὃ16
1 ὋὭ

2 (᷿ὥ16) 2ὸ

0
Ὃ17

1 Ὃ17
2 Ὡ( ὓ16 ) 2 ί16 Ὡ( ὓ16 ) 2 ί16 Ὠί16 +   

{᷿(ὥ16
ᴂ ) 2 Ὃ16

1 Ὃ16
2 Ὡ( ὓ16 ) 2 ί16 Ὡ( ὓ16 ) 2 ί16

ὸ

0
+   

(ὥ16
ᴂᴂ) 2 Ὕ17

1 ,ί16 Ὃ16
1 Ὃ16

2 Ὡ( ὓ16 ) 2 ί16 Ὡ( ὓ16 ) 2 ί16 +  

Ὃ16
2 |(ὥ16

ᴂᴂ) 2 Ὕ17
1 ,ί16 (ὥ16

ᴂᴂ) 2 Ὕ17
2 ,ί16 |  Ὡ( ὓ16 ) 2 ί16 Ὡ( ὓ16 ) 2 ί16 }Ὠί16   

303 

Where ί16  represents integrand that is integrated over the interval 0,ὸ 

From the hypotheses  it follows 

304 

Ὃ19
1 Ὃ19

2 e ( M16 ) 2 t

1

( M16 ) 2 (ὥ16) 2 +  (ὥ16
ᴂ ) 2 + ( A16) 2 + ( P16) 2 ( Ὧ16) 2 d Ὃ19

1 , Ὕ19
1 ; Ὃ19

2 , Ὕ19
2   

305 

And analogous inequalities for GὭ and TὭ. Taking into account the hypothesis  the result follows 306 

Remark 1: The fact that we supposed (ὥ16
ᴂᴂ) 2  and (ὦ16

ᴂᴂ) 2  depending also on t can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by ( P16) 2 e( M16 ) 2 t  and ( Q16) 2 e( M16 ) 2 t  

respectively of ᴙ+ . 

If instead of proving the existence of the solution on ᴙ+ , we have to prove it only on a compact then it suffices to 

consider that (ὥὭ
ᴂᴂ) 2  and (ὦὭ

ᴂᴂ) 2 ,Ὥ= 16,17,18 depend only on T17 and respectively on Ὃ19 (and not on  t) 
and hypothesis can replaced by a usual Lipschitz condition. 

307 

Remark 2: There does not exist any t  where GὭ t = 0 and TὭ t = 0   

From 19 to 24 it results  

GὭ t GὭ
0e ᷿ (ὥὭ

ᴂ) 2 (ὥὭ
ᴂᴂ) 2 T17 ί16 ,ί16 dί16

t
0 0  

TὭ t TὭ
0e (ὦὭ

ᴂ) 2 t > 0   for t > 0 

308 
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Definition of  ( M16) 2
1
, ( M16) 2

2
 and ( M16) 2

3
 : 

Remark 3: if G16 is bounded, the same property have also  G17  and G18 . indeed if  

G16 < ( M16) 2  it follows 
dG17

dt
( M16) 2

1
(ὥ17
ᴂ ) 2 G17 and by integrating  

G17 ( M16) 2
2

= G17
0 + 2(ὥ17) 2 ( M16) 2

1
/ (ὥ17

ᴂ ) 2   

In the same way , one can obtain 

G18 ( M16) 2
3

= G18
0 + 2(ὥ18) 2 ( M16) 2

2
/ (ὥ18

ᴂ ) 2   

 If G17  or G18  is bounded, the same property follows for G16  , G18 and  G16  , G17 respectively. 

309 

 

 

 

 

 

310 

Remark 4: If G16   is bounded, from below, the same property holds for G17 and G18 .  The proof is analogous 

with the preceding one. An analogous property is true if G17 is bounded from below. 

311 

 Remark 5: If  T16  is bounded from below and lim t ЊO((ὦὭ
ᴂᴂ) 2 ( Ὃ19 t ,t)) = (ὦ17

ᴂ) 2  then T17 ᴼЊ. 

Definition of  ά 2  and ʀ2 : 

Indeed let t2  be so that for t > t2  

(ὦ17) 2 (ὦὭ
ᴂᴂ) 2 ( Ὃ19 t ,t) < ʀ2,T16 (t) > ά 2   

312 

Then  
dT17 

dt
(ὥ17) 2 ά 2 ʀ2T17 which leads to  

T17 
(ὥ17 ) 2 ά 2

ʀ2
1 e ʀ2t + T17

0 e ʀ2t   If we take t  such that e ʀ2t =   
1

2
  it results  

313 

T17
(ὥ17 ) 2 ά 2

2
,    ὸ= log

2

ʀ2
  By taking now  ʀ2  sufficiently small one sees that T17 is unbounded. The 

same property holds for T18  if lim ὸO Њ(ὦ18
ᴂᴂ) 2 Ὃ19 t , t = (ὦ18

ᴂ) 2  

We now state a more precise theorem about the behaviors at infinity of the solutions  

314 

 315 

It is now sufficient to take 
(ὥὭ)

3

( ὓ20  )(3)   ,
(ὦὭ)

3

( ὓ20  )(3) < 1  and to choose 

( P20  ) (3)  and ( Q20  ) (3)  large to have 

316 

(ὥὭ)
3

(ὓ20 ) 3 ( ὖ20) 3 + ( ὖ20  ) (3) + ὋὮ
0 Ὡ

( ὖ20 )(3)+ὋὮ
0

ὋὮ
0

( ὖ20  ) (3)   

317 

(ὦὭ)
3

(ὓ20 ) 3 ( ὗ20  ) (3) + ὝὮ
0 Ὡ

  
( ὗ20 )(3)+ὝὮ

0

ὝὮ
0

+ ( ὗ20  ) (3) (  ὗ20  ) (3)   

318 

In order that the operator ꜝ(3)  transforms the space of sextuples of functions ὋὭ ,ὝὭ  into itself 319 

The operator ꜝ(3) is a contraction with respect to the metric  

Ὠ Ὃ23
1 , Ὕ23

1 , Ὃ23
2 , Ὕ23

2 =   

ίόὴ
Ὥ

{άὥὼ
ὸɴᴙ+

 

 ὋὭ
1 ὸ ὋὭ

2 ὸὩ(ὓ20 ) 3 ὸ,άὥὼ
ὸɴᴙ+

 ὝὭ
1 ὸ ὝὭ

2 ὸὩ(ὓ20 ) 3 ὸ}  

320 
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Indeed if we denote   

Definition of Ὃ23 ,Ὕ23  :  Ὃ23 , Ὕ23  = ꜝ(3) Ὃ23 , Ὕ23  

321 

It results 

Ὃ20
1 ὋὭ

2 (᷿ὥ20) 3ὸ

0
Ὃ21

1 Ὃ21
2 Ὡ( ὓ20 ) 3 ί20 Ὡ( ὓ20 ) 3 ί20 Ὠί20 +   

{᷿(ὥ20
ᴂ ) 3 Ὃ20

1 Ὃ20
2 Ὡ( ὓ20 ) 3 ί20 Ὡ( ὓ20 ) 3 ί20

ὸ

0
+   

(ὥ20
ᴂᴂ) 3 Ὕ21

1 ,ί20 Ὃ20
1 Ὃ20

2 Ὡ( ὓ20 ) 3 ί20 Ὡ( ὓ20 ) 3 ί20 +  

Ὃ20
2 |(ὥ20

ᴂᴂ) 3 Ὕ21
1 ,ί20 (ὥ20

ᴂᴂ) 3 Ὕ21
2 ,ί20 |  Ὡ( ὓ20 ) 3 ί20 Ὡ( ὓ20 ) 3 ί20 }Ὠί20   

Where ί20  represents integrand that is integrated over the interval 0,t  

From the hypotheses  it follows 

322 

 

 

323 

Ὃ1 Ὃ2 Ὡ( ὓ20 ) 3 ὸ

1

( ὓ20 ) 3 (ὥ20) 3 +  (ὥ20
ᴂ ) 3 + ( ὃ20) 3 + ( ὖ20) 3 ( Ὧ20) 3 Ὠ Ὃ23

1 , Ὕ23
1 ; Ὃ23

2 , Ὕ23
2   

And analogous inequalities for ὋὭ ὥὲὨ ὝὭ. Taking into account the hypothesis  the result follows 

324 

Remark 1: The fact that we supposed (ὥ20
ᴂᴂ) 3  and (ὦ20

ᴂᴂ) 3  depending also on t can be considered as not 
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by ( ὖ20 ) 3 Ὡ( ὓ20 ) 3 ὸ ὥὲὨ ( ὗ20) 3 Ὡ( ὓ20 ) 3 ὸ 

respectively of ᴙ+ . 

If instead of proving the existence of the solution on ᴙ+ , we have to prove it only on a compact then it suffices to 

consider that (ὥὭ
ᴂᴂ) 3  and (ὦὭ

ᴂᴂ) 3 ,Ὥ= 20,21,22 depend only on T21 and respectively on Ὃ23 (ὥὲὨ ὲέὸ έὲ  ὸ) 
and hypothesis can replaced by a usual Lipschitz condition. 

325 

Remark 2: There does not exist any ὸ  where ὋὭ ὸ= 0 ὥὲὨ ὝὭ ὸ= 0   

From 19 to 24 it results  

ὋὭ ὸ ὋὭ
0Ὡ ᷿ (ὥὭ

ᴂ) 3 (ὥὭ
ᴂᴂ) 3 Ὕ21 ί20 ,ί20 Ὠί20

ὸ
0 0  

ὝὭ ὸ ὝὭ
0Ὡ (ὦὭ

ᴂ) 3 ὸ > 0   for t > 0 

326 

Definition of  ( ὓ20) 3
1
, ( ὓ20) 3

2
 ὥὲὨ ( ὓ20) 3

3
 : 

Remark 3: if Ὃ20  is bounded, the same property have also  Ὃ21  ὥὲὨ Ὃ22  . indeed if  

Ὃ20 < ( ὓ20) 3  it follows 
ὨὋ21

Ὠὸ
( ὓ20) 3

1
(ὥ21
ᴂ ) 3 Ὃ21  and by integrating  

Ὃ21 ( ὓ20) 3
2

= Ὃ21
0 + 2(ὥ21) 3 ( ὓ20) 3

1
/ (ὥ21

ᴂ ) 3   

In the same way , one can obtain 

Ὃ22 ( ὓ20) 3
3

= Ὃ22
0 + 2(ὥ22) 3 ( ὓ20) 3

2
/ (ὥ22

ᴂ ) 3   

 If Ὃ21  έὶ Ὃ22   is bounded, the same property follows for Ὃ20  ,  Ὃ22  and  Ὃ20  ,  Ὃ21  respectively. 

327 

Remark 4: If Ὃ20   Ὥί bounded, from below, the same property holds for Ὃ21 ὥὲὨ Ὃ22  .  The proof is analogous 

with the preceding one. An analogous property is true if Ὃ21 is bounded from below. 

328 

 Remark 5: If  T20  is bounded from below and lim ὸO Њ((ὦὭ
ᴂᴂ) 3 Ὃ23 ὸ,ὸ) = (ὦ21

ᴂ ) 3  then Ὕ21 ᴼЊ. 329 
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Definition of  ά 3  and ‐3 : 

Indeed let ὸ3  be so that for ὸ > ὸ3  

(ὦ21) 3 (ὦὭ
ᴂᴂ) 3 Ὃ23 ὸ,ὸ< ‐3,Ὕ20 (ὸ) > ά 3   

 

330 

Then  
ὨὝ21 

Ὠὸ
(ὥ21) 3 ά 3 ‐3Ὕ21 which leads to  

Ὕ21 
(ὥ21 ) 3 ά 3

‐3
1 Ὡ‐3ὸ + Ὕ21

0Ὡ‐3ὸ  If we take t  such that Ὡ‐3ὸ=   
1

2
  it results  

Ὕ21 
(ὥ21 ) 3 ά 3

2
,    ὸ= ὰέὫ

2

‐3
  By taking now  ‐3  sufficiently small one sees that T21  is unbounded. The 

same property holds for Ὕ22  if lim ὸO Њ(ὦ22
ᴂᴂ) 3 Ὃ23 ὸ,ὸ= (ὦ22

ᴂ ) 3  

We now state a more precise theorem about the behaviors at infinity of the solutions  

331 

 332 

It is now sufficient to take 
(ὥὭ)

4

( ὓ24  )(4)   ,
(ὦὭ)

4

( ὓ24  )(4) < 1  and to choose 

( P24  ) (4)  and ( Q24  ) (4)  large to have 

333 

(ὥὭ)
4

(ὓ24 ) 4 ( ὖ24) 4 + ( ὖ24  ) (4) + ὋὮ
0 Ὡ

( ὖ24 )(4)+ὋὮ
0

ὋὮ
0

( ὖ24  ) (4)   

334 

(ὦὭ)
4

(ὓ24 ) 4 ( ὗ24  ) (4) + ὝὮ
0 Ὡ

  
( ὗ24 )(4)+ὝὮ

0

ὝὮ
0

+ ( ὗ24  ) (4) (  ὗ24  ) (4)   

335 

In order that the operator ꜝ (4)  transforms the space of sextuples of functions ὋὭ ,ὝὭ satisfying  IN to itself 336 

The operator ꜝ (4) is a contraction with respect to the metric  

Ὠ Ὃ27
1 , Ὕ27

1 , Ὃ27
2 , Ὕ27

2 =   

ίόὴ
Ὥ

{άὥὼ
ὸɴᴙ+

 

 ὋὭ
1 ὸ ὋὭ

2 ὸὩ(ὓ24 ) 4 ὸ,άὥὼ
ὸɴᴙ+

 ὝὭ
1 ὸ ὝὭ

2 ὸὩ(ὓ24 ) 4 ὸ}   

Indeed if we denote   

Definition of Ὃ27 , Ὕ27  :     Ὃ27 , Ὕ27  = ꜝ(4) ( Ὃ27 , Ὕ27 ) 

It results 

Ὃ24
1 ὋὭ

2 (᷿ὥ24) 4ὸ

0
Ὃ25

1 Ὃ25
2 Ὡ( ὓ24 ) 4 ί24 Ὡ( ὓ24 ) 4 ί24 Ὠί24 +   

{᷿(ὥ24
ᴂ ) 4 Ὃ24

1 Ὃ24
2 Ὡ( ὓ24 ) 4 ί24 Ὡ( ὓ24 ) 4 ί24

ὸ

0
+   

(ὥ24
ᴂᴂ) 4 Ὕ25

1 ,ί24 Ὃ24
1 Ὃ24

2 Ὡ( ὓ24 ) 4 ί24 Ὡ( ὓ24 ) 4 ί24 +  

Ὃ24
2 |(ὥ24

ᴂᴂ) 4 Ὕ25
1 ,ί24 (ὥ24

ᴂᴂ) 4 Ὕ25
2 ,ί24 |  Ὡ( ὓ24 ) 4 ί24 Ὡ( ὓ24 ) 4 ί24 }Ὠί24  

Where ί24  represents integrand that is integrated over the interval 0,t  

From the hypotheses it follows 

337 
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338 

Ὃ27
1 Ὃ27

2 Ὡ( ὓ24 ) 4 ὸ

1

( ὓ24 ) 4 (ὥ24) 4 +  (ὥ24
ᴂ ) 4 + ( ὃ24) 4 + ( ὖ24) 4 ( Ὧ24) 4 Ὠ Ὃ27

1 , Ὕ27
1 ; Ὃ27

2 , Ὕ27
2   

And analogous inequalities for ὋὭ ὥὲὨ ὝὭ. Taking into account the hypothesis the result follows 

339 

Remark 1: The fact that we supposed (ὥ24
ᴂᴂ) 4  and (ὦ24

ᴂᴂ) 4  depending also on t can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by ( ὖ24) 4 Ὡ( ὓ24 ) 4 ὸ ὥὲὨ ( ὗ24) 4 Ὡ( ὓ24 ) 4 ὸ 

respectively of ᴙ+ . 

If instead of proving the existence of the solution on ᴙ+ , we have to prove it only on a compact then it suffices 

to consider that (ὥὭ
ᴂᴂ) 4  and (ὦὭ

ᴂᴂ) 4 ,Ὥ= 24,25,26 depend only on T25 and respectively on 

Ὃ27 (ὥὲὨ ὲέὸ έὲ  ὸ) and hypothesis can replaced by a usual Lipschitz condition. 

340 

Remark 2: There does not exist any ὸ  where ὋὭ ὸ= 0 ὥὲὨ ὝὭ ὸ= 0   

From GLOBAL EQUATIONS it results  

ὋὭ ὸ ὋὭ
0Ὡ ᷿ (ὥὭ

ᴂ) 4 (ὥὭ
ᴂᴂ) 4 Ὕ25 ί24 ,ί24 Ὠί24

ὸ
0 0  

ὝὭ ὸ ὝὭ
0Ὡ (ὦὭ

ᴂ) 4 ὸ > 0   for t > 0 

341 

Definition of  ( ὓ24) 4
1
, ( ὓ24) 4

2
 ὥὲὨ ( ὓ24) 4

3
 : 

Remark 3: if Ὃ24  is bounded, the same property have also  Ὃ25  ὥὲὨ Ὃ26  . indeed if  

Ὃ24 < ( ὓ24) 4  it follows 
ὨὋ25

Ὠὸ
( ὓ24) 4

1
(ὥ25
ᴂ ) 4 Ὃ25  and by integrating  

Ὃ25 ( ὓ24) 4
2

= Ὃ25
0 + 2(ὥ25) 4 ( ὓ24) 4

1
/ (ὥ25

ᴂ ) 4   

In the same way , one can obtain 

Ὃ26 ( ὓ24) 4
3

= Ὃ26
0 + 2(ὥ26) 4 ( ὓ24) 4

2
/ (ὥ26

ᴂ ) 4   

 If Ὃ25  έὶ Ὃ26   is bounded, the same property follows for Ὃ24  ,  Ὃ26  and  Ὃ24  ,  Ὃ25 respectively. 

342 

Remark 4: If Ὃ24   Ὥί bounded, from below, the same property holds for Ὃ25 ὥὲὨ Ὃ26  .  The proof is analogous 

with the preceding one. An analogous property is true if Ὃ25 is bounded from below. 

343 

Remark 5: If  T24  is bounded from below and lim ὸO Њ((ὦὭ
ᴂᴂ) 4 ( Ὃ27 ὸ,ὸ)) = (ὦ25

ᴂ ) 4  then Ὕ25 ᴼЊ. 

Definition of  ά 4  and ‐4 : 

Indeed let ὸ4  be so that for ὸ > ὸ4  

(ὦ25) 4 (ὦὭ
ᴂᴂ) 4 ( Ὃ27 ὸ,ὸ) < ‐4,Ὕ24 (ὸ) > ά 4   

344 

Then  
ὨὝ25 

Ὠὸ
(ὥ25) 4 ά 4 ‐4Ὕ25 which leads to  

Ὕ25 
(ὥ25 ) 4 ά 4

‐4
1 Ὡ‐4ὸ + Ὕ25

0Ὡ‐4ὸ  If we take t  such that Ὡ‐4ὸ=   
1

2
  it results  

Ὕ25 
(ὥ25 ) 4 ά 4

2
,    ὸ= ὰέὫ

2

‐4
  By taking now  ‐4  sufficiently small one sees that T25  is unbounded. The 

345 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.4, July-Aug. 2012 pp-2028-2109             ISSN: 2249-6645 

www.ijmer.com                                                                            2069 | Page 

same property holds for Ὕ26  if lim ὸO Њ(ὦ26
ᴂᴂ) 4 Ὃ27 ὸ,ὸ= (ὦ26

ᴂ) 4  

We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS inequalities 

hold also for  Ὃ29  ,Ὃ30 ,Ὕ28 ,Ὕ29 ,Ὕ30  

 346 

 It is now sufficient to take 
(ὥὭ)

5

( ὓ28  )(5)   ,
(ὦὭ)

5

( ὓ28  )(5) < 1  and to choose 

( P28  ) (5)  and ( Q28  ) (5)  large to have 

 

347 

(ὥὭ)
5

(ὓ28 ) 5 ( ὖ28) 5 + ( ὖ28  ) (5) + ὋὮ
0 Ὡ

( ὖ28 )(5)+ὋὮ
0

ὋὮ
0

( ὖ28  ) (5)   

348 

(ὦὭ)
5

(ὓ28 ) 5 ( ὗ28  ) (5) + ὝὮ
0 Ὡ

  
( ὗ28 )(5)+ὝὮ

0

ὝὮ
0

+ ( ὗ28  ) (5) (  ὗ28  ) (5)   

349 

In order that the operator ꜝ (5)  transforms the space of sextuples of functions ὋὭ ,ὝὭ  into itself 350 

The operator ꜝ (5) is a contraction with respect to the metric  

Ὠ Ὃ31
1 , Ὕ31

1 , Ὃ31
2 , Ὕ31

2 =   

ίόὴ
Ὥ

{άὥὼ
ὸɴᴙ+

 

 ὋὭ
1 ὸ ὋὭ

2 ὸὩ(ὓ28 ) 5 ὸ,άὥὼ
ὸɴᴙ+

 ὝὭ
1 ὸ ὝὭ

2 ὸὩ(ὓ28 ) 5 ὸ}  

 Indeed if we denote   

Definition of Ὃ31 , Ὕ31  :     Ὃ31 , Ὕ31  = ꜝ(5) Ὃ31 , Ὕ31  

It results 

Ὃ28
1
ὋὭ

2
(᷿ὥ28) 5ὸ

0
Ὃ29

1
Ὃ29

2
Ὡ( ὓ28 ) 5 ί28 Ὡ( ὓ28 ) 5 ί28 Ὠί28 +   

{᷿(ὥ28
ᴂ ) 5 Ὃ28

1 Ὃ28
2 Ὡ( ὓ28 ) 5 ί28 Ὡ( ὓ28 ) 5 ί28

ὸ

0
+   

(ὥ28
ᴂᴂ) 5 Ὕ29

1
,ί28 Ὃ28

1
Ὃ28

2
Ὡ( ὓ28 ) 5 ί28 Ὡ( ὓ28 ) 5 ί28 +  

Ὃ28
2

|(ὥ28
ᴂᴂ) 5 Ὕ29

1
,ί28 (ὥ28

ᴂᴂ) 5 Ὕ29
2

,ί28 |  Ὡ( ὓ28 ) 5 ί28 Ὡ( ὓ28 ) 5 ί28 }Ὠί28   

Where ί28  represents integrand that is integrated over the interval 0,t  

From the hypotheses  it follows 

351 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

352 

Ὃ31
1 Ὃ31

2 Ὡ( ὓ28 ) 5 ὸ

1

( ὓ28 ) 5 (ὥ28) 5 +  (ὥ28
ᴂ ) 5 + ( ὃ28) 5 + ( ὖ28) 5 ( Ὧ28) 5 Ὠ Ὃ31

1 , Ὕ31
1 ; Ὃ31

2 , Ὕ31
2   

And analogous inequalities for ὋὭ ὥὲὨ ὝὭ. Taking into account the hypothesis (35,35,36) the result follows 

353 
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Remark 1: The fact that we supposed (ὥ28
ᴂᴂ) 5  and (ὦ28

ᴂᴂ) 5  depending also on t can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by ( ὖ28) 5 Ὡ( ὓ28 ) 5 ὸ ὥὲὨ ( ὗ28) 5 Ὡ( ὓ28 ) 5 ὸ 

respectively of ᴙ+ . 

If instead of proving the existence of the solution on ᴙ+ , we have to prove it only on a compact then it suffices 

to consider that (ὥὭ
ᴂᴂ) 5  and (ὦὭ

ᴂᴂ) 5 ,Ὥ= 28,29,30 depend only on T29 and respectively on 

Ὃ31 (ὥὲὨ ὲέὸ έὲ  ὸ) and hypothesis can replaced by a usual Lipschitz condition. 

354 

Remark 2: There does not exist any ὸ  where ὋὭ ὸ= 0 ὥὲὨ ὝὭ ὸ= 0   

From GLOBAL EQUATIONS it results  

ὋὭ ὸ ὋὭ
0Ὡ ᷿ (ὥὭ

ᴂ) 5 (ὥὭ
ᴂᴂ) 5 Ὕ29 ί28 ,ί28 Ὠί28

ὸ
0 0  

ὝὭ ὸ ὝὭ
0Ὡ (ὦὭ

ᴂ) 5 ὸ > 0   for t > 0 

355 

Definition of  ( ὓ28) 5
1
, ( ὓ28) 5

2
 ὥὲὨ ( ὓ28) 5

3
 : 

Remark 3: if Ὃ28  is bounded, the same property have also  Ὃ29  ὥὲὨ Ὃ30  . indeed if  

Ὃ28 < ( ὓ28) 5  it follows 
ὨὋ29

Ὠὸ
( ὓ28) 5

1
(ὥ29
ᴂ ) 5 Ὃ29  and by integrating  

Ὃ29 ( ὓ28) 5
2

= Ὃ29
0 + 2(ὥ29) 5 ( ὓ28) 5

1
/ (ὥ29

ᴂ ) 5   

In the same way , one can obtain 

Ὃ30 ( ὓ28) 5
3

= Ὃ30
0 + 2(ὥ30) 5 ( ὓ28) 5

2
/ (ὥ30

ᴂ ) 5   

 If Ὃ29  έὶ Ὃ30   is bounded, the same property follows for Ὃ28  ,  Ὃ30  and  Ὃ28  ,  Ὃ29  respectively. 

356 

Remark 4: If Ὃ28   Ὥί bounded, from below, the same property holds for Ὃ29 ὥὲὨ Ὃ30  .  The proof is analogous 

with the preceding one. An analogous property is true if Ὃ29 is bounded from below. 

357 

Remark 5: If  T28  is bounded from below and lim ὸO Њ((ὦὭ
ᴂᴂ) 5 ( Ὃ31 ὸ,ὸ)) = (ὦ29

ᴂ) 5  then Ὕ29 ᴼЊ. 

Definition of  ά 5  and ‐5 : 

Indeed let ὸ5  be so that for ὸ > ὸ5  

(ὦ29) 5 (ὦὭ
ᴂᴂ) 5 ( Ὃ31 ὸ,ὸ) < ‐5,Ὕ28 (ὸ) > ά 5  

358 

 

 

 

 

359 

Then  
ὨὝ29 

Ὠὸ
(ὥ29) 5 ά 5 ‐5Ὕ29 which leads to  

Ὕ29 
(ὥ29 ) 5 ά 5

‐5
1 Ὡ‐5ὸ + Ὕ29

0Ὡ‐5ὸ  If we take t  such that Ὡ‐5ὸ=   
1

2
  it results  

Ὕ29 
(ὥ29 ) 5 ά 5

2
,    ὸ= ὰέὫ

2

‐5
  By taking now  ‐5  sufficiently small one sees that T29  is unbounded. The 

same property holds for Ὕ30  if lim ὸO Њ(ὦ30
ᴂᴂ) 5 Ὃ31 ὸ,ὸ= (ὦ30

ᴂ) 5  

We now state a more precise theorem about the behaviors at infinity of the solutions  

360 
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Analogous inequalities hold also for  Ὃ33  ,Ὃ34 ,Ὕ32 ,Ὕ33 ,Ὕ34  

 361 

It is now sufficient to take 
(ὥὭ)

6

( ὓ32  )(6)   ,
(ὦὭ)

6

( ὓ32  )(6) < 1  and to choose 

( P32 ) (6)  and ( Q32  ) (6)  large to have 

362 

(ὥὭ)
6

(ὓ32 ) 6 ( ὖ32) 6 + ( ὖ32  ) (6) + ὋὮ
0 Ὡ

( ὖ32 )(6)+ὋὮ
0

ὋὮ
0

( ὖ32  ) (6)   

363 

(ὦὭ)
6

(ὓ32 ) 6 ( ὗ32  ) (6) + ὝὮ
0 Ὡ

  
( ὗ32 )(6)+ὝὮ

0

ὝὮ
0

+ ( ὗ32  ) (6) (  ὗ32  ) (6)   

364 

In order that the operator ꜝ (6)  transforms the space of sextuples of functions ὋὭ ,ὝὭ  into itself 365 

The operator ꜝ (6) is a contraction with respect to the metric  

Ὠ Ὃ35
1 , Ὕ35

1 , Ὃ35
2 , Ὕ35

2 =   

ίόὴ
Ὥ

{άὥὼ
ὸɴᴙ+

 

 ὋὭ
1 ὸ ὋὭ

2 ὸὩ(ὓ32 ) 6 ὸ,άὥὼ
ὸɴᴙ+

 ὝὭ
1 ὸ ὝὭ

2 ὸὩ(ὓ32 ) 6 ὸ}  

 Indeed if we denote   

Definition of Ὃ35 , Ὕ35  :     Ὃ35 , Ὕ35  = ꜝ(6) Ὃ35 , Ὕ35  

It results 

Ὃ32
1 ὋὭ

2 (᷿ὥ32) 6ὸ

0
Ὃ33

1 Ὃ33
2 Ὡ( ὓ32 ) 6 ί32 Ὡ( ὓ32 ) 6 ί32 Ὠί32 +   

{᷿(ὥ32
ᴂ ) 6 Ὃ32

1 Ὃ32
2 Ὡ( ὓ32 ) 6 ί32 Ὡ( ὓ32 ) 6 ί32

ὸ

0
+   

(ὥ32
ᴂᴂ) 6 Ὕ33

1
,ί32 Ὃ32

1
Ὃ32

2
Ὡ( ὓ32 ) 6 ί32 Ὡ( ὓ32 ) 6 ί32 +  

Ὃ32
2

|(ὥ32
ᴂᴂ) 6 Ὕ33

1
,ί32 (ὥ32

ᴂᴂ) 6 Ὕ33
2

,ί32 |  Ὡ( ὓ32 ) 6 ί32 Ὡ( ὓ32 ) 6 ί32 }Ὠί32   

Where ί32  represents integrand that is integrated over the interval 0,t  

From the hypotheses  it follows 

366 

 

 

 

 

 

 

 

 

 

 

 

 

367 

(1) ὥὭ
ᴂ 1 , ὥὭ

ᴂᴂ1 , ὦὭ
1 , ὦὭ

ᴂ 1 , ὦὭ
ᴂᴂ1 > 0,  

     Ὥ,Ὦ= 13,14,15 
 

(2)The functions ὥὭ
ᴂᴂ1 , ὦὭ

ᴂᴂ1  are positive continuous increasing and bounded. 

Definition of (ὴὭ)
1 ,  (ὶὭ)

1 : 
 

     ὥὭ
ᴂᴂ1 (Ὕ14 ,ὸ) (ὴὭ)

1 ( ὃ13  ) (1)  
 

     ὦὭ
ᴂᴂ1 (Ὃ,ὸ)   (ὶὭ)

1 (ὦὭ
ᴂ) 1 ( ὄ13  ) (1) 

  

(3) ὰὭάὝ2 ЊO ὥὭ
ᴂᴂ1 Ὕ14 ,ὸ= (ὴὭ)

1  

     limG ЊO ὦὭ
ᴂᴂ1 Ὃ,ὸ=   (ὶὭ)

1            
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            Definition of ( ὃ13  ) (1) ,(  ὄ13  ) (1)  : 
 

            Where ( ὃ13  ) (1) ,(  ὄ13  ) (1) , (ὴὭ)
1 ,  (ὶὭ)

1  are positive constants     

              and   Ὥ= 13,14,15  

 
           They satisfy  Lipschitz condition: 

         |(ὥὭ
ᴂᴂ) 1 Ὕ14

ᴂ,ὸ (ὥὭ
ᴂᴂ) 1 Ὕ14 ,ὸ| ( Ὧ13  ) (1) |Ὕ14  Ὕ14

ᴂ|Ὡ( ὓ13  )(1)ὸ  
 

         |(ὦὭ
ᴂᴂ) 1 Ὃᴂ,ὸ (ὦὭ

ᴂᴂ) 1 Ὃ,Ὕ| < ( Ὧ13  ) (1) ||Ὃ Ὃᴂ||Ὡ(  ὓ13  ) (1)ὸ 
 

With the Lipschitz condition, we place a restriction on the behavior of functions (ὥὭ
ᴂᴂ) 1 Ὕ14

ᴂ,ὸ   and(ὥὭ
ᴂᴂ) 1 Ὕ14 ,ὸ  . Ὕ14

ᴂ,ὸ and 

Ὕ14 ,ὸ are points belonging to the interval  ( Ὧ13  ) (1) ,(  ὓ13 ) (1)  . It is to be noted that (ὥὭ
ᴂᴂ) 1 Ὕ14 ,ὸ is uniformly continuous. In 

the eventuality of the fact, that if (  ὓ13 ) (1) = 1 then the function  (ὥὭ
ᴂᴂ) 1 Ὕ14 ,ὸ , the first augmentation coefficient attributable 

to terrestrial organisms, would be absolutely continuous.  
 

        Definition of (  ὓ13  ) (1) ,(  Ὧ13  ) (1) : 
 

(Z) ( ὓ13  ) (1) ,( Ὧ13  ) (1) ,  are positive constants 
 

      
(ὥὭ)

1

( ὓ13  )(1)   ,
(ὦὭ)

1

( ὓ13  )(1) < 1 

 

           Definition of ( ὖ13  ) (1) ,( ὗ13  ) (1) : 
 

(AA) There exists two constants (  ὖ13  ) (1)  and ( ὗ13  ) (1)  which together with ( ὓ13  ) (1) ,( Ὧ13  ) (1) ,(ὃ13) (1)ὥὲὨ ( ὄ13  ) (1)   and the 

constants (ὥὭ)
1 ,(ὥὭ

ᴂ) 1 , (ὦὭ)
1 ,(ὦὭ

ᴂ) 1 ,(ὴὭ)
1 ,  (ὶὭ)

1 ,Ὥ= 13,14,15, 
       satisfy the inequalities  
 

1

( ὓ13  ) (1)
[ (ὥὭ)

1 + (ὥὭ
ᴂ) 1 +   ( ὃ13  ) (1) +  ( ὖ13  ) (1)  ( Ὧ13  ) (1) ] < 1 

 
1

( ὓ13  ) (1)
[  (ὦὭ)

1 + (ὦὭ
ᴂ) 1 +   (  ὄ13  ) (1) +  ( ὗ13  ) (1)   ( Ὧ13  ) (1) ] < 1 

 

 

Analogous inequalities hold also for  Ὃ37  ,Ὃ38 ,Ὕ36 ,Ὕ37 ,Ὕ38  

 

It is now sufficient to take 
(ὥὭ)

7

( ὓ36  )(7)   ,
(ὦὭ)

7

( ὓ36  )(7) < 7  and to choose 

( P36  ) (7)  and ( Q36  ) (7)  large to have 

 

368 

(ὥὭ)
7

(ὓ36 ) 7 ( ὖ36) 7 + ( ὖ36  ) (7) + ὋὮ
0 Ὡ

( ὖ36 )(7)+ὋὮ
0

ὋὮ
0

( ὖ36  ) (7)   

 

369 

(ὦὭ)
7

(ὓ36 ) 7 ( ὗ36  ) (7) + ὝὮ
0 Ὡ

  
( ὗ36 )(7)+ὝὮ

0

ὝὮ
0

+ ( ὗ36  ) (7) (  ὗ36  ) (7)   

 

370 

 371 
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The operator ꜝ(7) is a contraction with respect to the metric  

Ὠ Ὃ39
1 , Ὕ39

1 , Ὃ39
2 , Ὕ39

2 =   

ίόὴ
Ὥ

{άὥὼ
ὸɴᴙ+

 

 ὋὭ
1 ὸ ὋὭ

2 ὸὩ(ὓ36 ) 7 ὸ,άὥὼ
ὸɴᴙ+

 ὝὭ
1 ὸ ὝὭ

2 ὸὩ(ὓ36 ) 7 ὸ}  

 Indeed if we denote   

Definition of Ὃ39 , Ὕ39  : 

 Ὃ39 , Ὕ39  = ꜝ(7) ( Ὃ39 , Ὕ39 )  

It results 

Ὃ36
1 ὋὭ

2 (᷿ὥ36) 7ὸ

0
Ὃ37

1 Ὃ37
2 Ὡ( ὓ36 ) 7 ί36 Ὡ( ὓ36 ) 7 ί36 Ὠί36 +   

{᷿(ὥ36
ǋ ) 7 Ὃ36

1 Ὃ36
2 Ὡ( ὓ36 ) 7 ί36 Ὡ( ὓ36 ) 7 ί36

ὸ

0
+   

(ὥ36
ǋǋ) 7 Ὕ37

1 ,ί36 Ὃ36
1 Ὃ36

2 Ὡ( ὓ36 ) 7 ί36 Ὡ( ὓ36 ) 7 ί36 +  

Ὃ36
2 |(ὥ36

ǋǋ) 7 Ὕ37
1 ,ί36 (ὥ36

ǋǋ) 7 Ὕ37
2 ,ί36 |  Ὡ( ὓ36 ) 7 ί36 Ὡ( ὓ36 ) 7 ί36 }Ὠί36  

Where ί36  represents integrand that is integrated over the interval 0,t  

From the hypotheses it follows 

372 

 

Ὃ39
1 Ὃ39

2 Ὡ( ὓ36 ) 7 ὸ

1

( ὓ36 ) 7 (ὥ36) 7 +  (ὥ36
ǋ ) 7 + ( ὃ36) 7 + ( ὖ36) 7 ( Ὧ36) 7 Ὠ Ὃ39

1 , Ὕ39
1 ; Ὃ39

2 , Ὕ39
2   

 

And analogous inequalities for ὋὭ ὥὲὨ ὝὭ. Taking into account the hypothesis (37,35,36) the result follows 

 

373 

 

 

 

 

 

374 

Remark 1: The fact that we supposed (ὥ36
ǋǋ) 7  and (ὦ36

ǋǋ) 7  depending also on t can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by ( ὖ36 ) 7 Ὡ( ὓ36 ) 7 ὸ ὥὲὨ ( ὗ36) 7 Ὡ( ὓ36 ) 7 ὸ 

respectively of ᴙ+ . 

If instead of proving the existence of the solution on ᴙ+ , we have to prove it only on a compact then it suffices to 

consider that (ὥὭ
ǋǋ) 7  and (ὦὭ

ǋǋ) 7 ,Ὥ= 36,37,38 depend only on T37 and respectively on Ὃ39 (ὥὲὨ ὲέὸ έὲ  ὸ) 
and hypothesis can replaced by a usual Lipschitz condition. 

 

375 

Remark 2: There does not exist any ὸ  where ὋὭ ὸ= 0 ὥὲὨ ὝὭ ὸ= 0 

From 79 to 36 it results  

ὋὭ ὸ ὋὭ
0Ὡ ᷿ (ὥὭ

ǋ) 7 (ὥὭ
ǋǋ) 7 Ὕ37 ί36 ,ί36 Ὠί36

ὸ
0 0  

ὝὭ ὸ ὝὭ
0Ὡ (ὦὭ

ǋ) 7 ὸ > 0   for t > 0 

 

376 

Definition of  ( ὓ36) 7
1
, ( ὓ36) 7

2
 ὥὲὨ ( ὓ36) 7

3
 : 

 

Remark 3: if Ὃ36  is bounded, the same property have also  Ὃ37  ὥὲὨ Ὃ38  . indeed if  

 

Ὃ36 < ( ὓ36) 7  it follows 
ὨὋ37

Ὠὸ
( ὓ36) 7

1
(ὥ37
ǋ ) 7 Ὃ37  and by integrating  

 

Ὃ37 ( ὓ36) 7
2

= Ὃ37
0 + 2(ὥ37) 7 ( ὓ36) 7

1
/ (ὥ37

ǋ ) 7   

 

In the same way , one can obtain 

 

377 
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Ὃ38 ( ὓ36) 7
3

= Ὃ38
0 + 2(ὥ38) 7 ( ὓ36) 7

2
/ (ὥ38

ǋ ) 7   

 

 If Ὃ37  έὶ Ὃ38   is bounded, the same property follows for Ὃ36  ,  Ὃ38  and  Ὃ36  ,  Ὃ37  respectively. 

 

Remark 7: If Ὃ36   Ὥί bounded, from below, the same property holds for Ὃ37 ὥὲὨ Ὃ38  .  The proof is analogous 

with the preceding one. An analogous property is true if Ὃ37 is bounded from below. 
 

378 

Remark 5: If  T36  is bounded from below and lim ὸO Ð((ὦὭ
ǋǋ) 7 ( Ὃ39 ὸ,ὸ)) = (ὦ37

ǋ ) 7  then Ὕ37 ᴼÐ. 
Definition of  ά 7  and ‐7 : 

Indeed let ὸ7  be so that for ὸ > ὸ7  

(ὦ37) 7 (ὦὭ
ǋǋ) 7 ( Ὃ39 ὸ,ὸ) < ‐7,Ὕ36 (ὸ) > ά 7  

 

379 

Then  
ὨὝ37 

Ὠὸ
(ὥ37) 7 ά 7 ‐7Ὕ37 which leads to  

Ὕ37 
(ὥ37 ) 7 ά 7

‐7
1 Ὡ‐7ὸ + Ὕ37

0Ὡ‐7ὸ  If we take t  such that Ὡ‐7ὸ=   
1

2
  it results  

Ὕ37 
(ὥ37 ) 7 ά 7

2
,    ὸ= ὰέὫ

2

‐7
  By taking now  ‐7  sufficiently small one sees that T37  is unbounded. The 

same property holds for Ὕ38  if lim ὸOÐ(ὦ38
ǋǋ) 7 Ὃ39 ὸ,ὸ= (ὦ38

ǋ ) 7  

We now state a more precise theorem about the behaviors at infinity of the solutions of  equations 37 to 72 

380 

In order that the operator ꜝ(7)  transforms the space of sextuples of functions ὋὭ ,ὝὭ satisfying GLOBAL 

EQUATIONS AND ITS CONCOMITANT CONDITIONALITIES into itself 

381 

382 

The operator ꜝ (7) is a contraction with respect to the metric  

Ὠ Ὃ39
1 , Ὕ39

1 , Ὃ39
2 , Ὕ39

2 =   

ίόὴ
Ὥ

{άὥὼ
ὸɴᴙ+

 

 ὋὭ
1 ὸ ὋὭ

2 ὸὩ(ὓ36 ) 7 ὸ,άὥὼ
ὸɴᴙ+

 ὝὭ
1 ὸ ὝὭ

2 ὸὩ(ὓ36 ) 7 ὸ}  

Indeed if we denote   

Definition of Ὃ39 , Ὕ39  : 

 Ὃ39 , Ὕ39  = ꜝ(7) ( Ὃ39 , Ὕ39 )  

It results 

Ὃ36
1
ὋὭ

2
(᷿ὥ36) 7ὸ

0
Ὃ37

1
Ὃ37

2
Ὡ( ὓ36 ) 7 ί36 Ὡ( ὓ36 ) 7 ί36 Ὠί36 +   

{᷿(ὥ36
ᴂ ) 7 Ὃ36

1 Ὃ36
2 Ὡ( ὓ36 ) 7 ί36 Ὡ( ὓ36 ) 7 ί36

ὸ

0
+   

(ὥ36
ᴂᴂ) 7 Ὕ37

1
,ί36 Ὃ36

1
Ὃ36

2
Ὡ( ὓ36 ) 7 ί36 Ὡ( ὓ36 ) 7 ί36 +  

Ὃ36
2 |(ὥ36

ᴂᴂ) 7 Ὕ37
1 ,ί36 (ὥ36

ᴂᴂ) 7 Ὕ37
2 ,ί36 |  Ὡ( ὓ36 ) 7 ί36 Ὡ( ὓ36 ) 7 ί36 }Ὠί36  

Where ί36  represents integrand that is integrated over the interval 0,t  

From the hypotheses  it follows 

383 

 

 

384 
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Ὃ39
1 Ὃ39

2 Ὡ( ὓ36 ) 7 ὸ

1

( ὓ36 ) 7 (ὥ36) 7 +  (ὥ36
ᴂ ) 7 + ( ὃ36) 7 + ( ὖ36) 7 ( Ὧ36) 7 Ὠ Ὃ39

1 , Ὕ39
1 ; Ὃ39

2 , Ὕ39
2   

And analogous inequalities for ὋὭ ὥὲὨ ὝὭ. Taking into account the hypothesis  the result follows 

Remark 1: The fact that we supposed (ὥ36
ᴂᴂ) 7  and (ὦ36

ᴂᴂ) 7  depending also on t can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by ( ὖ36) 7 Ὡ( ὓ36 ) 7 ὸ ὥὲὨ ( ὗ36) 7 Ὡ( ὓ36 ) 7 ὸ 

respectively of ᴙ+ . 

If instead of proving the existence of the solution on ᴙ+ , we have to prove it only on a compact then it suffices 

to consider that (ὥὭ
ᴂᴂ) 7  and (ὦὭ

ᴂᴂ) 7 ,Ὥ= 36,37,38 depend only on T37 and respectively on 

Ὃ39 (ὥὲὨ ὲέὸ έὲ  ὸ) and hypothesis can replaced by a usual Lipschitz condition. 

385 

Remark 2: There does not exist any ὸ  where ὋὭ ὸ= 0 ὥὲὨ ὝὭ ὸ= 0   

From CONCATENATED GLOBAL EQUATIONS it results  

ὋὭ ὸ ὋὭ
0Ὡ ᷿ (ὥὭ

ᴂ) 7 (ὥὭ
ᴂᴂ) 7 Ὕ37 ί36 ,ί36 Ὠί36

ὸ
0 0  

ὝὭ ὸ ὝὭ
0Ὡ (ὦὭ

ᴂ) 7 ὸ > 0   for t > 0 

386 

Definition of  ( ὓ36) 7
1
, ( ὓ36) 7

2
 ὥὲὨ ( ὓ36) 7

3
 : 

Remark 3: if Ὃ36  is bounded, the same property have also  Ὃ37  ὥὲὨ Ὃ38  . indeed if  

Ὃ36 < ( ὓ36) 7  it follows 
ὨὋ37

Ὠὸ
( ὓ36) 7

1
(ὥ37
ᴂ ) 7 Ὃ37  and by integrating  

Ὃ37 ( ὓ36) 7
2

= Ὃ37
0 + 2(ὥ37) 7 ( ὓ36) 7

1
/ (ὥ37

ᴂ ) 7   

In the same way , one can obtain 

Ὃ38 ( ὓ36) 7
3

= Ὃ38
0 + 2(ὥ38) 7 ( ὓ36) 7

2
/ (ὥ38

ᴂ ) 7   

 If Ὃ37  έὶ Ὃ38   is bounded, the same property follows for Ὃ36  ,  Ὃ38  and  Ὃ36  ,  Ὃ37  respectively. 

387 

Remark 7: If Ὃ36   Ὥί bounded, from below, the same property holds for Ὃ37 ὥὲὨ Ὃ38  .  The proof is analogous 

with the preceding one. An analogous property is true if Ὃ37 is bounded from below. 

388 

Remark 5: If  T36  is bounded from below and lim ὸO Њ((ὦὭ
ᴂᴂ) 7 ( Ὃ39 ὸ,ὸ)) = (ὦ37

ᴂ ) 7  then Ὕ37 ᴼЊ. 

Definition of  ά 7  and ‐7 : 

Indeed let ὸ7  be so that for ὸ > ὸ7  

(ὦ37) 7 (ὦὭ
ᴂᴂ) 7 ( Ὃ39 ὸ,ὸ) < ‐7,Ὕ36 (ὸ) > ά 7  

389 

Then  
ὨὝ37 

Ὠὸ
(ὥ37) 7 ά 7 ‐7Ὕ37 which leads to  

Ὕ37 
(ὥ37 ) 7 ά 7

‐7
1 Ὡ‐7ὸ + Ὕ37

0Ὡ‐7ὸ  If we take t  such that Ὡ‐7ὸ=   
1

2
  it results  

 

Ὕ37 
(ὥ37 ) 7 ά 7

2
,    ὸ= ὰέὫ

2

‐7
  By taking now  ‐7  sufficiently small one sees that T37  is unbounded. The 

390 
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same property holds for Ὕ38  if lim ὸO Њ(ὦ38
ᴂᴂ) 7 Ὃ39 ὸ,ὸ= (ὦ38

ᴂ ) 7  

We now state a more precise theorem about the behaviors at infinity of the solutions  

 

(ʎ2) 2 (ὥ16
ᴂ ) 2 + (ὥ17

ᴂ ) 2 (ὥ16
ᴂᴂ) 2 T17 ,ὸ+ (ὥ17

ᴂᴂ) 2 T17 ,ὸ (ʎ1) 2    391 

(ʐ2) 2 (ὦ16
ᴂ) 2 + (ὦ17

ᴂ) 2 (ὦ16
ᴂᴂ) 2 Ὃ19 ,ὸ (ὦ17

ᴂᴂ) 2 Ὃ19 ,ὸ (ʐ1) 2   392 

Definition of  (’1) 2 ,(ʉ2) 2 ,(ό1) 2 ,(ό2) 2  : 393 

By   (’1) 2 > 0 ,(ʉ2) 2 < 0 and respectively (ό1) 2 > 0 , (ό2) 2 < 0 the roots 394 

(a) of    the equations  (ὥ17) 2 ’2 2
+ (ʎ1) 2 ’2 (ὥ16) 2 = 0  395 

and  (ὦ14) 2 ό2 2
+ (ʐ1) 2 ό2 (ὦ16) 2 = 0 and 396 

Definition of  (’Ӷ1) 2 ,, (’Ӷ2) 2 , (ό1) 2 ,(ό2) 2  : 397 

By (’Ӷ1) 2 > 0 , (ʉ2) 2 < 0 and  respectively  (ό1) 2 > 0 , (ό2) 2 < 0 the 398 

roots of the equations (ὥ17) 2 ’2 2
+ (ʎ2) 2 ’2 (ὥ16) 2 = 0 399 

and  (ὦ17) 2 ό2 2
+ (ʐ2) 2 ό2 (ὦ16) 2 = 0  400 

Definition of  (ά1) 2  , (ά2) 2  ,(‘1) 2 ,(‘2) 2  :- 401 

(b) If we define (ά1) 2  ,(ά2) 2  ,(‘1) 2 ,(‘2) 2     by 402 

(ά2) 2 = (’0) 2 ,(ά1) 2 = (’1) 2 , ░█ (’0) 2 < (’1) 2   403 

(ά2) 2 = (’1) 2 ,(ά1) 2 = (’Ӷ1) 2  ,░█ (’1) 2 < (’0) 2 < (’Ӷ1) 2 ,  

and   (’0) 2 =
G16

0

G17
0   

404 

 ( ά2) 2 = (’1) 2 , (ά1) 2 = (’0) 2 , ░█ (’Ӷ1) 2 < (’0) 2   405 

and analogously 

(‘2) 2 = (ό0) 2 , (‘1) 2 = (ό1) 2 , ░█ (ό0) 2 < (ό1) 2   

 (‘2) 2 = (ό1) 2 ,(‘1) 2 = (ό1) 2  ,░█ (ό1) 2 < (ό0) 2 < (ό1) 2 , 

and (ό0) 2 =
T16

0

T17
0   

406 

( ‘2) 2 = (ό1) 2 ,(‘1) 2 = (ό0) 2 , ░█ (ό1) 2 < (ό0) 2    407 

Then the solution satisfies the inequalities 

  G16
0 e (S1) 2 (ὴ16 ) 2 t Ὃ16 ὸ G16

0 e(S1) 2 t  

408 

(ὴὭ)
2  is defined 409 

1

      (ά1) 2 G16
0 e (S1) 2 (ὴ16 ) 2 t Ὃ17 (ὸ)

1

(ά2 ) 2 G16
0 e(S1) 2 t   410 

( 
(ὥ18 ) 2 G16

0

(ά1) 2 (S1) 2 (ὴ16 ) 2 (S2 ) 2 e (S1) 2 (ὴ16 ) 2 t e (S2 ) 2 t  + G18
0 e (S2) 2 t G18(ὸ)

411 
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(ὥ18 ) 2 G16
0

(ά2) 2 (S1) 2 (ὥ18
ᴂ ) 2 [e(S1 ) 2 t e (ὥ18

ᴂ ) 2 t ] +  G18
0 e (ὥ18

ᴂ ) 2 t )    

T16
0 e(R1) 2 ὸ Ὕ16(ὸ) T16

0 e (R1) 2 + (ὶ16 ) 2 ὸ   
412 

1

(‘1) 2 T16
0 e(R1) 2 ὸ Ὕ16(ὸ)

1

(‘2) 2 T16
0 e (R1) 2 + (ὶ16 ) 2 ὸ  413 

(ὦ18 ) 2 T16
0

(‘1) 2 (R1) 2 (ὦ18
ᴂ ) 2 e(R1 ) 2 ὸ e (ὦ18

ᴂ ) 2 ὸ + T18
0 e (ὦ18

ᴂ ) 2 ὸ Ὕ18(ὸ)   

(ὥ18 ) 2 T16
0

(‘2) 2 (R1) 2 + (ὶ16 ) 2 + (R2 ) 2 e (R1) 2 + (ὶ16 ) 2 ὸ e (R2) 2 ὸ + T18
0 e (R2) 2 ὸ  

414 

Definition of (S1) 2 ,(S2) 2 ,(R1) 2 ,(R2) 2 :- 415 

Where (S1) 2 = (ὥ16) 2 (ά2) 2 (ὥ16
ᴂ ) 2    

             (S2) 2 = (ὥ18) 2 (ὴ18) 2   

416 

(Ὑ1) 2 = (ὦ16) 2 (‘2) 1 (ὦ16
ᴂ) 2    

             (R2) 2 = (ὦ18
ᴂ) 2  (ὶ18) 2  

417 

 418 

Behavior of the solutions 

 If we denote and define 

 Definition of  („1) 3  ,(„2) 3  ,(†1) 3  ,(†2) 3  : 

(a) „1) 3  ,(„2) 3  ,(†1) 3  ,(†2) 3    four constants satisfying 

(„2) 3 (ὥ20
ᴂ ) 3 + (ὥ21

ᴂ ) 3 (ὥ20
ᴂᴂ) 3 Ὕ21 ,ὸ+ (ὥ21

ᴂᴂ) 3 Ὕ21 ,ὸ („1) 3   

 (†2) 3 (ὦ20
ᴂ ) 3 + (ὦ21

ᴂ) 3 (ὦ20
ᴂᴂ) 3 Ὃ,ὸ (ὦ21

ᴂᴂ) 3 Ὃ23 ,ὸ (†1) 3   

419 

Definition of  (’1) 3 ,(’2) 3 ,(ό1) 3 , (ό2) 3  : 

(b) By   (’1) 3 > 0 ,(’2) 3 < 0 and respectively (ό1) 3 > 0 ,(ό2) 3 < 0 the roots of    the equations  

(ὥ21) 3 ’3 2
+ („1) 3 ’3 (ὥ20) 3 = 0  

and  (ὦ21) 3 ό3 2
+ (†1) 3 ό3 (ὦ20) 3 = 0 and 

       By (’Ӷ1) 3 > 0 , (’Ӷ2) 3 < 0 and  respectively  (ό1) 3 > 0 , (ό2) 3 < 0 the 

      roots of the equations (ὥ21) 3 ’3 2
+ („2) 3 ’3 (ὥ20) 3 = 0  

     and  (ὦ21) 3 ό3 2
+ (†2) 3 ό3 (ὦ20) 3 = 0  

420 

Definition of  (ά1) 3  , (ά2) 3  ,(‘1) 3 ,(‘2) 3  :- 

(c) If we define (ά1) 3  ,(ά2) 3  ,(‘1) 3 ,(‘2) 3     by 

      (ά2) 3 = (’0) 3 , (ά1) 3 = (’1) 3 , ░█ (’0) 3 < (’1) 3  

       (ά2) 3 = (’1) 3 ,(ά1) 3 = (’Ӷ1) 3  ,░█ (’1) 3 < (’0) 3 < (’Ӷ1) 3 , 

      and  (’0) 3 =
Ὃ20

0

Ὃ21
0   

421 
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    ( ά2) 3 = (’1) 3 ,(ά1) 3 = (’0) 3 , ░█ (’Ӷ1) 3 < (’0) 3    

and analogously 

  (‘2) 3 = (ό0) 3 ,(‘1) 3 = (ό1) 3 , ░█ (ό0) 3 < (ό1) 3  

  (‘2) 3 = (ό1) 3 ,(‘1) 3 = (ό1) 3  ,░█ (ό1) 3 < (ό0) 3 < (ό1) 3 ,     and (ό0) 3 =
Ὕ20

0

Ὕ21
0   

 ( ‘2) 3 = (ό1) 3 ,(‘1) 3 = (ό0) 3 , ░█ (ό1) 3 < (ό0) 3     

Then the solution  satisfies the inequalities 

 Ὃ20
0 Ὡ(Ὓ1) 3 (ὴ20 ) 3 ὸ Ὃ20 (ὸ) Ὃ20

0 Ὡ(Ὓ1) 3 ὸ  

(ὴὭ)
3  is defined  

422 

 

 

 

 

 

 

423 

1

      (ά1) 3 Ὃ20
0 Ὡ(Ὓ1) 3 (ὴ20 ) 3 ὸ Ὃ21(ὸ)

1

(ά2) 3 Ὃ20
0 Ὡ(Ὓ1) 3 ὸ  424 

( 
(ὥ22 ) 3 Ὃ20

0

(ά1) 3 (Ὓ1) 3 (ὴ20 ) 3 (Ὓ2) 3 Ὡ(Ὓ1) 3 (ὴ20 ) 3 ὸ Ὡ(Ὓ2) 3 ὸ + Ὃ22
0 Ὡ(Ὓ2) 3 ὸ Ὃ22(ὸ)

(ὥ22 ) 3 Ὃ20
0

(ά2) 3 (Ὓ1) 3 (ὥ22
ᴂ ) 3 [Ὡ(Ὓ1) 3 ὸ Ὡ (ὥ22

ᴂ ) 3 ὸ] +  Ὃ22
0 Ὡ(ὥ22

ᴂ ) 3 ὸ)  

425 

   Ὕ20
0 Ὡ(Ὑ1 ) 3 ὸ Ὕ20(ὸ) Ὕ20

0 Ὡ(Ὑ1) 3 + (ὶ20 ) 3 ὸ    
426 

1

(‘1) 3 Ὕ20
0 Ὡ(Ὑ1) 3 ὸ Ὕ20 (ὸ)

1

(‘2) 3 Ὕ20
0 Ὡ(Ὑ1 ) 3 + (ὶ20 ) 3 ὸ  427 

(ὦ22 ) 3 Ὕ20
0

(‘1) 3 (Ὑ1 ) 3 (ὦ22
ᴂ ) 3 Ὡ(Ὑ1) 3 ὸ Ὡ(ὦ22

ᴂ ) 3 ὸ + Ὕ22
0 Ὡ(ὦ22

ᴂ ) 3 ὸ Ὕ22(ὸ)   

(ὥ22 ) 3 Ὕ20
0

(‘2) 3 (Ὑ1 ) 3 + (ὶ20 ) 3 + (Ὑ2 ) 3 Ὡ(Ὑ1 ) 3 + (ὶ20 ) 3 ὸ Ὡ (Ὑ2) 3 ὸ + Ὕ22
0Ὡ(Ὑ2) 3 ὸ  

428 

Definition of (Ὓ1) 3 , (Ὓ2) 3 ,(Ὑ1) 3 ,(Ὑ2) 3 :- 

Where (Ὓ1) 3 = (ὥ20) 3 (ά2) 3 (ὥ20
ᴂ ) 3    

             (Ὓ2) 3 = (ὥ22) 3 (ὴ22) 3   

              (Ὑ1) 3 = (ὦ20) 3 (‘2) 3 (ὦ20
ᴂ) 3    

                        (Ὑ2) 3 = (ὦ22
ᴂ) 3  (ὶ22 ) 3  

429 

 430 

 431 

 
If we denote and define 
 

 Definition of  („1) 4  ,(„2) 4  ,(†1) 4  ,(†2) 4  : 
 

(d) („1) 4  ,(„2) 4  ,(†1) 4  ,(†2) 4    four constants satisfying 
 

(„2) 4 (ὥ24
ᴂ ) 4 + (ὥ25

ᴂ ) 4 (ὥ24
ᴂᴂ) 4 Ὕ25 ,ὸ+ (ὥ25

ᴂᴂ) 4 Ὕ25 ,ὸ („1) 4    
 

 (†2) 4 (ὦ24
ᴂ ) 4 + (ὦ25

ᴂ) 4 (ὦ24
ᴂᴂ) 4 Ὃ27 ,ὸ (ὦ25

ᴂᴂ) 4 Ὃ27 ,ὸ (†1) 4   

 

432 

Definition of  (’1) 4 ,(’2) 4 ,(ό1) 4 ,(ό2) 4 ,’4 ,ό4  : 
 

(e) By   (’1) 4 > 0 ,(’2) 4 < 0 and respectively (ό1) 4 > 0 , (ό2) 4 < 0 the roots of    the equations  

433 
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(ὥ25) 4 ’4 2
+ („1) 4 ’4 (ὥ24) 4 = 0  

and  (ὦ25) 4 ό4 2
+ (†1) 4 ό4 (ὦ24) 4 = 0 and 

 

Definition of  (’Ӷ1) 4 ,, (’Ӷ2) 4 ,(ό1) 4 ,(ό2) 4  : 
 

       By (’Ӷ1) 4 > 0 ,(’Ӷ2) 4 < 0 and  respectively  (ό1) 4 > 0 ,(ό2) 4 < 0 the 

      roots of the equations (ὥ25) 4 ’4 2
+ („2) 4 ’4 (ὥ24) 4 = 0  

     and  (ὦ25) 4 ό4 2
+ (†2) 4 ό4 (ὦ24) 4 = 0  

Definition of  (ά1) 4  ,(ά2) 4  ,(‘1) 4 ,(‘2) 4 ,(’0) 4  :- 
 

(f) If we define (ά1) 4  ,(ά2) 4  , (‘1) 4 ,(‘2) 4     by 
 

      (ά2) 4 = (’0) 4 , (ά1) 4 = (’1) 4 , ░█ (’0) 4 < (’1) 4  
 

       (ά2) 4 = (’1) 4 ,(ά1) 4 = (’Ӷ1) 4  ,░█ (’4) 4 < (’0) 4 < (’Ӷ1) 4 , 

      and  (’0) 4 =
Ὃ24

0

Ὃ25
0   

 

    ( ά2) 4 = (’4) 4 ,(ά1) 4 = (’0) 4 , ░█ (’Ӷ4) 4 < (’0) 4   
 

434 
435 
 
 
 
436 

and analogously 
 

       (‘2) 4 = (ό0) 4 ,(‘1) 4 = (ό1) 4 , ░█ (ό0) 4 < (ό1) 4  
 

       (‘2) 4 = (ό1) 4 , (‘1) 4 = (ό1) 4  ,░█ (ό1) 4 < (ό0) 4 < (ό1) 4 , 

     and (ό0) 4 =
Ὕ24

0

Ὕ25
0   

 

    ( ‘2) 4 = (ό1) 4 ,(‘1) 4 = (ό0) 4 ,░█ (ό1) 4 < (ό0) 4   where (ό1) 4 , (ό1) 4  
are defined  respectively 
 

437 
438 

Then the solution satisfies the inequalities 
 

    Ὃ24
0 Ὡ(Ὓ1) 4 (ὴ24 ) 4 ὸ Ὃ24 ὸ Ὃ24

0 Ὡ(Ὓ1) 4 ὸ 
 

where (ὴὭ)
4  is defined  

439 
440 
441 
442 
443 
444 
445 
 

1

      (ά1) 4 Ὃ24
0 Ὡ(Ὓ1) 4 (ὴ24 ) 4 ὸ Ὃ25 ὸ

1

(ά2) 4 Ὃ24
0 Ὡ(Ὓ1) 4 ὸ  

 

446 
447 

(ὥ26 ) 4 Ὃ24
0

(ά1) 4 (Ὓ1) 4 (ὴ24 ) 4 (Ὓ2) 4 Ὡ(Ὓ1) 4 (ὴ24 ) 4 ὸ Ὡ(Ὓ2) 4 ὸ + Ὃ26
0 Ὡ(Ὓ2) 4 ὸ Ὃ26 ὸ

(ὥ26)4Ὃ240(ά2)4(Ὓ1)4 (ὥ26ᴂ)4Ὡ(Ὓ1)4ὸὩ (ὥ26ᴂ)4ὸ+  Ὃ260Ὡ (ὥ26ᴂ)4ὸ  

 

448 

Ὕ24
0 Ὡ(Ὑ1) 4 ὸ Ὕ24 ὸ Ὕ24

0 Ὡ(Ὑ1 ) 4 + (ὶ24 ) 4 ὸ   

 

449 

1

(‘1) 4 Ὕ24
0 Ὡ(Ὑ1) 4 ὸ Ὕ24 (ὸ)

1

(‘2) 4 Ὕ24
0 Ὡ(Ὑ1 ) 4 + (ὶ24 ) 4 ὸ  

 

450 

(ὦ26 ) 4 Ὕ24
0

(‘1) 4 (Ὑ1 ) 4 (ὦ26
ᴂ ) 4 Ὡ(Ὑ1) 4 ὸ Ὡ(ὦ26

ᴂ ) 4 ὸ + Ὕ26
0 Ὡ(ὦ26

ᴂ ) 4 ὸ Ὕ26(ὸ)   

 
(ὥ26 ) 4 Ὕ24

0

(‘2) 4 (Ὑ1 ) 4 + (ὶ24 ) 4 + (Ὑ2 ) 4 Ὡ(Ὑ1 ) 4 + (ὶ24 ) 4 ὸ Ὡ (Ὑ2) 4 ὸ + Ὕ26
0Ὡ(Ὑ2) 4 ὸ  

 

451 
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Definition of (Ὓ1) 4 ,(Ὓ2) 4 , (Ὑ1) 4 ,(Ὑ2) 4 :- 
 

Where (Ὓ1) 4 = (ὥ24) 4 (ά2) 4 (ὥ24
ᴂ ) 4   

  
             (Ὓ2) 4 = (ὥ26) 4 (ὴ26) 4   
 

                 (Ὑ1) 4 = (ὦ24) 4 (‘2) 4 (ὦ24
ᴂ ) 4    

 

             (Ὑ2) 4 = (ὦ26
ᴂ) 4  (ὶ26 ) 4   

 

452 
 
 
 
 
 
 
 
453 

Behavior of the solutions  
If we denote and define 
 

 Definition of  („1) 5  ,(„2) 5  ,(†1) 5  ,(†2) 5  : 
 

(g) („1) 5  ,(„2) 5  ,(†1) 5  ,(†2) 5    four constants satisfying 
 

(„2) 5 (ὥ28
ᴂ ) 5 + (ὥ29

ᴂ ) 5 (ὥ28
ᴂᴂ) 5 Ὕ29 ,ὸ+ (ὥ29

ᴂᴂ) 5 Ὕ29 ,ὸ („1) 5    
 

 (†2) 5 (ὦ28
ᴂ ) 5 + (ὦ29

ᴂ) 5 (ὦ28
ᴂᴂ) 5 Ὃ31 ,ὸ (ὦ29

ᴂᴂ) 5 Ὃ31 ,ὸ (†1) 5   

 

454 

Definition of  (’1) 5 ,(’2) 5 ,(ό1) 5 ,(ό2) 5 ,’5 ,ό5  : 
 

(h) By   (’1) 5 > 0 ,(’2) 5 < 0 and respectively (ό1) 5 > 0 , (ό2) 5 < 0 the roots of    the equations  

(ὥ29) 5 ’5 2
+ („1) 5 ’5 (ὥ28) 5 = 0  

and  (ὦ29) 5 ό5 2
+ (†1) 5 ό5 (ὦ28) 5 = 0 and 

 

455 

Definition of  (’Ӷ1) 5 ,, (’Ӷ2) 5 ,(ό1) 5 ,(ό2) 5  : 
 

       By (’Ӷ1) 5 > 0 ,(’Ӷ2) 5 < 0 and  respectively  (ό1) 5 > 0 ,(ό2) 5 < 0 the 

      roots of the equations (ὥ29) 5 ’5 2
+ („2) 5 ’5 (ὥ28) 5 = 0  

     and  (ὦ29) 5 ό5 2
+ (†2) 5 ό5 (ὦ28) 5 = 0  

Definition of  (ά1) 5  ,(ά2) 5  ,(‘1) 5 ,(‘2) 5 ,(’0) 5  :- 
 

(i) If we define (ά1) 5  ,(ά2) 5  , (‘1) 5 ,(‘2) 5     by 
 

      (ά2) 5 = (’0) 5 , (ά1) 5 = (’1) 5 , ░█ (’0) 5 < (’1) 5  
 

       (ά2) 5 = (’1) 5 ,(ά1) 5 = (’Ӷ1) 5  ,░█ (’1) 5 < (’0) 5 < (’Ӷ1) 5 , 

      and  (’0) 5 =
Ὃ28

0

Ὃ29
0   

 

    ( ά2) 5 = (’1) 5 ,(ά1) 5 = (’0) 5 , ░█ (’Ӷ1) 5 < (’0) 5   
 

456 

and analogously 
 

       (‘2) 5 = (ό0) 5 ,(‘1) 5 = (ό1) 5 , ░█ (ό0) 5 < (ό1) 5  
 

       (‘2) 5 = (ό1) 5 , (‘1) 5 = (ό1) 5  ,░█ (ό1) 5 < (ό0) 5 < (ό1) 5 , 

     and (ό0) 5 =
Ὕ28

0

Ὕ29
0   

 

    ( ‘2) 5 = (ό1) 5 ,(‘1) 5 = (ό0) 5 ,░█ (ό1) 5 < (ό0) 5   where (ό1) 5 , (ό1) 5  
are defined  respectively 
 

457 

Then the solution satisfies the inequalities 
 

458 
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 Ὃ28
0 Ὡ(Ὓ1) 5 (ὴ28 ) 5 ὸ Ὃ28 (ὸ) Ὃ28

0 Ὡ(Ὓ1) 5 ὸ  
 

where (ὴὭ)
5  is defined  

1

      (ά5) 5 Ὃ28
0 Ὡ(Ὓ1) 5 (ὴ28 ) 5 ὸ Ὃ29(ὸ)

1

(ά2) 5 Ὃ28
0 Ὡ(Ὓ1) 5 ὸ  

 

459 
 
460 

(ὥ30 ) 5 Ὃ28
0

(ά1) 5 (Ὓ1) 5 (ὴ28 ) 5 (Ὓ2) 5 Ὡ(Ὓ1) 5 (ὴ28 ) 5 ὸ Ὡ(Ὓ2) 5 ὸ + Ὃ30
0 Ὡ(Ὓ2) 5 ὸ Ὃ30 ὸ

(ὥ30)5Ὃ280(ά2)5(Ὓ1)5 (ὥ30ᴂ)5Ὡ(Ὓ1)5ὸὩ (ὥ30ᴂ)5ὸ+  Ὃ300Ὡ (ὥ30ᴂ)5ὸ  

 

461 

Ὕ28
0 Ὡ(Ὑ1) 5 ὸ Ὕ28 (ὸ) Ὕ28

0 Ὡ(Ὑ1 ) 5 + (ὶ28 ) 5 ὸ   

 

462 

1

(‘1) 5 Ὕ28
0 Ὡ(Ὑ1) 5 ὸ Ὕ28 (ὸ)

1

(‘2) 5 Ὕ28
0 Ὡ(Ὑ1 ) 5 + (ὶ28 ) 5 ὸ  

 

463 

(ὦ30 ) 5 Ὕ28
0

(‘1) 5 (Ὑ1 ) 5 (ὦ30
ᴂ ) 5 Ὡ(Ὑ1) 5 ὸ Ὡ(ὦ30

ᴂ ) 5 ὸ + Ὕ30
0 Ὡ(ὦ30

ᴂ ) 5 ὸ Ὕ30(ὸ)   

 
(ὥ30 ) 5 Ὕ28

0

(‘2) 5 (Ὑ1 ) 5 + (ὶ28 ) 5 + (Ὑ2 ) 5 Ὡ(Ὑ1 ) 5 + (ὶ28 ) 5 ὸ Ὡ (Ὑ2) 5 ὸ + Ὕ30
0Ὡ(Ὑ2) 5 ὸ  

 

464 

Definition of (Ὓ1) 5 ,(Ὓ2) 5 , (Ὑ1) 5 ,(Ὑ2) 5 :- 
 

Where (Ὓ1) 5 = (ὥ28) 5 (ά2) 5 (ὥ28
ᴂ ) 5   

  
             (Ὓ2) 5 = (ὥ30) 5 (ὴ30) 5   
 

                 (Ὑ1) 5 = (ὦ28) 5 (‘2) 5 (ὦ28
ᴂ ) 5    

 

             (Ὑ2) 5 = (ὦ30
ᴂ) 5  (ὶ30 ) 5   

 

465 

Behavior of the solutions 
 If we denote and define 
 

 Definition of  („1) 6  ,(„2) 6  ,(†1) 6  ,(†2) 6  : 
 

(j) („1) 6  ,(„2) 6  ,(†1) 6  ,(†2) 6    four constants satisfying 
 

(„2) 6 (ὥ32
ᴂ ) 6 + (ὥ33

ᴂ ) 6 (ὥ32
ᴂᴂ) 6 Ὕ33 ,ὸ+ (ὥ33

ᴂᴂ) 6 Ὕ33 ,ὸ („1) 6    
 

 (†2) 6 (ὦ32
ᴂ ) 6 + (ὦ33

ᴂ) 6 (ὦ32
ᴂᴂ) 6 Ὃ35 ,ὸ (ὦ33

ᴂᴂ) 6 Ὃ35 ,ὸ (†1) 6   

 

466 

Definition of  (’1) 6 ,(’2) 6 ,(ό1) 6 ,(ό2) 6 ,’6 ,ό6  : 
 

(k) By   (’1) 6 > 0 ,(’2) 6 < 0 and respectively (ό1) 6 > 0 , (ό2) 6 < 0 the roots of    the equations  

(ὥ33) 6 ’6 2
+ („1) 6 ’6 (ὥ32) 6 = 0  

and  (ὦ33) 6 ό6 2
+ (†1) 6 ό6 (ὦ32) 6 = 0 and 

 

467 

Definition of  (’Ӷ1) 6 ,, (’Ӷ2) 6 ,(ό1) 6 ,(ό2) 6  : 
 

       By (’Ӷ1) 6 > 0 ,(’Ӷ2) 6 < 0 and  respectively  (ό1) 6 > 0 ,(ό2) 6 < 0 the 

      roots of the equations (ὥ33) 6 ’6 2
+ („2) 6 ’6 (ὥ32) 6 = 0  

     and  (ὦ33) 6 ό6 2
+ (†2) 6 ό6 (ὦ32) 6 = 0  

Definition of  (ά1) 6  ,(ά2) 6  ,(‘1) 6 ,(‘2) 6 ,(’0) 6  :- 
 

(l) If we define (ά1) 6  ,(ά2) 6  , (‘1) 6 ,(‘2) 6     by 
 

468 
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      (ά2) 6 = (’0) 6 , (ά1) 6 = (’1) 6 , ░█ (’0) 6 < (’1) 6  
 

       (ά2) 6 = (’1) 6 ,(ά1) 6 = (’Ӷ6) 6  ,░█ (’1) 6 < (’0) 6 < (’Ӷ1) 6 , 

      and  (’0) 6 =
Ὃ32

0

Ὃ33
0   

 

    ( ά2) 6 = (’1) 6 ,(ά1) 6 = (’0) 6 , ░█ (’Ӷ1) 6 < (’0) 6   
 

 
 
470 

and analogously 
 

       (‘2) 6 = (ό0) 6 ,(‘1) 6 = (ό1) 6 , ░█ (ό0) 6 < (ό1) 6  
 

       (‘2) 6 = (ό1) 6 , (‘1) 6 = (ό1) 6  ,░█ (ό1) 6 < (ό0) 6 < (ό1) 6 , 

     and (ό0) 6 =
Ὕ32

0

Ὕ33
0   

 

    ( ‘2) 6 = (ό1) 6 ,(‘1) 6 = (ό0) 6 ,░█ (ό1) 6 < (ό0) 6   where (ό1) 6 , (ό1) 6  
are defined respectively 
 

471 

Then the solution  satisfies the inequalities 
 

   Ὃ32
0 Ὡ(Ὓ1) 6 (ὴ32 ) 6 ὸ Ὃ32 (ὸ) Ὃ32

0 Ὡ(Ὓ1) 6 ὸ 
 

where (ὴὭ)
6  is defined 

472 

1

      (ά1) 6 Ὃ32
0 Ὡ(Ὓ1) 6 (ὴ32 ) 6 ὸ Ὃ33(ὸ)

1

(ά2) 6 Ὃ32
0 Ὡ(Ὓ1) 6 ὸ  

 

473 

(ὥ34 ) 6 Ὃ32
0

(ά1) 6 (Ὓ1) 6 (ὴ32 ) 6 (Ὓ2) 6 Ὡ(Ὓ1) 6 (ὴ32 ) 6 ὸ Ὡ(Ὓ2) 6 ὸ + Ὃ34
0 Ὡ(Ὓ2) 6 ὸ Ὃ34 ὸ

(ὥ34)6Ὃ320(ά2)6(Ὓ1)6 (ὥ34ᴂ)6Ὡ(Ὓ1)6ὸὩ (ὥ34ᴂ)6ὸ+  Ὃ340Ὡ (ὥ34ᴂ)6ὸ  

 

474 

Ὕ32
0 Ὡ(Ὑ1) 6 ὸ Ὕ32 (ὸ) Ὕ32

0 Ὡ(Ὑ1 ) 6 + (ὶ32 ) 6 ὸ   

 

475 

1

(‘1) 6 Ὕ32
0 Ὡ(Ὑ1) 6 ὸ Ὕ32 (ὸ)

1

(‘2) 6 Ὕ32
0 Ὡ(Ὑ1 ) 6 + (ὶ32 ) 6 ὸ  

 

476 

(ὦ34 ) 6 Ὕ32
0

(‘1) 6 (Ὑ1 ) 6 (ὦ34
ᴂ ) 6 Ὡ(Ὑ1) 6 ὸ Ὡ(ὦ34

ᴂ ) 6 ὸ + Ὕ34
0 Ὡ(ὦ34

ᴂ ) 6 ὸ Ὕ34(ὸ)   

 
(ὥ34 ) 6 Ὕ32

0

(‘2) 6 (Ὑ1 ) 6 + (ὶ32 ) 6 + (Ὑ2 ) 6 Ὡ(Ὑ1 ) 6 + (ὶ32 ) 6 ὸ Ὡ (Ὑ2) 6 ὸ + Ὕ34
0Ὡ(Ὑ2) 6 ὸ  

 

477 

Definition of (Ὓ1) 6 ,(Ὓ2) 6 , (Ὑ1) 6 ,(Ὑ2) 6 :- 
 

Where (Ὓ1) 6 = (ὥ32) 6 (ά2) 6 (ὥ32
ᴂ ) 6   

  
             (Ὓ2) 6 = (ὥ34) 6 (ὴ34) 6   
 

             (Ὑ1) 6 = (ὦ32) 6 (‘2) 6 (ὦ32
ᴂ ) 6    

 

             (Ὑ2) 6 = (ὦ34
ᴂ) 6  (ὶ34 ) 6   

478 

 

 If we denote and define 

 Definition of  („1) 7  ,(„2) 7  ,(†1) 7  ,(†2) 7  : 

(m) („1) 7  ,(„2) 7  ,(†1) 7  ,(†2) 7    four constants satisfying 

479 
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(„2) 7 (ὥ36
ᴂ ) 7 + (ὥ37

ᴂ ) 7 (ὥ36
ᴂᴂ) 7 Ὕ37 ,ὸ+ (ὥ37

ᴂᴂ) 7 Ὕ37 ,ὸ („1) 7    

 (†2) 7 (ὦ36
ᴂ ) 7 + (ὦ37

ᴂ) 7 (ὦ36
ᴂᴂ) 7 Ὃ39 ,ὸ (ὦ37

ᴂᴂ) 7 Ὃ39 ,ὸ (†1) 7   

Definition of  (’1) 7 ,(’2) 7 ,(ό1) 7 ,(ό2) 7 ,’7 ,ό7  : 

(n) By   (’1) 7 > 0 ,(’2) 7 < 0 and respectively (ό1) 7 > 0 , (ό2) 7 < 0 the roots of    the equations  

(ὥ37) 7 ’7 2
+ („1) 7 ’7 (ὥ36) 7 = 0  

and  (ὦ37) 7 ό7 2
+ (†1) 7 ό7 (ὦ36) 7 = 0 and 

480 

 

481 

Definition of  (’Ӷ1) 7 ,, (’Ӷ2) 7 ,(ό1) 7 ,(ό2) 7  : 

       By (’Ӷ1) 7 > 0 ,(’Ӷ2) 7 < 0 and  respectively  (ό1) 7 > 0 ,(ό2) 7 < 0 the 

      roots of the equations (ὥ37) 7 ’7 2
+ („2) 7 ’7 (ὥ36) 7 = 0  

     and  (ὦ37) 7 ό7 2
+ (†2) 7 ό7 (ὦ36) 7 = 0  

Definition of  (ά1) 7  ,(ά2) 7  ,(‘1) 7 ,(‘2) 7 ,(’0) 7  :- 

 

(o) If we define (ά1) 7  ,(ά2) 7  , (‘1) 7 ,(‘2) 7     by 
 

      (ά2) 7 = (’0) 7 , (ά1) 7 = (’1) 7 , ░█ (’0) 7 < (’1) 7  

 

       (ά2) 7 = (’1) 7 ,(ά1) 7 = (’Ӷ1) 7  ,░█ (’1) 7 < (’0) 7 < (’Ӷ1) 7 , 

      and  (’0) 7 =
Ὃ36

0

Ὃ37
0   

 

    ( ά2) 7 = (’1) 7 ,(ά1) 7 = (’0) 7 , ░█ (’Ӷ1) 7 < (’0) 7   

482 

and analogously 

       (‘2) 7 = (ό0) 7 ,(‘1) 7 = (ό1) 7 , ░█ (ό0) 7 < (ό1) 7  

       (‘2) 7 = (ό1) 7 , (‘1) 7 = (ό1) 7  ,░█ (ό1) 7 < (ό0) 7 < (ό1) 7 , 

     and (ό0) 7 =
Ὕ36

0

Ὕ37
0   

    ( ‘2) 7 = (ό1) 7 ,(‘1) 7 = (ό0) 7 ,░█ (ό1) 7 < (ό0) 7   where (ό1) 7 , (ό1) 7  

are defined  respectively 

 

483 

Then the solution  satisfies the inequalities 
 

       Ὃ36
0 Ὡ(Ὓ1) 7 (ὴ36 ) 7 ὸ Ὃ36(ὸ) Ὃ36

0 Ὡ(Ὓ1) 7 ὸ 

where (ὴὭ)
7  is defined  

484 
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485 
1

      (ά7) 7 Ὃ36
0 Ὡ(Ὓ1) 7 (ὴ36 ) 7 ὸ Ὃ37(ὸ)

1

(ά2) 7 Ὃ36
0 Ὡ(Ὓ1) 7 ὸ  

 

486 

( 

(ὥ38 ) 7 Ὃ36
0

(ά1) 7 (Ὓ1) 7 (ὴ36 ) 7 (Ὓ2) 7 Ὡ(Ὓ1) 7 (ὴ36 ) 7 ὸ Ὡ (Ὓ2) 7 ὸ + Ὃ38
0 Ὡ (Ὓ2) 7 ὸ Ὃ38 (ὸ)

(ὥ38 ) 7 Ὃ36
0

(ά2) 7 (Ὓ1) 7 (ὥ38
ᴂ ) 7 [Ὡ(Ὓ1) 7 ὸ Ὡ (ὥ38

ᴂ ) 7 ὸ] +  Ὃ38
0 Ὡ(ὥ38

ᴂ ) 7 ὸ) 

487 

Ὕ36
0 Ὡ(Ὑ1) 7 ὸ Ὕ36 (ὸ) Ὕ36

0 Ὡ(Ὑ1 ) 7 + (ὶ36 ) 7 ὸ   
488 

1

(‘1) 7 Ὕ36
0 Ὡ(Ὑ1) 7 ὸ Ὕ36 (ὸ)

1

(‘2) 7 Ὕ36
0 Ὡ(Ὑ1 ) 7 + (ὶ36 ) 7 ὸ  489 

(ὦ38 ) 7 Ὕ36
0

(‘1) 7 (Ὑ1 ) 7 (ὦ38
ᴂ ) 7 Ὡ(Ὑ1) 7 ὸ Ὡ(ὦ38

ᴂ ) 7 ὸ + Ὕ38
0 Ὡ(ὦ38

ᴂ ) 7 ὸ Ὕ38(ὸ)   

(ὥ38 ) 7 Ὕ36
0

(‘2) 7 (Ὑ1 ) 7 + (ὶ36 ) 7 + (Ὑ2 ) 7 Ὡ(Ὑ1 ) 7 + (ὶ36 ) 7 ὸ Ὡ (Ὑ2) 7 ὸ + Ὕ38
0Ὡ(Ὑ2) 7 ὸ  

490 

Definition of (Ὓ1) 7 ,(Ὓ2) 7 , (Ὑ1) 7 ,(Ὑ2) 7 :- 

Where (Ὓ1) 7 = (ὥ36) 7 (ά2) 7 (ὥ36
ᴂ ) 7    

             (Ὓ2) 7 = (ὥ38) 7 (ὴ38) 7   
                 (Ὑ1) 7 = (ὦ36) 7 (‘2) 7 (ὦ36

ᴂ ) 7    

             (Ὑ2) 7 = (ὦ38
ᴂ) 7  (ὶ38 ) 7   

 

491 

 From GLOBAL EQUATIONS we obtain  
 
Ὠ’7

Ὠὸ
= (ὥ36) 7 (ὥ36

ᴂ ) 7 (ὥ37
ᴂ ) 7 + (ὥ36

ᴂᴂ) 7 Ὕ37 ,ὸ   

(ὥ37
ᴂᴂ) 7 Ὕ37 ,ὸ’7 (ὥ37) 7 ’7  

 

Definition of ’7  :-         ’7 =
Ὃ36

Ὃ37
 

 
It follows 

 (ὥ37) 7 ’7 2
+ („2) 7 ’7 (ὥ36) 7 Ὠ’7

Ὠὸ
 

(ὥ37) 7 ’7 2
+ („1) 7 ’7 (ὥ36) 7  

 From which one obtains  
 

Definition of (’Ӷ1) 7 ,(’0) 7  :- 
 

(a) For 0 < (’0) 7 =
Ὃ36

0

Ὃ37
0 < (’1) 7 < (’Ӷ1) 7  

 

      ’7 (ὸ)
(’1) 7 + (ὅ) 7 (’2) 7 Ὡ

ὥ37
7 (’1) 7 (’0) 7  ὸ

1+ (ὅ) 7 Ὡ
ὥ37

7 (’1) 7 (’0) 7  ὸ
     ,    (ὅ) 7 =

(’1) 7 (’0) 7

(’0) 7 (’2) 7  

 

 it  follows (’0) 7 ’7 (ὸ) (’1) 7   
 

492 

In the same manner , we get 
 

 ’7 (ὸ)
(’1) 7 + (ὅӶ) 7 (’2) 7 Ὡ

ὥ37
7 (’1) 7 (’2) 7  ὸ

1+ (ὅӶ) 7 Ὡ
ὥ37

7 (’1) 7 (’2) 7  ὸ
      ,   (ὅӶ) 7 =

(’1) 7 (’0) 7

(’0) 7 (’2) 7    

 

   From which we deduce (’0) 7 ’7 (ὸ) (’Ӷ1) 7  
 

493 

(b) If  0 < (’1) 7 < (’0) 7 =
Ὃ36

0

Ὃ37
0 < (’Ӷ1) 7  we find like in the previous case, 494 
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      (’1) 7 (’1) 7 + ὅ 7 (’2) 7 Ὡ
ὥ37

7 (’1) 7 (’2) 7  ὸ

1+ ὅ 7 Ὡ
ὥ37

7 (’1) 7 (’2) 7  ὸ
 ’7 ὸ  

 

            
(’1) 7 + ὅӶ7 (’2) 7 Ὡ

ὥ37
7 (’1) 7 (’2) 7  ὸ

1+ ὅӶ7 Ὡ
ὥ37

7 (’1) 7 (’2) 7  ὸ
(’Ӷ1) 7   

(c) If  0 < (’1) 7 (’Ӷ1) 7 (’0) 7 =
Ὃ36

0

Ὃ37
0   , we obtain 

 

  (’1) 7  ’7 ὸ
(’1) 7 + ὅӶ7 (’2) 7 Ὡ

ὥ37
7 (’1) 7 (’2) 7  ὸ

1+ ὅӶ7 Ὡ
ὥ37

7 (’1) 7 (’2) 7  ὸ
(’0) 7  

 
And so with the notation of the first part of condition (c) , we have  

Definition of  ’7 ὸ :- 
 

(ά2) 7  ’7 ὸ (ά1) 7 ,    ’7 ὸ=
Ὃ36 ὸ

Ὃ37 ὸ
 

In a completely analogous way, we obtain  

Definition of  ό7 ὸ  :- 
 

(‘2) 7  ό7 ὸ (‘1) 7 ,    ό7 ὸ=
Ὕ36 ὸ

Ὕ37 ὸ
 

   
Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. 
Particular case : 

If (ὥ36
ᴂᴂ) 7 = (ὥ37

ᴂᴂ) 7 ,ὸὬὩὲ („1) 7 = („2) 7   and in this case (’1) 7 = (’Ӷ1) 7  if in addition (’0) 7 = (’1) 7  

then  ’7 ὸ= (’0) 7  and as a consequence Ὃ36 (ὸ) = (’0) 7 Ὃ37(ὸ) this also defines (’0) 7  for the special 
case . 

Analogously if  (ὦ36
ᴂᴂ) 7 = (ὦ37

ᴂᴂ) 7 ,ὸὬὩὲ (†1) 7 = (†2) 7  and then 

 (ό1) 7 =  (ό1) 7 if in addition (ό0) 7 = (ό1) 7  then  Ὕ36(ὸ) = (ό0) 7 Ὕ37(ὸ) This is an important consequence 

of the relation between (’1) 7  and (’Ӷ1) 7 , and definition of (ό0) 7 . 
 

495 

We can prove the following 

 If (ὥὭ
ᴂᴂ) 7 ὥὲὨ (ὦὭ

ᴂᴂ) 7  are independent on ὸ , and the conditions  

(ὥ36
ᴂ ) 7 (ὥ37

ᴂ ) 7 ὥ36
7 ὥ37

7 < 0   
(ὥ36
ᴂ ) 7 (ὥ37

ᴂ ) 7 ὥ36
7 ὥ37

7 + ὥ36
7 ὴ36

7 + (ὥ37
ᴂ ) 7 ὴ37

7 + ὴ36
7 ὴ37

7 > 0  
 

(ὦ36
ᴂ ) 7 (ὦ37

ᴂ) 7 ὦ36
7 ὦ37

7 > 0 ,  
 

(ὦ36
ᴂ ) 7 (ὦ37

ᴂ) 7 ὦ36
7 ὦ37

7 (ὦ36
ᴂ) 7 ὶ37

7 (ὦ37
ᴂ ) 7 ὶ37

7 + ὶ36
7 ὶ37

7 < 0  
 

ύὭὸὬ  ὴ36
7 , ὶ37

7  as defined  are satisfied , then the system WITH THE SATISFACTION OF THE FOLLOWING 
PROPERTIES HAS A SOLUTION AS DERIVED BELOW. 

 

496 

496A 

496B 

496C 

497C 

497D 

497E 

497F 

497G 

Particular case : 

If (ὥ16
ᴂᴂ) 2 = (ὥ17

ᴂᴂ) 2 ,ὸὬὩὲ (ʎ1) 2 = (ʎ2) 2   and in this case (’1) 2 = (’Ӷ1) 2  if in addition (’0) 2 = (’1) 2  

then  ’2 ὸ= (’0) 2  and as a consequence Ὃ16 (ὸ) = (’0) 2 Ὃ17(ὸ) 

Analogously if  (ὦ16
ᴂᴂ) 2 = (ὦ17

ᴂᴂ) 2 ,ὸὬὩὲ (ʐ1) 2 = (ʐ2) 2  and then 

 (ό1) 2 =  (ό1) 2 if in addition (ό0) 2 = (ό1) 2  then  Ὕ16 (ὸ) = (ό0) 2 Ὕ17 (ὸ) This is an important consequence 

of the relation between (’1) 2  and (’Ӷ1) 2  

498 

 499 

From GLOBAL EQUATIONS we obtain  500 
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Ὠ’3

Ὠὸ
= (ὥ20) 3 (ὥ20

ᴂ ) 3 (ὥ21
ᴂ ) 3 + (ὥ20

ᴂᴂ) 3 Ὕ21 ,ὸ (ὥ21
ᴂᴂ) 3 Ὕ21 ,ὸ’3 (ὥ21) 3 ’3   

Definition of ’3  :-         ’3 =
Ὃ20

Ὃ21
 

It follows 

 (ὥ21) 3 ’3 2
+ („2) 3 ’3 (ὥ20) 3 Ὠ’3

Ὠὸ
(ὥ21) 3 ’3 2

+ („1) 3 ’3 (ὥ20) 3  

501 

 

 From which one obtains  

(a) For 0 < (’0) 3 =
Ὃ20

0

Ὃ21
0 < (’1) 3 < (’Ӷ1) 3  

 

’3 (ὸ)
(’1) 3 + (ὅ) 3 (’2) 3 Ὡ

ὥ21
3 (’1) 3 (’0) 3  ὸ

1+ (ὅ) 3 Ὡ
ὥ21

3 (’1) 3 (’0) 3  ὸ
     ,    (ὅ) 3 =

(’1) 3 (’0) 3

(’0) 3 (’2) 3  

 it  follows (’0) 3 ’3 (ὸ) (’1) 3   

502 

 In the same manner , we get 

 ’3 (ὸ)
(’1) 3 + (ὅӶ) 3 (’2) 3 Ὡ

ὥ21
3 (’1) 3 (’2) 3  ὸ

1+ (ὅӶ) 3 Ὡ
ὥ21

3 (’1) 3 (’2) 3  ὸ
      ,   (ὅӶ) 3 =

(’1) 3 (’0) 3

(’0) 3 (’2) 3    

Definition of (’Ӷ1) 3  :- 

From which we deduce (’0) 3 ’3 (ὸ) (’Ӷ1) 3  

503 

(b) If  0 < (’1) 3 < (’0) 3 =
Ὃ20

0

Ὃ21
0 < (’Ӷ1) 3  we find like in the previous case, 

 

 (’1) 3 (’1) 3 + ὅ 3 (’2) 3 Ὡ
ὥ21

3 (’1) 3 (’2) 3  ὸ

1+ ὅ 3 Ὡ
ὥ21

3 (’1) 3 (’2) 3  ὸ
 ’3 ὸ  

 
(’1) 3 + ὅӶ3 (’2) 3 Ὡ

ὥ21
3 (’1) 3 (’2) 3  ὸ

1+ ὅӶ3 Ὡ
ὥ21

3 (’1) 3 (’2) 3  ὸ
(’Ӷ1) 3   

 

504 

(c) If  0 < (’1) 3 (’Ӷ1) 3 (’0) 3 =
Ὃ20

0

Ὃ21
0   , we obtain 

(’1) 3  ’3 ὸ
(’1) 3 + ὅӶ3 (’2) 3 Ὡ

ὥ21
3 (’1) 3 (’2) 3  ὸ

1+ ὅӶ3 Ὡ
ὥ21

3 (’1) 3 (’2) 3  ὸ
(’0) 3   

And so with the notation of the first part of condition (c) , we have  

Definition of  ’3 ὸ :- 

(ά2) 3  ’3 ὸ (ά1) 3 ,    ’3 ὸ=
Ὃ20 ὸ

Ὃ21 ὸ
 

In a completely analogous way, we obtain  

Definition of  ό3 ὸ  :- 

(‘2) 3  ό3 ὸ (‘1) 3 ,    ό3 ὸ=
Ὕ20 ὸ

Ὕ21 ὸ
 

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. 

Particular case : 

If (ὥ20
ᴂᴂ) 3 = (ὥ21

ᴂᴂ) 3 ,ὸὬὩὲ („1) 3 = („2) 3   and in this case (’1) 3 = (’Ӷ1) 3  if in addition (’0) 3 = (’1) 3  

then  ’3 ὸ= (’0) 3  and as a consequence Ὃ20 (ὸ) = (’0) 3 Ὃ21(ὸ) 

Analogously if  (ὦ20
ᴂᴂ) 3 = (ὦ21

ᴂᴂ) 3 ,ὸὬὩὲ (†1) 3 = (†2) 3  and then 

 (ό1) 3 =  (ό1) 3 if in addition (ό0) 3 = (ό1) 3  then  Ὕ20 (ὸ) = (ό0) 3 Ὕ21 (ὸ)  This is an important consequence 

of the relation between (’1) 3  and (’Ӷ1) 3  

505 

 506 

: From GLOBAL EQUATIONS we obtain  
 

Ὠ’4

Ὠὸ
= (ὥ24) 4 (ὥ24

ᴂ ) 4 (ὥ25
ᴂ ) 4 + (ὥ24

ᴂᴂ) 4 Ὕ25 ,ὸ (ὥ25
ᴂᴂ) 4 Ὕ25 ,ὸ’4 (ὥ25) 4 ’4   

 
 

Definition of ’4  :-         ’4 =
Ὃ24

Ὃ25
 

 
It follows 

 (ὥ25) 4 ’4 2
+ („2) 4 ’4 (ὥ24) 4 Ὠ’4

Ὠὸ
(ὥ25) 4 ’4 2

+ („4) 4 ’4 (ὥ24) 4  

507 
 
 
 
 
 
508 
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 From which one obtains  
 

Definition of (’Ӷ1) 4 ,(’0) 4  :- 
 

(d) For 0 < (’0) 4 =
Ὃ24

0

Ὃ25
0 < (’1) 4 < (’Ӷ1) 4  

 

  ’4 ὸ
(’1) 4 + ὅ 4 (’2) 4 Ὡ

ὥ25
4 (’1) 4 (’0) 4  ὸ

4+ ὅ 4 Ὡ
ὥ25

4 (’1) 4 (’0) 4  ὸ
     ,    ὅ 4 =

(’1) 4 (’0) 4

(’0) 4 (’2) 4  

 

 it  follows (’0) 4 ’4 (ὸ) (’1) 4   
 

In the same manner , we get 
 

 ’4 ὸ
(’1) 4 + ὅӶ4 (’2) 4 Ὡ

ὥ25
4 (’1) 4 (’2) 4  ὸ

4+ ὅӶ4 Ὡ
ὥ25

4 (’1) 4 (’2) 4  ὸ
      ,   (ὅӶ) 4 =

(’1) 4 (’0) 4

(’0) 4 (’2) 4    

 

   From which we deduce (’0) 4 ’4 (ὸ) (’Ӷ1) 4  
 

509 

(e) If  0 < (’1) 4 < (’0) 4 =
Ὃ24

0

Ὃ25
0 < (’Ӷ1) 4  we find like in the previous case, 

 

      (’1) 4 (’1) 4 + ὅ 4 (’2) 4 Ὡ
ὥ25

4 (’1) 4 (’2) 4  ὸ

1+ ὅ 4 Ὡ
ὥ25

4 (’1) 4 (’2) 4  ὸ
 ’4 ὸ  

 

            
(’1) 4 + ὅӶ4 (’2) 4 Ὡ

ὥ25
4 (’1) 4 (’2) 4  ὸ

1+ ὅӶ4 Ὡ
ὥ25

4 (’1) 4 (’2) 4  ὸ
(’Ӷ1) 4   

510 

 511 

(f) If  0 < (’1) 4 (’Ӷ1) 4 (’0) 4 =
Ὃ24

0

Ὃ25
0   , we obtain 

 

  (’1) 4  ’4 ὸ
(’1) 4 + ὅӶ4 (’2) 4 Ὡ

ὥ25
4 (’1) 4 (’2) 4  ὸ

1+ ὅӶ4 Ὡ
ὥ25

4 (’1) 4 (’2) 4  ὸ
(’0) 4  

 
And so with the notation of the first part of condition (c) , we have  

Definition of  ’4 ὸ :- 
 

(ά2) 4  ’4 ὸ (ά1) 4 ,    ’4 ὸ=
Ὃ24 ὸ

Ὃ25 ὸ
 

In a completely analogous way, we obtain  

Definition of  ό4 ὸ  :- 
 

(‘2) 4  ό4 ὸ (‘1) 4 ,    ό4 ὸ=
Ὕ24 ὸ

Ὕ25 ὸ
 

   
Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. 
 
Particular case : 
 

If (ὥ24
ᴂᴂ) 4 = (ὥ25

ᴂᴂ) 4 ,ὸὬὩὲ („1) 4 = („2) 4   and in this case (’1) 4 = (’Ӷ1) 4  if in addition (’0) 4 = (’1) 4  

then  ’4 ὸ= (’0) 4  and as a consequence Ὃ24 (ὸ) = (’0) 4 Ὃ25(ὸ) this also defines (’0) 4  for the special 
case . 
 

Analogously if  (ὦ24
ᴂᴂ) 4 = (ὦ25

ᴂᴂ) 4 ,ὸὬὩὲ (†1) 4 = (†2) 4  and then 

 (ό1) 4 =  (ό4) 4 if in addition (ό0) 4 = (ό1) 4  then  Ὕ24(ὸ) = (ό0) 4 Ὕ25(ὸ) This is an important consequence 

of the relation between (’1) 4  and (’Ӷ1) 4 , and definition of (ό0) 4 .  

512 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
513 

 514 
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        From  GLOBAL EQUATIONS we obtain  
 

Ὠ’5

Ὠὸ
= (ὥ28) 5 (ὥ28

ᴂ ) 5 (ὥ29
ᴂ ) 5 + (ὥ28

ᴂᴂ) 5 Ὕ29 ,ὸ (ὥ29
ᴂᴂ) 5 Ὕ29,ὸ’5 (ὥ29) 5 ’5   

 
 

Definition of ’5  :-         ’5 =
Ὃ28

Ὃ29
 

 
It follows 

 (ὥ29) 5 ’5 2
+ („2) 5 ’5 (ὥ28) 5 Ὠ’5

Ὠὸ
(ὥ29) 5 ’5 2

+ („1) 5 ’5 (ὥ28) 5  

 
 
 From which one obtains  

 

Definition of (’Ӷ1) 5 ,(’0) 5  :- 
 

(g) For 0 < (’0) 5 =
Ὃ28

0

Ὃ29
0 < (’1) 5 < (’Ӷ1) 5  

 

      ’5 (ὸ)
(’1) 5 + (ὅ) 5 (’2) 5 Ὡ

ὥ29
5 (’1) 5 (’0) 5  ὸ

5+ (ὅ) 5 Ὡ
ὥ29

5 (’1) 5 (’0) 5  ὸ
     ,    (ὅ) 5 =

(’1) 5 (’0) 5

(’0) 5 (’2) 5  

 

 it  follows (’0) 5 ’5 (ὸ) (’1) 5   
 

515 

In the same manner , we get 
 

 ’5 (ὸ)
(’1) 5 + (ὅӶ) 5 (’2) 5 Ὡ

ὥ29
5 (’1) 5 (’2) 5  ὸ

5+ (ὅӶ) 5 Ὡ
ὥ29

5 (’1) 5 (’2) 5  ὸ
      ,   (ὅӶ) 5 =

(’1) 5 (’0) 5

(’0) 5 (’2) 5    

 

   From which we deduce (’0) 5 ’5 (ὸ) (’Ӷ5) 5  
 

516 

(h) If  0 < (’1) 5 < (’0) 5 =
Ὃ28

0

Ὃ29
0 < (’Ӷ1) 5  we find like in the previous case, 

 

      (’1) 5 (’1) 5 + ὅ 5 (’2) 5 Ὡ
ὥ29

5 (’1) 5 (’2) 5  ὸ

1+ ὅ 5 Ὡ
ὥ29

5 (’1) 5 (’2) 5  ὸ
 ’5 ὸ  

 

            
(’1) 5 + ὅӶ5 (’2) 5 Ὡ

ὥ29
5 (’1) 5 (’2) 5  ὸ

1+ ὅӶ5 Ὡ
ὥ29

5 (’1) 5 (’2) 5  ὸ
(’Ӷ1) 5   

517 

(i) If  0 < (’1) 5 (’Ӷ1) 5 (’0) 5 =
Ὃ28

0

Ὃ29
0   , we obtain 

 

  (’1) 5  ’5 ὸ
(’1) 5 + ὅӶ5 (’2) 5 Ὡ

ὥ29
5 (’1) 5 (’2) 5  ὸ

1+ ὅӶ5 Ὡ
ὥ29

5 (’1) 5 (’2) 5  ὸ
(’0) 5  

 
And so with the notation of the first part of condition (c) , we have  

Definition of  ’5 ὸ :- 
 

(ά2) 5  ’5 ὸ (ά1) 5 ,    ’5 ὸ=
Ὃ28 ὸ

Ὃ29 ὸ
 

In a completely analogous way, we obtain  

Definition of  ό5 ὸ  :- 
 

(‘2) 5  ό5 ὸ (‘1) 5 ,    ό5 ὸ=
Ὕ28 ὸ

Ὕ29 ὸ
 

   

518 
 
 
 
 
519 
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Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. 
 
Particular case : 
 

If (ὥ28
ᴂᴂ) 5 = (ὥ29

ᴂᴂ) 5 ,ὸὬὩὲ („1) 5 = („2) 5   and in this case (’1) 5 = (’Ӷ1) 5  if in addition (’0) 5 = (’5) 5  

then  ’5 ὸ= (’0) 5  and as a consequence Ὃ28 (ὸ) = (’0) 5 Ὃ29(ὸ) this also defines (’0) 5  for the special 
case . 
 

Analogously if  (ὦ28
ᴂᴂ) 5 = (ὦ29

ᴂᴂ) 5 ,ὸὬὩὲ (†1) 5 = (†2) 5  and then 

 (ό1) 5 =  (ό1) 5 if in addition (ό0) 5 = (ό1) 5  then  Ὕ28(ὸ) = (ό0) 5 Ὕ29(ὸ) This is an important consequence 

of the relation between (’1) 5  and (’Ӷ1) 5 , and definition of (ό0) 5 . 
 

 520 
we obtain  

 
Ὠ’6

Ὠὸ
= (ὥ32) 6 (ὥ32

ᴂ ) 6 (ὥ33
ᴂ ) 6 + (ὥ32

ᴂᴂ) 6 Ὕ33 ,ὸ (ὥ33
ᴂᴂ) 6 Ὕ33 ,ὸ’6 (ὥ33) 6 ’6   

 
 

Definition of ’6  :-         ’6 =
Ὃ32

Ὃ33
 

 
It follows 

 (ὥ33) 6 ’6 2
+ („2) 6 ’6 (ὥ32) 6 Ὠ’6

Ὠὸ
(ὥ33) 6 ’6 2

+ („1) 6 ’6 (ὥ32) 6  

 
 
 From which one obtains  

 

Definition of (’Ӷ1) 6 ,(’0) 6  :- 
 

(j) For 0 < (’0) 6 =
Ὃ32

0

Ὃ33
0 < (’1) 6 < (’Ӷ1) 6  

 

      ’6 (ὸ)
(’1) 6 + (ὅ) 6 (’2) 6 Ὡ

ὥ33
6 (’1) 6 (’0) 6  ὸ

1+ (ὅ) 6 Ὡ
ὥ33

6 (’1) 6 (’0) 6  ὸ
     ,    (ὅ) 6 =

(’1) 6 (’0) 6

(’0) 6 (’2) 6  

 

 it  follows (’0) 6 ’6 (ὸ) (’1) 6   
 

521 

In the same manner , we get 
 

 ’6 (ὸ)
(’1) 6 + (ὅӶ) 6 (’2) 6 Ὡ

ὥ33
6 (’1) 6 (’2) 6  ὸ

1+ (ὅӶ) 6 Ὡ
ὥ33

6 (’1) 6 (’2) 6  ὸ
      ,   (ὅӶ) 6 =

(’1) 6 (’0) 6

(’0) 6 (’2) 6    

 

   From which we deduce (’0) 6 ’6 (ὸ) (’Ӷ1) 6  
 

522 
 
523 

(k) If  0 < (’1) 6 < (’0) 6 =
Ὃ32

0

Ὃ33
0 < (’Ӷ1) 6  we find like in the previous case, 

 

      (’1) 6 (’1) 6 + ὅ 6 (’2) 6 Ὡ
ὥ33

6 (’1) 6 (’2) 6  ὸ

1+ ὅ 6 Ὡ
ὥ33

6 (’1) 6 (’2) 6  ὸ
 ’6 ὸ  

 

  
(’1) 6 + ὅӶ6 (’2) 6 Ὡ

ὥ33
6 (’1) 6 (’2) 6  ὸ

1+ ὅӶ6 Ὡ
ὥ33

6 (’1) 6 (’2) 6  ὸ
(’Ӷ1) 6   

524 

(l) If  0 < (’1) 6 (’Ӷ1) 6 (’0) 6 =
Ὃ32

0

Ὃ33
0   , we obtain 

 

525 
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  (’1) 6  ’6 ὸ
(’1) 6 + ὅӶ6 (’2) 6 Ὡ

ὥ33
6 (’1) 6 (’2) 6  ὸ

1+ ὅӶ6 Ὡ
ὥ33

6 (’1) 6 (’2) 6  ὸ
(’0) 6  

 
And so with the notation of the first part of condition (c) , we have  

Definition of  ’6 ὸ :- 
 

(ά2) 6  ’6 ὸ (ά1) 6 ,    ’6 ὸ=
Ὃ32 ὸ

Ὃ33 ὸ
 

In a completely analogous way, we obtain  

Definition of  ό6 ὸ  :- 
 

(‘2) 6  ό6 ὸ (‘1) 6 ,    ό6 ὸ=
Ὕ32 ὸ

Ὕ33 ὸ
 

   
Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. 
 
Particular case : 
 

If (ὥ32
ᴂᴂ) 6 = (ὥ33

ᴂᴂ) 6 ,ὸὬὩὲ („1) 6 = („2) 6   and in this case (’1) 6 = (’Ӷ1) 6  if in addition (’0) 6 = (’1) 6  

then  ’6 ὸ= (’0) 6  and as a consequence Ὃ32 (ὸ) = (’0) 6 Ὃ33(ὸ) this also defines (’0) 6  for the special 
case . 

Analogously if  (ὦ32
ᴂᴂ) 6 = (ὦ33

ᴂᴂ) 6 ,ὸὬὩὲ (†1) 6 = (†2) 6  and then 

 (ό1) 6 =  (ό1) 6 if in addition (ό0) 6 = (ό1) 6  then  Ὕ32(ὸ) = (ό0) 6 Ὕ33(ὸ) This is an important consequence 

of the relation between (’1) 6  and (’Ӷ1) 6 , and definition of (ό0) 6 . 
 526 

Behavior of the solutions 

 If we denote and define 

 Definition of  („1) 7  ,(„2) 7  ,(†1) 7  ,(†2) 7  : 

(p) („1) 7  ,(„2) 7  ,(†1) 7  ,(†2) 7    four constants satisfying 

 

(„2) 7 (ὥ36
ǋ ) 7 + (ὥ37

ǋ ) 7 (ὥ36
ǋǋ) 7 Ὕ37 ,ὸ+ (ὥ37

ǋǋ) 7 Ὕ37 ,ὸ („1) 7    

 

 (†2) 7 (ὦ36
ǋ ) 7 + (ὦ37

ǋ) 7 (ὦ36
ǋǋ) 7 Ὃ39 ,ὸ (ὦ37

ǋǋ) 7 Ὃ39 ,ὸ (†1) 7   

527 

Definition of  (’1) 7 ,(’2) 7 ,(ό1) 7 , (ό2) 7 ,’7 ,ό7  : 

(q) By   (’1) 7 > 0 ,(’2) 7 < 0 and respectively (ό1) 7 > 0 ,(ό2) 7 < 0 the roots of    the equations  

(ὥ37) 7 ’7 2
+ („1) 7 ’7 (ὥ36) 7 = 0  

and  (ὦ37) 7 ό7 2
+ (†1) 7 ό7 (ὦ36) 7 = 0 and 

528 

 

529 

Definition of  (’Ӷ1) 7 ,, (’Ӷ2) 7 , (ό1) 7 ,(ό2) 7  : 

       By (’Ӷ1) 7 > 0 , (’Ӷ2) 7 < 0 and  respectively  (ό1) 7 > 0 , (ό2) 7 < 0 the 

      roots of the equations (ὥ37) 7 ’7 2
+ („2) 7 ’7 (ὥ36) 7 = 0  

     and  (ὦ37) 7 ό7 2
+ (†2) 7 ό7 (ὦ36) 7 = 0  

Definition of  (ά1) 7  , (ά2) 7  ,(‘1) 7 ,(‘2) 7 ,(’0) 7  :- 

 

(r) If we define (ά1) 7  ,(ά2) 7  ,(‘1) 7 ,(‘2) 7     by 

 

530. 
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      (ά2) 7 = (’0) 7 , (ά1) 7 = (’1) 7 , ░█ (’0) 7 < (’1) 7  

 

       (ά2) 7 = (’1) 7 ,(ά1) 7 = (’Ӷ1) 7  ,░█ (’1) 7 < (’0) 7 < (’Ӷ1) 7 , 

      and  (’0) 7 =
Ὃ36

0

Ὃ37
0   

    ( ά2) 7 = (’1) 7 ,(ά1) 7 = (’0) 7 , ░█ (’Ӷ1) 7 < (’0) 7   

 

and analogously 

       (‘2) 7 = (ό0) 7 ,(‘1) 7 = (ό1) 7 , ░█ (ό0) 7 < (ό1) 7  

       (‘2) 7 = (ό1) 7 , (‘1) 7 = (ό1) 7  ,░█ (ό1) 7 < (ό0) 7 < (ό1) 7 , 

     and (ό0) 7 =
Ὕ36

0

Ὕ37
0   

    ( ‘2) 7 = (ό1) 7 ,(‘1) 7 = (ό0) 7 ,░█ (ό1) 7 < (ό0) 7   where (ό1) 7 ,(ό1) 7  

are defined by 59 and 67 respectively 

 

531 

Then the solution of GLOBAL EQUATIONS satisfies the inequalities 

       Ὃ36
0 Ὡ(Ὓ1) 7 (ὴ36 ) 7 ὸ Ὃ36(ὸ) Ὃ36

0 Ὡ(Ὓ1) 7 ὸ 

where (ὴὭ)
7  is defined  

 

532 

1

      (ά7) 7 Ὃ36
0 Ὡ(Ὓ1) 7 (ὴ36 ) 7 ὸ Ὃ37(ὸ)

1

(ά2) 7 Ὃ36
0 Ὡ(Ὓ1) 7 ὸ  

 

533 

( 

(ὥ38 ) 7 Ὃ36
0

(ά1) 7 (Ὓ1) 7 (ὴ36 ) 7 (Ὓ2) 7 Ὡ(Ὓ1) 7 (ὴ36 ) 7 ὸ Ὡ (Ὓ2) 7 ὸ + Ὃ38
0 Ὡ (Ὓ2) 7 ὸ Ὃ38 (ὸ)

(ὥ38 ) 7 Ὃ36
0

(ά2) 7 (Ὓ1) 7 (ὥ38
ǋ ) 7 [Ὡ(Ὓ1) 7 ὸ Ὡ (ὥ38

ǋ ) 7 ὸ] +  Ὃ38
0 Ὡ(ὥ38

ǋ ) 7 ὸ) 

 

534 

Ὕ36
0 Ὡ(Ὑ1) 7 ὸ Ὕ36 (ὸ) Ὕ36

0 Ὡ(Ὑ1 ) 7 + (ὶ36 ) 7 ὸ   
535 

1

(‘1) 7 Ὕ36
0 Ὡ(Ὑ1) 7 ὸ Ὕ36 (ὸ)

1

(‘2) 7 Ὕ36
0 Ὡ(Ὑ1 ) 7 + (ὶ36 ) 7 ὸ  536 

(ὦ38 ) 7 Ὕ36
0

(‘1) 7 (Ὑ1 ) 7 (ὦ38
ǋ ) 7 Ὡ(Ὑ1) 7 ὸ Ὡ(ὦ38

ǋ ) 7 ὸ + Ὕ38
0 Ὡ(ὦ38

ǋ ) 7 ὸ Ὕ38(ὸ)   

(ὥ38 ) 7 Ὕ36
0

(‘2) 7 (Ὑ1 ) 7 + (ὶ36 ) 7 + (Ὑ2 ) 7 Ὡ(Ὑ1 ) 7 + (ὶ36 ) 7 ὸ Ὡ (Ὑ2) 7 ὸ + Ὕ38
0Ὡ(Ὑ2) 7 ὸ  

 

537 

Definition of (Ὓ1) 7 , (Ὓ2) 7 ,(Ὑ1) 7 ,(Ὑ2) 7 :- 

Where (Ὓ1) 7 = (ὥ36) 7 (ά2) 7 (ὥ36
ǋ ) 7   

             (Ὓ2) 7 = (ὥ38) 7 (ὴ38) 7   

                 (Ὑ1) 7 = (ὦ36) 7 (‘2) 7 (ὦ36
ǋ ) 7    

             (Ὑ2) 7 = (ὦ38
ǋ) 7  (ὶ38 ) 7   

538 

 

 

 

539 

         From CONCATENATED GLOBAL EQUATIONS we obtain  

Ὠ’7

Ὠὸ
= (ὥ36) 7 (ὥ36

ǋ ) 7 (ὥ37
ǋ ) 7 + (ὥ36

ǋǋ) 7 Ὕ37 ,ὸ   

(ὥ37
ǋǋ) 7 Ὕ37 ,ὸ’7 (ὥ37) 7 ’7  

540 
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Definition of ’7  :-         ’7 =
Ὃ36

Ὃ37
 

It follows 

 (ὥ37) 7 ’7 2
+ („2) 7 ’7 (ὥ36) 7 Ὠ’7

Ὠὸ
 

(ὥ37) 7 ’7 2
+ („1) 7 ’7 (ὥ36) 7  

From which one obtains  

Definition of (’Ӷ1) 7 ,(’0) 7  :- 

(m) For 0 < (’0) 7 =
Ὃ36

0

Ὃ37
0 < (’1) 7 < (’Ӷ1) 7  

 

      ’7 (ὸ)
(’1) 7 + (ὅ) 7 (’2) 7 Ὡ

ὥ37
7 (’1) 7 (’0) 7  ὸ

1+ (ὅ) 7 Ὡ
ὥ37

7 (’1) 7 (’0) 7  ὸ
     ,    (ὅ) 7 =

(’1) 7 (’0) 7

(’0) 7 (’2) 7  

it  follows (’0) 7 ’7 (ὸ) (’1) 7   

In the same manner , we get 

 ’7 (ὸ)
(’1) 7 + (ὅӶ) 7 (’2) 7 Ὡ

ὥ37
7 (’1) 7 (’2) 7  ὸ

1+ (ὅӶ) 7 Ὡ
ὥ37

7 (’1) 7 (’2) 7  ὸ
      ,   (ὅӶ) 7 =

(’1) 7 (’0) 7

(’0) 7 (’2) 7    

   From which we deduce (’0) 7 ’7 (ὸ) (’Ӷ1) 7  
 

541 

(n) If  0 < (’1) 7 < (’0) 7 =
Ὃ36

0

Ὃ37
0 < (’Ӷ1) 7  we find like in the previous case, 

 

      (’1) 7 (’1) 7 + ὅ 7 (’2) 7 Ὡ
ὥ37

7 (’1) 7 (’2) 7  ὸ

1+ ὅ 7 Ὡ
ὥ37

7 (’1) 7 (’2) 7  ὸ
 ’7 ὸ  

            
(’1) 7 + ὅӶ7 (’2) 7 Ὡ

ὥ37
7 (’1) 7 (’2) 7  ὸ

1+ ὅӶ7 Ὡ
ὥ37

7 (’1) 7 (’2) 7  ὸ
(’Ӷ1) 7   

542 

(o) If  0 < (’1) 7 (’Ӷ1) 7 (’0) 7 =
Ὃ36

0

Ὃ37
0   , we obtain 

 

  (’1) 7  ’7 ὸ
(’1) 7 + ὅӶ7 (’2) 7 Ὡ

ὥ37
7 (’1) 7 (’2) 7  ὸ

1+ ὅӶ7 Ὡ
ὥ37

7 (’1) 7 (’2) 7  ὸ
(’0) 7  

 

And so with the notation of the first part of condition (c) , we have  

Definition of  ’7 ὸ :- 

 

(ά2) 7  ’7 ὸ (ά1) 7 ,    ’7 ὸ=
Ὃ36 ὸ

Ὃ37 ὸ
 

In a completely analogous way, we obtain  

Definition of  ό7 ὸ  :- 

 

(‘2) 7  ό7 ὸ (‘1) 7 ,    ό7 ὸ=
Ὕ36 ὸ

Ὕ37 ὸ
 

   

Now, using this result and replacing it in CONCATENATED GLOBAL EQUATIONS we get easily the result 

543 
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stated in the theorem. 

Particular case : 

If (ὥ36
ǋǋ) 7 = (ὥ37

ǋǋ) 7 ,ὸὬὩὲ („1) 7 = („2) 7   and in this case (’1) 7 = (’Ӷ1) 7  if in addition (’0) 7 = (’1) 7  

then  ’7 ὸ= (’0) 7  and as a consequence Ὃ36 (ὸ) = (’0) 7 Ὃ37(ὸ) this also defines (’0) 7  for the special 

case . 

Analogously if  (ὦ36
ǋǋ) 7 = (ὦ37

ǋǋ) 7 ,ὸὬὩὲ (†1) 7 = (†2) 7  and then 

 (ό1) 7 =  (ό1) 7 if in addition (ό0) 7 = (ό1) 7  then  Ὕ36 (ὸ) = (ό0) 7 Ὕ37 (ὸ)  This is an important consequence 

of the relation between (’1) 7  and (’Ӷ1) 7 , and definition of (ό0) 7 . 

 

ὦ14
1 Ὕ13 [(ὦ14

ᴂ) 1 (ὦ14
ᴂᴂ) 1 Ὃ ]Ὕ14 =  0  544 

ὦ15
1 Ὕ14 [(ὦ15

ᴂ) 1 (ὦ15
ᴂᴂ) 1 Ὃ ]Ὕ15 =  0  545 

has a unique positive solution , which is an equilibrium solution for the system 546 

ὥ16
2 Ὃ17 (ὥ16

ᴂ ) 2 + (ὥ16
ᴂᴂ) 2 Ὕ17 Ὃ16 =  0  547 

ὥ17
2 Ὃ16 (ὥ17

ᴂ ) 2 + (ὥ17
ᴂᴂ) 2 Ὕ17 Ὃ17 =  0  548 

ὥ18
2 Ὃ17 (ὥ18

ᴂ ) 2 + (ὥ18
ᴂᴂ) 2 Ὕ17 Ὃ18 =  0  549 

ὦ16
2 Ὕ17 [(ὦ16

ᴂ) 2 (ὦ16
ᴂᴂ) 2 Ὃ19  ]Ὕ16 =  0  550 

ὦ17
2 Ὕ16 [(ὦ17

ᴂ) 2 (ὦ17
ᴂᴂ) 2 Ὃ19  ]Ὕ17 =  0  551 

ὦ18
2 Ὕ17 [(ὦ18

ᴂ) 2 (ὦ18
ᴂᴂ) 2 Ὃ19  ]Ὕ18 =  0  552 

has a unique positive solution , which is an equilibrium solution for  553 

ὥ20
3 Ὃ21 (ὥ20

ᴂ ) 3 + (ὥ20
ᴂᴂ) 3 Ὕ21 Ὃ20 =  0  554 

ὥ21
3 Ὃ20 (ὥ21

ᴂ ) 3 + (ὥ21
ᴂᴂ) 3 Ὕ21 Ὃ21 =  0  555 

ὥ22
3 Ὃ21 (ὥ22

ᴂ ) 3 + (ὥ22
ᴂᴂ) 3 Ὕ21 Ὃ22 =  0  556 

ὦ20
3 Ὕ21 [(ὦ20

ᴂ ) 3 (ὦ20
ᴂᴂ) 3 Ὃ23  ]Ὕ20 =  0  557 

ὦ21
3 Ὕ20 [(ὦ21

ᴂ ) 3 (ὦ21
ᴂᴂ) 3 Ὃ23  ]Ὕ21 =  0  558 

ὦ22
3 Ὕ21 [(ὦ22

ᴂ ) 3 (ὦ22
ᴂᴂ) 3 Ὃ23  ]Ὕ22 =  0  559 

has a unique positive solution , which is an equilibrium solution 560 

ὥ24
4 Ὃ25 (ὥ24

ᴂ ) 4 + (ὥ24
ᴂᴂ) 4 Ὕ25 Ὃ24 =  0  

 

561 

ὥ25
4 Ὃ24 (ὥ25

ᴂ ) 4 + (ὥ25
ᴂᴂ) 4 Ὕ25 Ὃ25 =  0  563 

ὥ26
4 Ὃ25 (ὥ26

ᴂ ) 4 + (ὥ26
ᴂᴂ) 4 Ὕ25 Ὃ26 =  0  

 

564 

ὦ24
4 Ὕ25 [(ὦ24

ᴂ ) 4 (ὦ24
ᴂᴂ) 4 Ὃ27  ]Ὕ24 =  0  

 

565 

ὦ25
4 Ὕ24 [(ὦ25

ᴂ ) 4 (ὦ25
ᴂᴂ) 4 Ὃ27  ]Ὕ25 =  0  

 

566 

ὦ26
4 Ὕ25 [(ὦ26

ᴂ ) 4 (ὦ26
ᴂᴂ) 4 Ὃ27  ]Ὕ26 =  0  

 

567 

has a unique positive solution , which is an equilibrium solution for the system 568 

ὥ28
5 Ὃ29 (ὥ28

ᴂ ) 5 + (ὥ28
ᴂᴂ) 5 Ὕ29 Ὃ28 =  0  

 

569 

ὥ29
5 Ὃ28 (ὥ29

ᴂ ) 5 + (ὥ29
ᴂᴂ) 5 Ὕ29 Ὃ29 =  0  

 

570 

ὥ30
5 Ὃ29 (ὥ30

ᴂ ) 5 + (ὥ30
ᴂᴂ) 5 Ὕ29 Ὃ30 =  0  

 

571 

ὦ28
5 Ὕ29 [(ὦ28

ᴂ) 5 (ὦ28
ᴂᴂ) 5 Ὃ31  ]Ὕ28 =  0  

 
572 

ὦ29
5 Ὕ28 [(ὦ29

ᴂ) 5 (ὦ29
ᴂᴂ) 5 Ὃ31  ]Ὕ29 =  0  

 

573 
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ὦ30
5 Ὕ29 [(ὦ30

ᴂ) 5 (ὦ30
ᴂᴂ) 5 Ὃ31  ]Ὕ30 =  0  

 
574 

has a unique positive solution , which is an equilibrium solution for the system  575 

ὥ32
6 Ὃ33 (ὥ32

ᴂ ) 6 + (ὥ32
ᴂᴂ) 6 Ὕ33 Ὃ32 =  0  

 

576 

ὥ33
6 Ὃ32 (ὥ33

ᴂ ) 6 + (ὥ33
ᴂᴂ) 6 Ὕ33 Ὃ33 =  0  

 

577 

ὥ34
6 Ὃ33 (ὥ34

ᴂ ) 6 + (ὥ34
ᴂᴂ) 6 Ὕ33 Ὃ34 =  0  

 

578 

ὦ32
6 Ὕ33 [(ὦ32

ᴂ ) 6 (ὦ32
ᴂᴂ) 6 Ὃ35  ]Ὕ32 =  0  

 

579 

ὦ33
6 Ὕ32 [(ὦ33

ᴂ ) 6 (ὦ33
ᴂᴂ) 6 Ὃ35  ]Ὕ33 =  0  

 

580 

ὦ34
6 Ὕ33 [(ὦ34

ᴂ ) 6 (ὦ34
ᴂᴂ) 6 Ὃ35  ]Ὕ34 =  0  

 
584 

has a unique positive solution , which is an equilibrium solution for the system  582 

ὥ36
7 Ὃ37 (ὥ36

ᴂ ) 7 + (ὥ36
ᴂᴂ) 7 Ὕ37 Ὃ36 =  0  583 

ὥ37
7 Ὃ36 (ὥ37

ᴂ ) 7 + (ὥ37
ᴂᴂ) 7 Ὕ37 Ὃ37 =  0  584 

ὥ38
7 Ὃ37 (ὥ38

ᴂ ) 7 + (ὥ38
ᴂᴂ) 7 Ὕ37 Ὃ38 =  0  585 

586 

ὦ36
7 Ὕ37 [(ὦ36

ᴂ ) 7 (ὦ36
ᴂᴂ) 7 Ὃ39 ]Ὕ36 =  0  587 

ὦ37
7 Ὕ36 [(ὦ37

ᴂ ) 7 (ὦ37
ᴂᴂ) 7 Ὃ39  ]Ὕ37 =  0  588 

ὦ38
7 Ὕ37 [(ὦ38

ᴂ ) 7 (ὦ38
ᴂᴂ) 7 Ὃ39  ]Ὕ38 =  0  

 

589 

has a unique positive solution , which is an equilibrium solution for the system  

(a) Indeed the first two equations have a nontrivial solution Ὃ36 ,Ὃ37   if  

 

ὊὝ39 =

(ὥ36
ᴂ ) 7 (ὥ37

ᴂ ) 7 ὥ36
7 ὥ37

7 + (ὥ36
ᴂ ) 7 (ὥ37

ᴂᴂ) 7 Ὕ37 + (ὥ37
ᴂ ) 7 (ὥ36

ᴂᴂ) 7 Ὕ37 +

(ὥ36
ᴂᴂ) 7 Ὕ37 (ὥ37

ᴂᴂ) 7 Ὕ37 = 0   

 

560 

Definition  and uniqueness of T37
ᶻ  :-   

After hypothesis  Ὢ0 < 0,ὪЊ > 0  and the functions (ὥὭ
ᴂᴂ) 7 Ὕ37  being increasing, it follows that there 

exists a unique   Ὕ37
ᶻ   for which  ὪὝ37

ᶻ = 0. With this value , we obtain from the three first equations  

Ὃ36 =  
ὥ36

7 Ὃ37

(ὥ36
ᴂ ) 7 + (ὥ36

ᴂᴂ) 7 Ὕ37
ᶻ       ,      Ὃ38 =  

ὥ38
7 Ὃ37

(ὥ38
ᴂ ) 7 + (ὥ38

ᴂᴂ) 7 Ὕ37
ᶻ  

(e) By the same argument, the equations( SOLUTIONAL)  admit solutions Ὃ36 ,Ὃ37  if  
 

•Ὃ39 = (ὦ36
ᴂ ) 7 (ὦ37

ᴂ ) 7 ὦ36
7 ὦ37

7   

(ὦ36
ᴂ ) 7 (ὦ37

ᴂᴂ) 7 Ὃ39 + (ὦ37
ᴂ ) 7 (ὦ36

ᴂᴂ) 7 Ὃ39 + (ὦ36
ᴂᴂ) 7 Ὃ39 (ὦ37

ᴂᴂ) 7 Ὃ39 = 0   

561 
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Where in Ὃ39 Ὃ36 ,Ὃ37 ,Ὃ38 ,Ὃ36 ,Ὃ38  must be replaced by their values from 96. It is easy to see that ʒ is a 

decreasing function in Ὃ37  taking into account the hypothesis  •0 > 0 ,•Њ  < 0 it follows that there exists 

a unique Ὃ37
ᶻ such that •Ὃᶻ = 0 

Finally we obtain the unique solution OF THE SYSTEM 

Ὃ37
ᶻ given by • Ὃ39

ᶻ = 0 , Ὕ37
ᶻ given by ὪὝ37

ᶻ = 0 and 

Ὃ36
ᶻ =

ὥ36
7 Ὃ37
ᶻ

(ὥ36
ᴂ ) 7 + (ὥ36

ᴂᴂ) 7 Ὕ37
ᶻ     ,   Ὃ38

ᶻ =
ὥ38

7 Ὃ37
ᶻ

(ὥ38
ᴂ ) 7 + (ὥ38

ᴂᴂ) 7 Ὕ37
ᶻ      

562 

Ὕ36
ᶻ =

ὦ36
7 Ὕ37
ᶻ

(ὦ36
ᴂ ) 7 (ὦ36

ᴂᴂ) 7 Ὃ39
ᶻ       ,   Ὕ38

ᶻ =
ὦ38

7 Ὕ37
ᶻ

(ὦ38
ᴂ ) 7 (ὦ38

ᴂᴂ) 7 Ὃ39
ᶻ  

 

563 

Definition  and uniqueness of T21
ᶻ  :-   

After hypothesis  Ὢ0 < 0,ὪÐ > 0  and the functions (ὥὭ
ǋǋ) 1 Ὕ21  being increasing, it follows that there 

exists a unique   Ὕ21
ᶻ   for which  ὪὝ21

ᶻ = 0. With this value , we obtain from the three first equations  

Ὃ20 =  
ὥ20

3 Ὃ21

(ὥ20
ᴂ ) 3 + (ὥ20

ᴂᴂ) 3 Ὕ21
ᶻ       ,      Ὃ22 =  

ὥ22
3 Ὃ21

(ὥ22
ᴂ ) 3 + (ὥ22

ᴂᴂ) 3 Ὕ21
ᶻ  

564 

 

565 

Definition  and uniqueness of T25
ᶻ  :-   

After hypothesis  Ὢ0 < 0,ὪЊ > 0  and the functions (ὥὭ
ᴂᴂ) 4 Ὕ25  being increasing, it follows that there 

exists a unique   Ὕ25
ᶻ   for which  ὪὝ25

ᶻ = 0. With this value , we obtain from the three first equations  

Ὃ24 =  
ὥ24

4 Ὃ25

(ὥ24
ᴂ ) 4 + (ὥ24

ᴂᴂ) 4 Ὕ25
ᶻ       ,      Ὃ26 =  

ὥ26
4 Ὃ25

(ὥ26
ᴂ ) 4 + (ὥ26

ᴂᴂ) 4 Ὕ25
ᶻ  

566 

Definition  and uniqueness of T29
ᶻ  :-   

After hypothesis  Ὢ0 < 0,ὪЊ > 0  and the functions (ὥὭ
ᴂᴂ) 5 Ὕ29  being increasing, it follows that there 

exists a unique   Ὕ29
ᶻ   for which  ὪὝ29

ᶻ = 0. With this value , we obtain from the three first equations  

Ὃ28 =  
ὥ28

5 Ὃ29

(ὥ28
ᴂ ) 5 + (ὥ28

ᴂᴂ) 5 Ὕ29
ᶻ       ,      Ὃ30 =  

ὥ30
5 Ὃ29

(ὥ30
ᴂ ) 5 + (ὥ30

ᴂᴂ) 5 Ὕ29
ᶻ  

567 

Definition  and uniqueness of T33
ᶻ  :-   

After hypothesis  Ὢ0 < 0,ὪЊ > 0  and the functions (ὥὭ
ᴂᴂ) 6 Ὕ33  being increasing, it follows that there 

exists a unique   Ὕ33
ᶻ   for which  ὪὝ33

ᶻ = 0. With this value , we obtain from the three first equations  

Ὃ32 =  
ὥ32

6 Ὃ33

(ὥ32
ᴂ ) 6 + (ὥ32

ᴂᴂ) 6 Ὕ33
ᶻ       ,      Ὃ34 =  

ὥ34
6 Ὃ33

(ὥ34
ᴂ ) 6 + (ὥ34

ᴂᴂ) 6 Ὕ33
ᶻ  

568 

(f) By the same argument, the equations 92,93  admit solutions Ὃ13 ,Ὃ14  if  

•Ὃ = (ὦ13
ᴂ) 1 (ὦ14

ᴂ) 1 ὦ13
1 ὦ14

1   

(ὦ13
ᴂ) 1 (ὦ14

ᴂᴂ) 1 Ὃ + (ὦ14
ᴂ) 1 (ὦ13

ᴂᴂ) 1 Ὃ + (ὦ13
ᴂᴂ) 1 Ὃ(ὦ14

ᴂᴂ) 1 Ὃ = 0  

 Where in ὋὋ13 ,Ὃ14 ,Ὃ15 ,Ὃ13 ,Ὃ15  must be replaced by their values from 96. It is easy to see that ʒ is a 

decreasing function in Ὃ14  taking into account the hypothesis  •0 > 0 ,•Њ  < 0 it follows that there exists a 

unique Ὃ14
ᶻ such that •Ὃᶻ = 0 

569 

(g) By the same argument, the equations 92,93  admit solutions Ὃ16 ,Ὃ17  if  

 

ʒὋ19 = (ὦ16
ᴂ) 2 (ὦ17

ᴂ) 2 ὦ16
2 ὦ17

2   

570 
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(ὦ16
ᴂ) 2 (ὦ17

ᴂᴂ) 2 Ὃ19 + (ὦ17
ᴂ) 2 (ὦ16

ᴂᴂ) 2 Ὃ19 + (ὦ16
ᴂᴂ) 2 Ὃ19 (ὦ17

ᴂᴂ) 2 Ὃ19 = 0   

Where in Ὃ19 Ὃ16 ,Ὃ17 ,Ὃ18 ,Ὃ16 ,Ὃ18  must be replaced by their values from 96. It is easy to see that ʒ is a 

decreasing function in Ὃ17  taking into account the hypothesis  ʒ0 > 0 ,•Њ  < 0 it follows that there exists a 

unique G14
ᶻ  such that ʒ Ὃ19

ᶻ = 0 

571 

(a) By the same argument, the concatenated equations  admit solutions Ὃ20 ,Ὃ21  if  

 
•Ὃ23 = (ὦ20

ᴂ) 3 (ὦ21
ᴂ) 3 ὦ20

3 ὦ21
3   

(ὦ20
ᴂ ) 3 (ὦ21

ᴂᴂ) 3 Ὃ23 + (ὦ21
ᴂ ) 3 (ὦ20

ᴂᴂ) 3 Ὃ23 + (ὦ20
ᴂᴂ) 3 Ὃ23 (ὦ21

ᴂᴂ) 3 Ὃ23 = 0   

Where in Ὃ23 Ὃ20 ,Ὃ21 ,Ὃ22 ,Ὃ20 ,Ὃ22  must be replaced by their values from 96. It is easy to see that ű is a 

decreasing function in Ὃ21  taking into account the hypothesis  •0 > 0 ,•Ð  < 0 it follows that there exists a 

unique Ὃ21
ᶻ such that • Ὃ23

ᶻ = 0 

572 

 

 

 

 

573 

(b) By the same argument, the equations of modules  admit solutions Ὃ24 ,Ὃ25  if  
 

•Ὃ27 = (ὦ24
ᴂ) 4 (ὦ25

ᴂ) 4 ὦ24
4 ὦ25

4   

(ὦ24
ᴂ ) 4 (ὦ25

ᴂᴂ) 4 Ὃ27 + (ὦ25
ᴂ ) 4 (ὦ24

ᴂᴂ) 4 Ὃ27 + (ὦ24
ᴂᴂ) 4 Ὃ27 (ὦ25

ᴂᴂ) 4 Ὃ27 = 0   

Where in Ὃ27 Ὃ24 ,Ὃ25 ,Ὃ26 ,Ὃ24 ,Ὃ26  must be replaced by their values from 96. It is easy to see that ʒ is a 

decreasing function in Ὃ25  taking into account the hypothesis  •0 > 0 ,•Њ  < 0 it follows that there exists 

a unique Ὃ25
ᶻ such that • Ὃ27

ᶻ = 0 

574 

(c) By the same argument, the equations (modules)  admit solutions Ὃ28 ,Ὃ29  if  
 

•Ὃ31 = (ὦ28
ᴂ) 5 (ὦ29

ᴂ) 5 ὦ28
5 ὦ29

5   

(ὦ28
ᴂ ) 5 (ὦ29

ᴂᴂ) 5 Ὃ31 + (ὦ29
ᴂ) 5 (ὦ28

ᴂᴂ) 5 Ὃ31 + (ὦ28
ᴂᴂ) 5 Ὃ31 (ὦ29

ᴂᴂ) 5 Ὃ31 = 0   

Where in Ὃ31 Ὃ28 ,Ὃ29,Ὃ30 ,Ὃ28 ,Ὃ30  must be replaced by their values from 96. It is easy to see that ʒ is a 

decreasing function in Ὃ29  taking into account the hypothesis  •0 > 0 ,•Њ  < 0 it follows that there exists 

a unique Ὃ29
ᶻ such that • Ὃ31

ᶻ = 0 

575 

(d) By the same argument, the equations (modules) admit solutions Ὃ32 ,Ὃ33  if  
 

•Ὃ35 = (ὦ32
ᴂ) 6 (ὦ33

ᴂ) 6 ὦ32
6 ὦ33

6   

(ὦ32
ᴂ ) 6 (ὦ33

ᴂᴂ) 6 Ὃ35 + (ὦ33
ᴂ ) 6 (ὦ32

ᴂᴂ) 6 Ὃ35 + (ὦ32
ᴂᴂ) 6 Ὃ35 (ὦ33

ᴂᴂ) 6 Ὃ35 = 0   

Where in Ὃ35 Ὃ32 ,Ὃ33 ,Ὃ34 ,Ὃ32 ,Ὃ34  must be replaced by their values It is easy to see that ʒ is a decreasing 

function in Ὃ33  taking into account the hypothesis  •0 > 0 ,•Њ  < 0 it follows that there exists a unique 

Ὃ33
ᶻ such that •Ὃᶻ = 0 

578 

579 

580 

581 

Finally we obtain the unique solution of 89 to 94 

Ὃ14
ᶻ given by •Ὃᶻ = 0 , Ὕ14

ᶻ given by ὪὝ14
ᶻ = 0 and 

Ὃ13
ᶻ =

ὥ13
1 Ὃ14
ᶻ

(ὥ13
ᴂ ) 1 + (ὥ13

ᴂᴂ) 1 Ὕ14
ᶻ     ,   Ὃ15

ᶻ =
ὥ15

1 Ὃ14
ᶻ

(ὥ15
ᴂ ) 1 + (ὥ15

ᴂᴂ) 1 Ὕ14
ᶻ      

Ὕ13
ᶻ =

ὦ13
1 Ὕ14
ᶻ

(ὦ13
ᴂ ) 1 (ὦ13

ᴂᴂ) 1 Ὃz
      ,   Ὕ15

ᶻ =
ὦ15

1 Ὕ14
ᶻ

(ὦ15
ᴂ ) 1 (ὦ15

ᴂᴂ) 1 Ὃz
 

582 
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Obviously, these values represent an equilibrium solution  

Finally we obtain the unique solution  583 

G17
ᶻ  given by ʒ Ὃ19

ᶻ = 0 , T17
ᶻ given by ὪT17

ᶻ = 0 and 584 

G16
ᶻ =

a16
2 G17
ᶻ

(a16
ᴂ ) 2 + (a16

ᴂᴂ) 2 T17
ᶻ     ,   G18

ᶻ =
a18

2 G17
ᶻ

(a18
ᴂ ) 2 + (a18

ᴂᴂ) 2 T17
ᶻ      

585 

T16
ᶻ =

b16
2 T17
ᶻ

(b16
ᴂ ) 2 (b16

ᴂᴂ) 2 Ὃ19
ᶻ       ,   T18

ᶻ =
b18

2 T17
ᶻ

(b18
ᴂ ) 2 (b18

ᴂᴂ) 2 Ὃ19
ᶻ  

586 

Obviously, these values represent an equilibrium solution 587 

Finally we obtain the unique solution  

Ὃ21
ᶻ given by • Ὃ23

ᶻ = 0 , Ὕ21
ᶻ given by ὪὝ21

ᶻ = 0 and 

Ὃ20
ᶻ =

ὥ20
3 Ὃ21
ᶻ

(ὥ20
ᴂ ) 3 + (ὥ20

ᴂᴂ) 3 Ὕ21
ᶻ     ,   Ὃ22

ᶻ =
ὥ22

3 Ὃ21
ᶻ

(ὥ22
ᴂ ) 3 + (ὥ22

ᴂᴂ) 3 Ὕ21
ᶻ      

Ὕ20
ᶻ =

ὦ20
3 Ὕ21
ᶻ

(ὦ20
ᴂ ) 3 (ὦ20

ᴂᴂ) 3 Ὃ23
ᶻ       ,   Ὕ22

ᶻ =
ὦ22

3 Ὕ21
ᶻ

(ὦ22
ᴂ ) 3 (ὦ22

ᴂᴂ) 3 Ὃ23
ᶻ  

Obviously, these values represent an equilibrium solution  

588 

Finally we obtain the unique solution  

Ὃ25
ᶻ given by •Ὃ27 = 0 , Ὕ25

ᶻ given by ὪὝ25
ᶻ = 0 and 

Ὃ24
ᶻ =

ὥ24
4 Ὃ25
ᶻ

(ὥ24
ᴂ ) 4 + (ὥ24

ᴂᴂ) 4 Ὕ25
ᶻ     ,   Ὃ26

ᶻ =
ὥ26

4 Ὃ25
ᶻ

(ὥ26
ᴂ ) 4 + (ὥ26

ᴂᴂ) 4 Ὕ25
ᶻ     

589 

Ὕ24
ᶻ =

ὦ24
4 Ὕ25
ᶻ

(ὦ24
ᴂ ) 4 (ὦ24

ᴂᴂ) 4 Ὃ27
ᶻ       ,   Ὕ26

ᶻ =
ὦ26

4 Ὕ25
ᶻ

(ὦ26
ᴂ ) 4 (ὦ26

ᴂᴂ) 4 Ὃ27
ᶻ  

Obviously, these values represent an equilibrium solution  

590 

Finally we obtain the unique solution  

Ὃ29
ᶻ given by • Ὃ31

ᶻ = 0 , Ὕ29
ᶻ given by ὪὝ29

ᶻ = 0 and 

Ὃ28
ᶻ =

ὥ28
5 Ὃ29
ᶻ

(ὥ28
ᴂ ) 5 + (ὥ28

ᴂᴂ) 5 Ὕ29
ᶻ     ,   Ὃ30

ᶻ =
ὥ30

5 Ὃ29
ᶻ

(ὥ30
ᴂ ) 5 + (ὥ30

ᴂᴂ) 5 Ὕ29
ᶻ  

591 

Ὕ28
ᶻ =

ὦ28
5 Ὕ29
ᶻ

(ὦ28
ᴂ ) 5 (ὦ28

ᴂᴂ) 5 Ὃ31
ᶻ       ,   Ὕ30

ᶻ =
ὦ30

5 Ὕ29
ᶻ

(ὦ30
ᴂ ) 5 (ὦ30

ᴂᴂ) 5 Ὃ31
ᶻ  

Obviously, these values represent an equilibrium solution 

592 

Finally we obtain the unique solution 

Ὃ33
ᶻ given by • Ὃ35

ᶻ = 0 , Ὕ33
ᶻ given by ὪὝ33

ᶻ = 0 and 

Ὃ32
ᶻ =

ὥ32
6 Ὃ33
ᶻ

(ὥ32
ᴂ ) 6 + (ὥ32

ᴂᴂ) 6 Ὕ33
ᶻ     ,   Ὃ34

ᶻ =
ὥ34

6 Ὃ33
ᶻ

(ὥ34
ᴂ ) 6 + (ὥ34

ᴂᴂ) 6 Ὕ33
ᶻ      

593 

Ὕ32
ᶻ =

ὦ32
6 Ὕ33
ᶻ

(ὦ32
ᴂ ) 6 (ὦ32

ᴂᴂ) 6 Ὃ35
ᶻ       ,   Ὕ34

ᶻ =
ὦ34

6 Ὕ33
ᶻ

(ὦ34
ᴂ ) 6 (ὦ34

ᴂᴂ) 6 Ὃ35
ᶻ  

Obviously, these values represent an equilibrium solution  

594 
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ASYMPTOTIC STABILITY ANALYSIS  

Theorem 4:   If the conditions of the previous theorem are satisfied and if the functions (ὥὭ
ᴂᴂ) 1  ὥὲὨ (ὦὭ

ᴂᴂ) 1   

Belong to ὅ1 ( ᴙ+ ) then the above equilibrium point is asymptotically stable. 

Proof:  Denote 

Definition of  Ὥ, Ὥ :- 

                      ὋὭ= ὋὭ
ᶻ+ Ὥ         , ὝὭ= ὝὭ

ᶻ+ Ὥ 

                      
‬(ὥ14
ᴂᴂ) 1

‬Ὕ14
Ὕ14
ᶻ = ή14

1    ,  
‬(ὦὭ
ᴂᴂ) 1

‬ὋὮ
 Ὃᶻ = ίὭὮ  

595 

 

 

 

 

596 

Then taking into account equations (global) and neglecting the terms of power 2, we obtain  597 

Ὠ 13

Ὠὸ
= (ὥ13

ᴂ ) 1 + ὴ13
1

13 + ὥ13
1

14 ή13
1 Ὃ13

ᶻ
14   598 

Ὠ 14

Ὠὸ
= (ὥ14

ᴂ ) 1 + ὴ14
1

14 + ὥ14
1

13 ή14
1 Ὃ14

ᶻ
14   599 

Ὠ 15

Ὠὸ
= (ὥ15

ᴂ ) 1 + ὴ15
1

15 + ὥ15
1

14 ή15
1 Ὃ15

ᶻ
14   600 

Ὠ 13

Ὠὸ
= (ὦ13

ᴂ) 1 ὶ13
1

13 + ὦ13
1

14 + В ί13 ὮὝ13
ᶻ
Ὦ

15
Ὦ= 13   601 

Ὠ 14

Ὠὸ
= (ὦ14

ᴂ) 1 ὶ14
1

14 + ὦ14
1

13 + В ί14 (Ὦ)Ὕ14
ᶻ
Ὦ

15
Ὦ= 13   602 

Ὠ 15

Ὠὸ
= (ὦ15

ᴂ) 1 ὶ15
1

15 + ὦ15
1

14 + В ί15 (Ὦ)Ὕ15
ᶻ
Ὦ

15
Ὦ= 13   603 

 If the conditions of the previous theorem are satisfied and if the functions (aὭ
ᴂᴂ) 2  and (bὭ

ᴂᴂ) 2   Belong to 

C 2 ( ᴙ+ ) then the above equilibrium point is asymptotically stable 

604 

Denote 

Definition of Ὥ, Ὥ :- 

605 

GὭ= GὭ
ᶻ+ Ὥ         , TὭ= TὭ

ᶻ+ Ὥ 606 

Ћ(ὥ17
ᴂᴂ) 2

ЋT17
T17
ᶻ = ή17

2    ,  
Ћ(ὦὭ
ᴂᴂ) 2

ЋGὮ
 Ὃ19

ᶻ = ίὭὮ  
607 

taking into account equations (global)and neglecting the terms of power 2, we obtain  608 

d 16

dt
= (ὥ16

ᴂ ) 2 + ὴ16
2

16 + ὥ16
2

17 ή16
2 G16
ᶻ

17  609 

d 17

dt
= (ὥ17

ᴂ ) 2 + ὴ17
2

17 + ὥ17
2

16 ή17
2 G17
ᶻ

17  610 

d 18

dt
= (ὥ18

ᴂ ) 2 + ὴ18
2

18 + ὥ18
2

17 ή18
2 G18
ᶻ

17  611 

d 16

dt
= (ὦ16

ᴂ) 2 ὶ16
2

16 + ὦ16
2

17 + В ί16 ὮT16
ᶻ
Ὦ

18
Ὦ= 16   612 

d 17

dt
= (ὦ17

ᴂ) 2 ὶ17
2

17 + ὦ17
2

16 + В ί17 (Ὦ)T17
ᶻ
Ὦ

18
Ὦ= 16   613 

d 18

dt
= (ὦ18

ᴂ) 2 ὶ18
2

18 + ὦ18
2

17 + В ί18 (Ὦ)T18
ᶻ
Ὦ

18
Ὦ= 16   614 

 If the conditions of the previous theorem are satisfied and if the functions (ὥὭ
ᴂᴂ) 3  ὥὲὨ (ὦὭ

ᴂᴂ) 3   Belong to 

ὅ3 ( ᴙ+ ) then the above equilibrium point is asymptotically stabl 

615 
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 Denote 

Definition of Ὥ, Ὥ :- 

                      ὋὭ= ὋὭ
ᶻ+ Ὥ         , ὝὭ= ὝὭ

ᶻ+ Ὥ 

                      
‬(ὥ21
ᴂᴂ) 3

‬Ὕ21
Ὕ21
ᶻ = ή21

3    ,  
‬(ὦὭ
ᴂᴂ) 3

‬ὋὮ
 Ὃ23

ᶻ = ίὭὮ  

616 

Then taking into account equations (global) and neglecting the terms of power 2, we obtain  617 

Ὠ 20

Ὠὸ
= (ὥ20

ᴂ ) 3 + ὴ20
3

20 + ὥ20
3

21 ή20
3 Ὃ20

ᶻ
21  618 

Ὠ 21

Ὠὸ
= (ὥ21

ᴂ ) 3 + ὴ21
3

21 + ὥ21
3

20 ή21
3 Ὃ21

ᶻ
21  619 

Ὠ 22

Ὠὸ
= (ὥ22

ᴂ ) 3 + ὴ22
3

22 + ὥ22
3

21 ή22
3 Ὃ22

ᶻ
21  6120 

Ὠ 20

Ὠὸ
= (ὦ20

ᴂ) 3 ὶ20
3

20 + ὦ20
3

21 + В ί20 ὮὝ20
ᶻ
Ὦ

22
Ὦ= 20   621 

Ὠ 21

Ὠὸ
= (ὦ21

ᴂ) 3 ὶ21
3

21 + ὦ21
3

20 + В ί21 (Ὦ)Ὕ21
ᶻ
Ὦ

22
Ὦ= 20   622 

Ὠ 22

Ὠὸ
= (ὦ22

ᴂ) 3 ὶ22
3

22 + ὦ22
3

21 + В ί22 (Ὦ)Ὕ22
ᶻ
Ὦ

22
Ὦ= 20   623 

If the conditions of the previous theorem are satisfied and if the functions (ὥὭ
ᴂᴂ) 4  ὥὲὨ (ὦὭ

ᴂᴂ) 4   Belong to 

ὅ4 ( ᴙ+ ) then the above equilibrium point is asymptotically stabl 

 Denote 

624 

Definition of Ὥ, Ὥ :- 

     ὋὭ= ὋὭ
ᶻ+ Ὥ         , ὝὭ= ὝὭ

ᶻ+ Ὥ 

    
‬(ὥ25
ᴂᴂ) 4

‬Ὕ25
Ὕ25
ᶻ = ή25

4    ,  
‬(ὦὭ
ᴂᴂ) 4

‬ὋὮ
Ὃ27

ᶻ  = ίὭὮ  

625 

Then taking into account equations (global) and neglecting the terms of power 2, we obtain 626 

Ὠ 24

Ὠὸ
= (ὥ24

ᴂ ) 4 + ὴ24
4

24 + ὥ24
4

25 ή24
4 Ὃ24

ᶻ
25  627 

Ὠ 25

Ὠὸ
= (ὥ25

ᴂ ) 4 + ὴ25
4

25 + ὥ25
4

24 ή25
4 Ὃ25

ᶻ
25  628 

Ὠ 26

Ὠὸ
= (ὥ26

ᴂ ) 4 + ὴ26
4

26 + ὥ26
4

25 ή26
4 Ὃ26

ᶻ
25  629 

Ὠ 24

Ὠὸ
= (ὦ24

ᴂ) 4 ὶ24
4

24 + ὦ24
4

25 + В ί24 ὮὝ24
ᶻ
Ὦ

26
Ὦ= 24   630 

Ὠ 25

Ὠὸ
= (ὦ25

ᴂ) 4 ὶ25
4

25 + ὦ25
4

24 + В ί25 ὮὝ25
ᶻ
Ὦ

26
Ὦ= 24   631 

Ὠ 26

Ὠὸ
= (ὦ26

ᴂ) 4 ὶ26
4

26 + ὦ26
4

25 + В ί26 (Ὦ)Ὕ26
ᶻ
Ὦ

26
Ὦ= 24   632 

 

  If the conditions of the previous theorem are satisfied and if the functions (ὥὭ
ᴂᴂ) 5  ὥὲὨ (ὦὭ

ᴂᴂ) 5   Belong to 

ὅ5 ( ᴙ+ ) then the above equilibrium point is asymptotically stable 

633 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.4, July-Aug. 2012 pp-2028-2109             ISSN: 2249-6645 

www.ijmer.com                                                                            2100 | Page 

Denote 

Definition of Ὥ, Ὥ :- 

    ὋὭ= ὋὭ
ᶻ+ Ὥ         , ὝὭ= ὝὭ

ᶻ+ Ὥ 

 
‬(ὥ29
ᴂᴂ) 5

‬Ὕ29
Ὕ29
ᶻ = ή29

5    ,  
‬(ὦὭ
ᴂᴂ) 5

‬ὋὮ
 Ὃ31

ᶻ = ίὭὮ  

634 

Then taking into account equations (global) and neglecting the terms of power 2, we obtain 635 

Ὠ 28

Ὠὸ
= (ὥ28

ᴂ ) 5 + ὴ28
5

28 + ὥ28
5

29 ή28
5 Ὃ28

ᶻ
29  636 

Ὠ 29

Ὠὸ
= (ὥ29

ᴂ ) 5 + ὴ29
5

29 + ὥ29
5

28 ή29
5 Ὃ29

ᶻ
29  637 

Ὠ 30

Ὠὸ
= (ὥ30

ᴂ ) 5 + ὴ30
5

30 + ὥ30
5

29 ή30
5 Ὃ30

ᶻ
29  638 

Ὠ 28

Ὠὸ
= (ὦ28

ᴂ) 5 ὶ28
5

28 + ὦ28
5

29 + В ί28 ὮὝ28
ᶻ
Ὦ

30
Ὦ= 28   639 

Ὠ 29

Ὠὸ
= (ὦ29

ᴂ) 5 ὶ29
5

29 + ὦ29
5

28 + В ί29 ὮὝ29
ᶻ
Ὦ

30
Ὦ= 28   640 

Ὠ 30

Ὠὸ
= (ὦ30

ᴂ) 5 ὶ30
5

30 + ὦ30
5

29 + В ί30 (Ὦ)Ὕ30
ᶻ
Ὦ

30
Ὦ= 28   641 

 If the conditions of the previous theorem are satisfied and if the functions (ὥὭ
ᴂᴂ) 6  ὥὲὨ (ὦὭ

ᴂᴂ) 6   Belong to 

ὅ6 ( ᴙ+ ) then the above equilibrium point is asymptotically stable 

Denote 

642 

Definition of Ὥ, Ὥ :- 

    ὋὭ= ὋὭ
ᶻ+ Ὥ         , ὝὭ= ὝὭ

ᶻ+ Ὥ 

    
‬(ὥ33
ᴂᴂ) 6

‬Ὕ33
Ὕ33
ᶻ = ή33

6    ,  
‬(ὦὭ
ᴂᴂ) 6

‬ὋὮ
 Ὃ35

ᶻ = ίὭὮ  

643 

Then taking into account equations(global) and neglecting the terms of power 2, we obtain 644 

Ὠ 32

Ὠὸ
= (ὥ32

ᴂ ) 6 + ὴ32
6

32 + ὥ32
6

33 ή32
6 Ὃ32

ᶻ
33  645 

Ὠ 33

Ὠὸ
= (ὥ33

ᴂ ) 6 + ὴ33
6

33 + ὥ33
6

32 ή33
6 Ὃ33

ᶻ
33  646 

Ὠ 34

Ὠὸ
= (ὥ34

ᴂ ) 6 + ὴ34
6

34 + ὥ34
6

33 ή34
6 Ὃ34

ᶻ
33  647 

Ὠ 32

Ὠὸ
= (ὦ32

ᴂ) 6 ὶ32
6

32 + ὦ32
6

33 + В ί32 ὮὝ32
ᶻ
Ὦ

34
Ὦ= 32   648 

Ὠ 33

Ὠὸ
= (ὦ33

ᴂ) 6 ὶ33
6

33 + ὦ33
6

32 + В ί33 ὮὝ33
ᶻ
Ὦ

34
Ὦ= 32   649 

Ὠ 34

Ὠὸ
= (ὦ34

ᴂ) 6 ὶ34
6

34 + ὦ34
6

33 + В ί34 (Ὦ)Ὕ34
ᶻ
Ὦ

34
Ὦ= 32   650 

Obviously, these values represent an equilibrium solution of 79,20,36,22,23, 

   If the conditions of the previous theorem are satisfied and if the functions (ὥὭ
ᴂᴂ) 7  ὥὲὨ (ὦὭ

ᴂᴂ) 7   Belong to 

ὅ7 ( ᴙ+ ) then the above equilibrium point is asymptotically stable. 
 

Proof:  Denote 
 

651 
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Definition of Ὥ, Ὥ :- 
 
                      ὋὭ= ὋὭ

ᶻ+ Ὥ         , ὝὭ= ὝὭ
ᶻ+ Ὥ 

                     
‬(ὥ37
ᴂᴂ) 7

‬Ὕ37
Ὕ37
ᶻ = ή37

7    ,  
‬(ὦὭ
ᴂᴂ) 7

‬ὋὮ
 Ὃ39

ᶻz = ίὭὮ  

 

652 

653 

 

Then taking into account equations(SOLUTIONAL) and neglecting the terms of power 2, we obtain  
 

654 

 

655 
Ὠ 36

Ὠὸ
= (ὥ36

ᴂ ) 7 + ὴ36
7

36 + ὥ36
7

37 ή36
7 Ὃ36

ᶻ
37  656 

Ὠ 37

Ὠὸ
= (ὥ37

ᴂ ) 7 + ὴ37
7

37 + ὥ37
7

36 ή37
7 Ὃ37

ᶻ
37  657 

Ὠ 38

Ὠὸ
= (ὥ38

ᴂ ) 7 + ὴ38
7

38 + ὥ38
7

37 ή38
7 Ὃ38

ᶻ
37  658 

Ὠ 36

Ὠὸ
= (ὦ36

ᴂ) 7 ὶ36
7

36 + ὦ36
7

37 + В ί36 ὮὝ36
ᶻ
Ὦ

38
Ὦ= 36   659 

Ὠ 37

Ὠὸ
= (ὦ37

ᴂ) 7 ὶ37
7

37 + ὦ37
7

36 + В ί37 ὮὝ37
ᶻ
Ὦ

38
Ὦ= 36   660 

Ὠ 38

Ὠὸ
= (ὦ38

ᴂ) 7 ὶ38
7

38 + ὦ38
7

37 + В ί38 (Ὦ)Ὕ38
ᶻ
Ὦ

38
Ὦ= 36   661 

2.  

The characteristic equation of this system is  

‗ 1 + (ὦ
15
ᴂ )

1
ὶ15

1 { ‗ 1 + (ὥ
15
ᴂ )

1
+ ὴ

15

1
 

‗ 1 + (ὥ
13
ᴂ )

1
+ ὴ

13

1
ή

14

1
Ὃ14
ᶻ + ὥ14

1 ή
13

1
Ὃ13
ᶻ  

‗ 1 + (ὦ
13
ᴂ )

1
ὶ13

1 ί14 , 14 Ὕ14
ᶻ  + ὦ14

1 ί13 , 14 Ὕ14
ᶻ  

+ ‗ 1 + (ὥ14
ᴂ ) 1 + ὴ14

1 ή13
1 Ὃ13

ᶻ + ὥ13
1 ή14

1 Ὃ14
ᶻ   

‗ 1 + (ὦ
13
ᴂ )

1
ὶ13

1 ί14 , 13 Ὕ14
ᶻ + ὦ14

1 ί13 , 13 Ὕ13
ᶻ   

‗ 1
2

+  (ὥ
13
ᴂ )

1
+ (ὥ

14
ᴂ )

1
+ ὴ

13

1
+ ὴ

14

1
 ‗ 1   

‗ 1
2

+  (ὦ
13
ᴂ )

1
+ (ὦ

14
ᴂ )

1
ὶ13

1 + ὶ14
1  ‗ 1   

+ ‗ 1 2
+  (ὥ13

ᴂ ) 1 + (ὥ14
ᴂ ) 1 + ὴ13

1 + ὴ14
1  ‗ 1 ή15

1 Ὃ15  

 + ‗ 1 + (ὥ13
ᴂ ) 1 + ὴ13

1  ὥ15
1 ή14

1 Ὃ14
ᶻ + ὥ14

1 ὥ15
1 ή13

1 Ὃ13
ᶻ   

‗ 1 + (ὦ
13
ᴂ )

1
ὶ13

1 ί14 , 15 Ὕ14
ᶻ  + ὦ14

1 ί13 , 15 Ὕ13
ᶻ } = 0  

+ 

‗ 2 + (ὦ
18
ᴂ )

2
ὶ18

2 { ‗ 2 + (ὥ
18
ᴂ )

2
+ ὴ

18

2
  

‗ 2 + (ὥ
16
ᴂ )

2
+ ὴ

16

2
ή

17

2
G17
ᶻ + ὥ17

2 ή
16

2
G16
ᶻ   

‗ 2 + (ὦ
16
ᴂ )

2
ὶ16

2 ί17 , 17 T17
ᶻ  + ὦ17

2 ί16 , 17 T17
ᶻ   

+ ‗ 2 + (ὥ17
ᴂ ) 2 + ὴ17

2 ή16
2 G16
ᶻ + ὥ16

2 ή17
2 G17
ᶻ   

‗ 2 + (ὦ
16
ᴂ )

2
ὶ16

2 ί17 , 16 T17
ᶻ + ὦ17

2 ί16 , 16 T16
ᶻ   

‗ 2
2

+  (ὥ
16
ᴂ )

2
+ (ὥ

17
ᴂ )

2
+ ὴ

16

2
+ ὴ

17

2
 ‗ 2   
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    ‗ 2 2
+  (ὦ16

ᴂ) 2 + (ὦ17
ᴂ) 2 ὶ16

2 + ὶ17
2  ‗ 2   

+ ‗ 2 2
+  (ὥ16

ᴂ ) 2 + (ὥ17
ᴂ ) 2 + ὴ16

2 + ὴ17
2  ‗ 2 ή18

2 G18  

 + ‗ 2 + (ὥ16
ᴂ ) 2 + ὴ16

2  ὥ18
2 ή17

2 G17
ᶻ + ὥ17

2 ὥ18
2 ή16

2 G16
ᶻ   

‗ 2 + (ὦ
16
ᴂ )

2
ὶ16

2 ί17 , 18 T17
ᶻ  + ὦ17

2 ί16 , 18 T16
ᶻ } = 0  

+ 

‗ 3 + (ὦ
22
ᴂ )

3
ὶ22

3 { ‗ 3 + (ὥ
22
ᴂ )

3
+ ὴ

22

3
  

‗ 3 + (ὥ
20
ᴂ )

3
+ ὴ

20

3
ή

21

3
Ὃ21
ᶻ + ὥ21

3 ή
20

3
Ὃ20
ᶻ   

‗ 3 + (ὦ
20
ᴂ )

3
ὶ20

3 ί21 , 21 Ὕ21
ᶻ  + ὦ21

3 ί20 , 21 Ὕ21
ᶻ   

+ ‗ 3 + (ὥ21
ᴂ ) 3 + ὴ21

3 ή20
3 Ὃ20

ᶻ + ὥ20
3 ή21

1 Ὃ21
ᶻ   

 ‗ 3 + (ὦ
20
ᴂ )

3
ὶ20

3 ί21 , 20 Ὕ21
ᶻ + ὦ21

3 ί20 , 20 Ὕ20
ᶻ  

‗ 3
2

+  (ὥ
20
ᴂ )

3
+ (ὥ

21
ᴂ )

3
+ ὴ

20

3
+ ὴ

21

3
 ‗ 3   

‗ 3
2

+  (ὦ
20
ᴂ )

3
+ (ὦ

21
ᴂ )

3
ὶ20

3 + ὶ21
3  ‗ 3   

+ ‗ 3 2
+  (ὥ20

ᴂ ) 3 + (ὥ21
ᴂ ) 3 + ὴ20

3 + ὴ21
3  ‗ 3 ή22

3 Ὃ22  

 + ‗ 3 + (ὥ20
ᴂ ) 3 + ὴ20

3  ὥ22
3 ή21

3 Ὃ21
ᶻ + ὥ21

3 ὥ22
3 ή20

3 Ὃ20
ᶻ   

‗ 3 + (ὦ
20
ᴂ )

3
ὶ20

3 ί21 , 22 Ὕ21
ᶻ  + ὦ21

3 ί20 , 22 Ὕ20
ᶻ } = 0  

+ 

‗ 4 + (ὦ
26
ᴂ )

4
ὶ26

4 { ‗ 4 + (ὥ
26
ᴂ )

4
+ ὴ

26

4
  

‗ 4 + (ὥ
24
ᴂ )

4
+ ὴ

24

4
ή

25

4
Ὃ25
ᶻ + ὥ25

4 ή
24

4
Ὃ24
ᶻ   

‗ 4 + (ὦ
24
ᴂ )

4
ὶ24

4 ί25 , 25 Ὕ25
ᶻ  + ὦ25

4 ί24 , 25 Ὕ25
ᶻ   

+ ‗ 4 + (ὥ25
ᴂ ) 4 + ὴ25

4 ή24
4 Ὃ24

ᶻ + ὥ24
4 ή25

4 Ὃ25
ᶻ   

     ‗ 4 + (ὦ
24
ᴂ )

4
ὶ24

4 ί25 , 24 Ὕ25
ᶻ + ὦ25

4 ί24 , 24 Ὕ24
ᶻ  

‗ 4
2

+  (ὥ
24
ᴂ )

4
+ (ὥ

25
ᴂ )

4
+ ὴ

24

4
+ ὴ

25

4
 ‗ 4   

    ‗ 4 2
+  (ὦ24

ᴂ) 4 + (ὦ25
ᴂ ) 4 ὶ24

4 + ὶ25
4  ‗ 4   

+ ‗ 4 2
+  (ὥ24

ᴂ ) 4 + (ὥ25
ᴂ ) 4 + ὴ24

4 + ὴ25
4  ‗ 4 ή26

4 Ὃ26  

 + ‗ 4 + (ὥ24
ᴂ ) 4 + ὴ24

4  ὥ26
4 ή25

4 Ὃ25
ᶻ + ὥ25

4 ὥ26
4 ή24

4 Ὃ24
ᶻ   

‗ 4 + (ὦ
24
ᴂ )

4
ὶ24

4 ί25 , 26 Ὕ25
ᶻ  + ὦ25

4 ί24 , 26 Ὕ24
ᶻ } = 0  

+ 

‗ 5 + (ὦ
30
ᴂ )

5
ὶ30

5 { ‗ 5 + (ὥ
30
ᴂ )

5
+ ὴ

30

5
  

‗ 5 + (ὥ
28
ᴂ )

5
+ ὴ

28

5
ή

29

5
Ὃ29
ᶻ + ὥ29

5 ή
28

5
Ὃ28
ᶻ   




