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ABSTRACT: We develop a progressive comparable to Bank’s General Ledger, and call it a General Theory of all
the problems under the head of NP hard problems. Problems have their variables. For instance “Travelling Sales
man problem” can have various different cities. Based upon parameters classification is done and stability analysis,
asymptotic stability and Solutional behaviour of the equations are investigated We eschew from stating any primary
predications, coextensive representations, predicational anteriority of the Problems attributed to space constraints.
In consideration to the parametric based classification and there is both ontological consonance, primordial
exactitude, and phenomenological testimony as one finds in Bank’s ledgers. General Ledger is in fact the statement
of all inflows and outflows and such a one as that occurs in problems and theories in some conditions, like for
example the conservation of energy breaking down in Hawking’s radiation. Emphasis is laid on the fact that for
instance a travelling salesman makes some move and then retracts to redress his move or starts another move to
further his final destination. And this destination is General Ledger.-The General Theory Of all the NP (hard)
problems. .It is a journey, a journey to find the final balance which probably never ends like an account never
closes. So we are on to the journey............ ...

I. INTRODUCTION
As stated in abstract we will not give any introduction, inconsideration to the leviathans’ material and
humungous literature on each subject matter for fear of missing woods for trees. On the other hand, for the
interested reader the literature provides a rich receptacle, repository and treasure-trove of knowledge. And
also because of space constraints. We note that the NP (HARD) problems are classified as follows:

1) Boolean satisfiability Problem
2) N Puzzle

3) Knapsack Problem

4) Hamiltonian Path problem

5) Travelling Salesman Problem
6) Sub graph Isomorphism Problem
7 Subset Sum problem

8) Cligue Problem

9) Vertex Cover Problem

10) Independent Set problem

11) Dominating set problem.

12) Graph Coloring Problem

As in a Bank, various parameters are there for an account like balance standing, rate of interest, implications
of inflation, money depression, depreciation of the currency, implications of Policies, philosophies and
programmes of the Government, each problem has certain parameters. That Gravity is constant does not
mean it does not depend upon the masses of individual particles and there is no total gravity. Stratification is
done based on the parameters of each problem and then consummated with the other to form a monolithic
diaspora for building the Model, which essentially as said is a progressive, nay a General Theory Of all the
ways and means in which the problem can be solved be it by invocation or by abnegation and revocation of
the action. Everything is recorded in the Computer and we draw up a Final General Ledger-nay The General
Theory Of all NP (HARD) Problems. Essentially a prediction model, it as said analyses various other facets
too.

GLOSSARY OF THE SYSTEME BOOLEAN SATISFIABILITY PROBLEM AND N PUZZLE
NOTATION :
‘Q, : Category One Of Boolean Satisfiability Problem
‘Q, : Category Two Of Boolean Satisfiability Problem
: Category Three Of Boolean Satisfiability Problem
] : Category One Of N Puzzle
] :Category Two Of N Puzzle
31 :Category Three Of N Puzzle
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GLOSSARY OF THE SYSTEM KNAPSACK PROBLEM AND HAMILTONIAN PATH PROBLEM:

Qg : Category One Of Knapsack Problem
7 - Category Two Of Knapsack Problem

: Category Three Of Knapsack Problem
] : Category One Of Hamiltonian Path Problem
] : Category Two Of Hamiltonian Path Problem
3| : Category Three Of Hamiltonian Path Problem

GLOSSARY OF THE SYSTEM:TRAVELLING SALESMAN PROBLEM AND SUBGRAPH ISOMERISM
PROBLEM

'Q, : Category One Of Travelling Salesman Problem

7 - Category Two Of Travelling Salesman Problem
:Category Three Of Travelling Salesman Problem

JJ : Category One Of Sub graph Isomerism Problem

Y, : Category Two Of Sub graph Isomerism Problem

i : Category Three Of Sub graph Isomerism Problem

GLOSSARY FOR THE SYSTEM: SUBSET SUM PROBLEM AND CLIQUE PROBLEM

“Q, : Category One Of Subset Sum Problem
7 - Category Two Of Subset Sum Problem
: Category Three Of Subset Sum Problem
] : Category One Of Clique Problem
] : Category Two Of Clique Problem
3| . Category Three Of Clique Problem

GLOSSARY FOR THE SYSTEM: VERTEX COVER PROBLEM AND INDEPENDENT SET PROBLEM

Qg : Category One Of Vertex Cover Problem
7 - Category Two Of Vertex Cover Problem
: Category Three Of Vertex Cover Problem
] : Category One Of Independent Set Problem
] : Category Two Of Independent Set Problem
3| : Category Three Of Independent Set Problem

GLOSSARY OF THE SYSTEM: DOMINATING SET PROBLEM AND GRAPH COLORING PROBLEM
"Q, : Category One Of Dominating Set Problem
1 - Category Two Of Dominating Set Problem
: Category Three Of Dominating Set Problem
] : Category One Of Graph Coloring Problem
] : Category Two Of Graph Coloring Problem
31 : Category Three Of Graph Coloring Problem

ACCENTUATION COEFFICIENTS AND DISSIPATION COEFFCIENTS

(5131,('{)_41,('5151,&1731,(1131,(:351QGZ,Q72,Q82Q62,Q72,Q82:
G 2 Ghs T Ghs T, @ T s TG TG Ty G o Gl 7 e P Gho 7
GWp 7, W3 o, 03y T, O3 T, O3 C, O3y

AR S S B S P S (LI S S«
6B 6. G o, G oL G O Gy O, Gl ©

GOVERNING EQUATIONS OF THE SYSTEM BOOLEAN SATISFIABILITY PROBLEM AND N
PUZZLE

The differential system of this model is now
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%= Qs ' Q, As '+ A Y0 G 1
%= Qs Qs Qg P+ Ayt Y0 Gy 2
D= G G, s L+ s Va0 s 3
i TRt 7R T S o e 2 4
%: Qs ' W b Gy ' 00 Y, 5
R T R ;
+ 93 1 "Y,,0 = First augmentation factor 7
W3 ' "Q0 = First detritions factor 8
GOVERNING EQUATIONS:OF THE SYSTEM KANPSACK PROBLEM AND HAMILTONIAN PATH
PROBLEM
The differential system of this model is now
%: e 2'Q; g ° + ds * Y0 Qe 9
%: @; 2'Q Ay 2+ 47 Y0 G 10
%: Qs *'Q; Wg 2+ &g * Y0 Qg 1
o=@ 2 e 2 e 2 Q0 Y 12
%: (Ih 2" (Ii7 2 (117 2 Q0 Yy 13
= e 2% W 2 W 2 Q.0 Ve 14
+ 96 2 "Y,,6 = First augmentation factor 15
W ° 'Qy ,0 = Firstdetritions factor 16
GOVERNING EQUATIONS: FO THE SYSTEM TRAVELLING SALESMAN PROBLEM AND
SUBGRAPH ISOMERISM PROBLEM:
‘T‘he differential system of this model is now
Q-_(%)z G °"Q o ° + B ° .0 QG 17
%: @ %Q @y P+ Y THOG 18
%: G °'Q @ °+ B P N0 19
%: @o *Y (3o ° o * @30 Yo 20
%: @ Y Gy B G % Q50 Y% 21
%: @ 2 @y 3 @ Q30 Y 22
+ (3 3 "¥,0 = Firstaugmentation factor 23
o 2 "Qs,0 = First detritions factor 24
GOVERNING EQUATIONS:OF THE SYSTEM SUBSET SUM PROBLEM AND CLIQUE PROBLEM
The differential system of this model is now
9_24: Gy Qs Gy T+ Bt Y0 Gy 25
T Gy e G G %o O 2
Q_;ée: G *Qs  Gh * + s * "¥5,0 Qs 27
%: @4 * Y Gy 4 @Gy 4 Q0 Y, 28
%: &%5 Y, @5 ) (:%5 ) Q.0 Y 29
%: @ Y P s 4 Q.0 Y 30
+ py * "¥5,0 = First augmentation factor 31
w, * "Q, 0 = Firstdetritions factor 32

GOVERNING EQUATIONS:OF THE SYSTEM VERTEX COVER PROBLEM AND INDEPENDENT SET
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PROBLEM

The differential system of this model is now
%= Gg °Qy Gy >+ g ° "Yo,0 Qg
%: Go >Qg  Gho ° + GBg ° "¥o,0 Qg
%: @ °Qy G P+ B ° Y% 0 Q
%: Ws ° Yo (g ° G ° Q.0 Y
%: Wo ° Y Gho ° e ° Q.0 Yo
%: @o ° Y @ ° @ ° Q0"
+ @8 5 "¥5,0 = First augmentation factor

s ° "Q, ,0 = First detritions factor

GOVERNING EQUATIONS:OF THE DOMINATING SET PROBLEM AND GRAPH COLORING
PROBLEM:

The differential system of this model is now

%: G °1Q; Wy ®+ @ © %0 Q

%: @ °'Q 3 °+ Gy ° Y0 'Qy

%: Gy °'Q; Wy ®+ Gy © Y50 Q)

0% _ = o 5 T - e
Tf— @ °"Y 7 a ° Q0 Y

% = @ °"Y% as © d ® Q0 Y
% = °'Y @ ® @y ® Q0 7Y
+ &, © "¥Y;,0 = First augmentation factor

Gk ° Qs ,0 = Firstdetritions factor
FINAL CONCATENATED GOVERNING EQUATIONS OF THE SYSTEM:
(1)BOOLEAN SATISFIABILITY PROBLEM
(2) N PUZZLE
(3)KNAPSACK PROBLEM
(4)HAMILTONIAN PATH PROBLEM
(5)TRAVELLING SALESMAN PROBLEM
(6)SUB GRAPH ISOMERISM PROBLEM
(7)SUBSET SUM PROBLEM
(8)CLIQUE PROBLEM
(9)VERTEX COVER PROBLEM
(10)INDEPENDENT SET PROBLEM
(11)DOMINATING SET PROBLEM
(12)GRAPH COLORING RPOBLEM

NP T 22 g 33w
W3 |+0Q_3 \{410“"'(*&6 \{7’0“"'0% )’1:0' N

TQs _ e 1
o - W T
D o - . o - N o - .
e Voo G % Wl 0]
P S 22y 33w
Qs . g Wq |+ W4 ¥4,0 “"‘ W7 ¥7.0 “"' W %.0 I )
» - W Qs 4o ey I 5555 vy o1+ . 5665 . o 4
s ¥s, U)o Yo, 033 %,
1 1
QQs _ e 1. Ws |+ Ws ¥4, 0 |+ Wg ¥7,0 “"‘ G %1,0 | .
o = Qs T Q Qs

LYYV VEF = BEEE v T 66606 v
|"‘ e \fsloll"' Gy )’9-0”"‘ W ¥3,0|

Where| Qs * }_(4,o|,| @, ! \{4,o|, W5 Y4, 0 | are first augmentation coefficients for category 1, 2 and
3

|+ Qg 2% Y, 0 ||+ Q; 2% "Y,0 ||+ Qg 2% "Y,,0 |are second augmentation coefficient for category
1,2and 3

|+ Qo % "Y,0 ||+ @, %% "Y.0 ||+ @, %% "Y,0 |are third augmentation coefficient for category 1, 2
and 3

1t o N et 4444, . ) o \ - - -
|+ W, 444 Y0 | |+ s ¥, 0 ,|+ Qe 444 Y, 0 |are fourth augmentation coefficient for

33
34
35
36
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39
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52

54
55
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58
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category 1, 2 and 3
+ g %55 7Y, 0 ||+ Qg %55 Y50 ||+ W 2955 Yy, 0 | are fifth augmentation coefficient for
category 1, 2 and 3
+ (g, 6666 Y 0 | |+ 3 966 Y0 ||+ @, 666 Y 0 | are sixth augmentation coefficient for
category 1, 2 and 3

ay N (Iia l| (113 ' "Q(‘)H 07»1”6 22 “anOHZ (Iio 33 "st(‘)| 60
,_.3 = G 1 "Y 5 ™ \ 0 ™ \ T o \ "Yg
) Ws 4 | G, 444d Q7,o|| Gy 5555 leOH Gy, 6666 Q5,0|
Y, % g (I14 1| (Il”4 ' "Q(‘)H (Ii7 22 “Qg,<‘3||z (:él 33 "st(‘)| . 61
EE v 4444, T EERE sees =]
s Q7|0| g 77 Q1s0|| 3z " Q5v0|
Y5 _ Qe 1Y, s ' s ' Qo0 | O "QgsC"HZ Gy %% "st0| Y oz
o = @Ws 4 _ - - 5
@ | Qe M4 "Gr,0 || o %% Q0 || wyy 0008 "stc"|
Where| &3 * "0o || i, * 00| & ' “00 |are first detrition coefficients for category 1, 2 and 3 gi
| G 22 "Qg,0 || G, 2% "Qg,c‘)|,| Gg 2% "Qg,0 | are second detrition coefficients for category 1, 2 gg
and 3
5 33, o N 5 33, o N 5 33, o . . . .. 67
| U Q3,0 || W1 Q3,0 || Wy Q3,0 |are third detrition coefficients for category 1, 2 and 68
3
| Gy 444 "Q;,0 | Gys Mg, 0 | Gpg 4444 "Q,,0 |are fourth detrition coefficients for
category 1, 2 and 3
| s 5°%5 "Qo|,| 3 5555 Q0| @, 555 Q0 |arefifth detrition coefficients for category
1,2and 3
| &5, 6666 Qg 0],| ¢ 6666 "Qs0|,| @4, 5556 "Qs,0 |aresixth detrition coefficients for category
1,2and 3
9% _ oo 2ng @ 2|"‘ s ° "\{7,0“"' Qs Mt "Y4,(3“+ @Gy %3 ")(1:“3' Q9 %
@ 6 I_,_ Gy 44444 Y “_,_ g 55555 Y 0 “_,_ ¢y, 66666 "Xsrél 6
a, o g @7 2|+ @7 2 "Y.0 “"‘ Wy M "Y4,(‘3“+ Gy 333 ")’1,(‘)| ) 0
El A o 44444 L " 55555 "y o " 66666 "y ¢ @
+ W \fs,ol"‘(% )’9,0“"'(*%3 ¥3:0|
QQs _ G 2°Q Qg 2|"‘ Qg 2 "\{710|+ Qs . Y4, 0 |+ Gy, 333 ")’Lbl Qo "
o |_,_ e 44444 Y o “_,_ GG, 55555 Y, 0 “_,_ ¢y, 66666 "}{3,(‘)|
Where|+ Ws 2 Yy, 0 ||+ @; % Y0 ||+ Qs 2 Yy, 0 |arefirstaugmentation coefficients for category 1, 7%3
2and 3
75

|+ NIl 7y, 0 ||+ ANy, 0 | + N Y., 0 | are second augmentation coefficient for category 1, 76
2and 3 ;;
|+ W@y 3% 7Y,0 ||+ @, 3% 7Y,0 ||+ @, 3% "Y,0 |are third augmentation coefficient for category
1,2and 3

) - - e 44444 \ et o \ . ..
|+ @, 4444 Y0 | + (g ¥, 0 ,|+ g 4444 Y 0 | are fourth augmentation coefficient for
category 1, 2 and 3
|+ Gyg 5555 "y 0 | |+ e 25555 "Y 0 ||+ @ 29555 Y0 | are fifth augmentation coefficient for
category 1, 2 and 3
|+ Gy, 66666 "y o | |+ Cyg 66666 "y o ||+ Gy, 60666 Y. 0 | are sixth augmentation coefficient for
category 1, 2 and 3
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ot 2 ot 2 © \ g l,l, o | T 3'3'3' 3y \ | 79
T g 2y Ge 2| s 2 "Quo|| ds 00 ||z &0 o] .,
T M6 7 - —~ - —~ o Fp— 6
| Gy 44444 °Q, 0 || Gy 55555 "Q,,0 || ¢y, 66666 "Q. 0 |
Y, %, di7 2| (:l7 g "Qg|(‘3| (Ii”4 Lk 00 ||Z (:%1 333, “stb| 80
E_ Ql7 YG ol 414141414 o, \ 5 55555 o, \ T 6,6666 \ 7
Ws Q7|0| Wy "7 leOH 33 " Q5v0|
5 ol o, \ 5 1v1v o, \ T o \ 81
OYg _ Qe 2°Y. Wsg 2| W 2 Qg|0| Ws Qo |Z Gy, 333 st0| Y
E - 8 7 o o, \ ol o, 2 5o o, 2 8
| G 44444 "Q,,0 || G, 55555 Q0 || Gy, 66666 Q0 |
Where| bMNI2 Gg,t | | bNNI2 Gg,t | | bMNI2 Gg,t | are first detrition coefficients for category 1,2 82
and 3
TNiNi o~ TNiNi e~ 7"1v1v L ys . o
| VL Qo || QYN+l Qo | | N Q0 | are second detrition coefficients for category 1,2 and 3
| GHNI333 g, 0 || GHNi333 "Q;,0 || GHINI333. '@, 0 | are third detrition coefficients for category
1,2and 3
S 44444 Q. ¢ v 44444 s S 44444 ) ¢ i =
| 0y, T Q0 | W Q;,0 | We T "Qq,0 | are fourth detrition coefficients for
category 1,2 and 3
| Gy 55555 "Qol,| & 5°%%° "qo|,| &, 55555 Q0 |are fifth detrition coefficients for
category 1,2 and 3
| G, 66666 "Q0|| di; 66666 Qg 0|, ci, 99655 "Qg 0 | are sixth detrition coefficients for
category 1,2 and 3
a0, . s 6o 3 |+ o * 1,0 ||+ e 2%% "Y7,0 ||"' 6y b Y4:0| ‘
— = Wy &) .,u - s r - s o - . Qo
> |_,_ (py H44444 Y ||_,_ (bg 555555 "y o ||_,_ ¢y, 666666 ¥3’0|
901 _ . s Gy 3|"‘ @, ° ")’110”"' @7 %2 "Y,0 ||"' @, b "Y4:C"| ) 84
Elas e 444444 555555 "y ¢ " 666666 "y ¢ @
+ s ¥s,0 |+ g 77 %,0 ||"' Opz "0 X3, 0 |
A ~ - e LLL L 85
0Q, _ &, 20 (7 3|"‘ @ ® "0 “"‘ Qg **% Y, 0 | + Wg ¥4, 0 Q9
o 2 ! o — o 2
|_,_ (g 444444 Y g “_,_ (G, 555555 "y o “_,_ ¢y, 666666 ¥3’0|
86
|+ @ ° "™,0 ||+ @ 2 V.0 ||+ & 3 "%.0 | are first augmentation coefficients for category 1, 2 and
3
|+ s *** "Y.0 ||+ &, 222 "Y,,0 ||+ Qg 2?2 Y0 |are second augmentation coefficients for
category 1, 2 and 3
it o \ it o \ et 111, . . . ..
|+ Qs Mt Uy, 0 ||+ @, Mt Y, 0 | + Qs Y4, 0 | are third augmentation coefficients for category
1,2and 3
it o | . 444444 \ et - N . ..
|+ 63, 444444 g o ||+ @3 ¥, 0 ||+ 6§ 444444 Y, 6 |are fourth augmentation coefficients
for category 1, 2 and 3
|+ Gyg 55555 "y o ||+ g 255555 "y 0 ||+ @y 295595 Yo 0 |are fifth augmentation coefficients for
category 1, 2 and 3
|+ Gy, 666666 "y ¢ ||+ Cyy 666666 "y o ||+ 0y, 000666 "y o |are sixth augmentation coefficients
for category 1, 2 and 3
87
(’:%r 3| 2 3 “Q b || T 222 “Q C‘) “ T 111, “O(‘)| 88
QYo _ Go 27Y 0 U3 3,0 || We g, 0 ][ W3
D 0 1 5 o N o o N o o N 0
| Gy, 444444 Q. o “ Gys 555555 "Q, 0 ” ¢y, 666666 "Q. o |
OY _ v g Gy 3| Gy B “9310“2 Wy 222 "Qy,0 “Z Wy M "O(‘J| 89
R ry 444444 o T 555555 Q. ¢ T 666666 Q. ¢ '
s Q;,0 I Oy 77 QlaO“ O3z "0 Qs:o|
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T x g Go *[ 6, 3 Q507 s 222 "Qu.0 ||z Gis Q0 .
> _ @ % — - — - — . Yo

| Gy 444444 "Q7.0|| Gy, 555555 “QLOH ¢y, 666666 'Q5,0|

| Gho 3 "Q3,0 || Gy 3 "Q3,0 | | G, 3 "Qg,bl are first detrition coefficients for category 1, 2 and 3 91
| G 222 "Qy,0 || a7 222 "Qy,0 || Gy 222 "Qy,0 | are second detrition coefficients for category 1,
2 and 3

| aiNi111 "0 || QN1 Qo | NI Y100 | are third detrition coefficients for category 1,2 and 3

o r— v 444444 o ron——
| G, 444444 °Q | s Q;,0 | e 44444 ;.0 |are fourth
detrition coefficients for category 1, 2 and 3
| @8 555555 "Q, 0 || @9 555555 'Ql,c‘)|,| g\go 555555 "Q, 0 |arefifth
detrition coefficients for category 1, 2 and 3
| Gy, 666666 "Q 0 || di; 666666 Q0| d§, 666666 Qg0 |are sixth detrition coefficients for
category 1, 2 and 3
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|+ @z Moy, o ||+ @, 1t ovy,.o | + Qs Y., 0 | are fourth augmentation coefficients for
category 1, 2,and 3
|+ s 2222 "y, 0| |+ &, 2222 "y, 0|+ &y 2%?? "Y,,0 | are fifth augmentation coefficients for
category 1, 2,and 3
|+ 63 3332 "%, 0| [+ a3y 3333 "y, 0| [+ &g, 3333 "y, 0 |aresixth augmentation coefficients for
category 1, 2,and 3
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o 8 9 1 o~ 51 o N o o N 8
(0] | Gys 1LiLl OOH G 22222 °Qq,0 ”Z Gy, 33333 93,0|
o~ 5 g - . s 44, \ 2 - L 109
Dh_ oosey G0 Sl B * Q0| & @m0z & 00 Qo)
03] ° 8 LLLLL e 22222 (). ¢ 33333 . ¢ °
(& 0 o8] [ 7m0l & o7 @)
5 el n, \ ol n, \ T o, \
O . .. Go 5| o ° "Quo|| s ** @0z @ °°° Gso| 110
) = Yo (:1 11111, "00 I (:i 22222 7 C‘)“Z (:% 33833 g OI 0
5 g 9 2 T 31
7 sy ¢ 2 N \ G .‘ . G .‘ . A P RN F P 111
umsz g ° Ql,o| | Wy ° Ql,ol,l y ° Ql,o| QN OO GO (8 QOXXHTE i
"Q1 WG w1, 2 6E'Q3
T o 3 ol 4.4, 2y Y o o, \ Y T T Y s DY erAer e\
| W, Q7,o|, s Q,,0 | we Q7,o|mQ|QasQ§X)J aex
G QOXEHRTE & "@i BRI 01,2 (Q3
|~ G, °08 "Q5,(‘)~|,| G %6 Q50| &4, 556 Q0| diRemho o g
CEQRE G "G Qi 01,2 (EQ3
7 — o o v LI1LL " -
| @s; A Qo || w, bl Ool, Ws Q0 | are fourth detrition coefficients for category

1,2,and 3
| G 22222 "Qg,(‘)|,| Gy, 22222 "Qg,c‘)l,l Gg 22222 "Qg,c‘J|arefifth detrition coefficients for category
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1,2,and 3

7 Gy 33333 "Q;,0 ||z Gy, 33333 "Q; 0 ||z Gy, 33333 "Q;0 |are sixth detrition coefficients for
category 1,2, and 3

112
Q@ _ Gy 67Q &7 6|"‘ @, ° 3’3'0”"' Qg °°° ¥910||+ Gpg 4% ¥5,0| Q
lo 2 3 PR N - o~ - 2
(@3] |_,_ Gy LALILL vy o ||_,_ G 222222 7Y, o ||_,_ G 333333 "y o |
. ~ ~ w444 Lo
Qs G ©°Q Ox3 6|"‘ s ° "%,0 ||+ 6o >°° "¥,0 | + s ¥s,0 Q
(o T 2 v ~ ~ 3
|_,_ @, LLILL vy g ||_,_ &y, 222222 7y o ||_,_ ¢y, 333333 "y o |
Q. 4. (g 6|"‘ @, ° "¥3|(‘3||+ @y 0 ")(gaéH"' W 444 ")/5,(‘)| . 114
® @ e LLIILL L 222222 "y ¢ 333333 vy ¢ @
+ (*15 ¥4‘0 |+ ('q.B """ Y710 ||+ (*&2 """ )/110 |
[+ 6 & Yaol[+ s © Yollrd, & o] amodaaane: GO i 115
@1 @HOG1 ®w1,2 03
[+ 35 555 "Yo,0|,[+ 63 2% Yo,0|[+ Gy 5595 Yo, 0 |G Qi Qi Q0 G aiEE
GE QOXEHTE & "@1 BRI w1, 2 (E'Q3
p— w44 L T | i s e e S
|+ Wy 44 Y, 0 | + (s Y, 0 ,|+ g 44 \{s,ol G QECQ @ G D eE
GEQOXEHTE & "@1 BRI w1, 2 (E'Q3
— — o L11111 : -
|+ @ LT Ty, 0 ||+ @, Moty o | + s Y., 0 | - are fourth augmentation coefficients
|+ s 222222 "y, o[+ &, 222222 "y, o ||+ &y 222222 "y, & | -fifth augmentation coefficients
|+ G3o 333333 "y, 0| [+ ¢, 333333 vy o ||+ ¢3, 333333 "y o] sixth augmentation coefficients
116
o 5 6| 2 6 \ || 2 555 = \ || Fr 444, \ | 117
ax, &, 6y (&7 03 Q5.0 |7 _oyg Q1,0 |7 a3y Q7,0 "y
o 2 3 1 o~ 5 o N o o N 2
(0] | Gy; Lilll Oo|| Gy 222222 anOHZ Gy, 333333 93’0|
o~ 5 T — 7 — v AdA 118
23 TP PPN Gy O @5 ° Qe0|lz B % "Quo ||z @s 0| .
® - 8 2 % — ™ P 7 ] >
| Gy, Lhiill OOH Gy, 222222 Qg,0|z Gy, 333333 Qs:ol
aY, -y U3y Gl &y ° "Qs,0 “Z o > Q0 |Z ae 4% "97:(3' ; 119
@ % r BLILLL s 222222 (). ¢ 7333333 Q. ¢ %
Ws Qo | Wg Q9,0 ”Z Wy "7 Qs:ol
32 © Qs 0] @ Qo] @, ° Qs Qo Omiae GE OO o 120
&) 5 W3 5 O34 5
@i WBORI ®1,2 EQ3
| s 555 "Quo || & *°° @ o|| & 55 "Q,0| Qi Qi aer
G QOXEHTE & "@i BRI 01, 2 (E'Q3
T o Y ol 4v4v4v o, \ il ", \ Ty e V37 D N erAer e\
| @ *4% Q0| &s Q0| [ B % "Gy, 0| GOSN ge
G QOXEHTE & "@i @B 01,2 (2Q3
> o~ 2 o~ wr 111111 . . _
| @, HLLLLL Qo || w, AL Qo | Ws Q0 | are fourth detrition coefficients for
category 1, 2, and 3
| s 222222 "Qy0 || &, 222222 "Qq0|| iy 222222 "Q,,0 | are fifth detrition coefficients for
category 1, 2, and 3
|z G 333333 "Q, 0 ||z Gy, 333333 "Q;0 ||z Gy 333333 "Q,;0 | are sixth detrition coefficients for
category 1, 2, and 3
121
Where we suppose 122
o, w1 e 1 5 5 1 s 1
I N A N T ¢ N 123
Q= 13,14,15
. e 1 wno 1 .. . . .
(B) The functions @, , Gy, are positive continuous increasing and bounded.
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Definition of (N9 *, (iQ*:

%0 (' (B)® 124 24
Gh (00 (A @' (8)®
© @y, G Y0 =(n} 12
limgos Gy = 00 = (ig?
Definition of (643 )®, (6,5 ) :
Where[(815)®,(815)®, (A3 1, (-9  |are positive constants and
They satisfy Lipschitz condition: 126
G9! Yo (@7 Yol (QIDVIY, Y@ P=)®e 127
@00 (@1 0V < (Qs)D|[0 e 0 128
With the Lipschitz condition, we place a restriction on the behavior of functions 129

(@)Y Yy, 0 and(@) ' Y40 . “Ys,0 and “Y,, 0 are points belonging to the interval  (Qg )™, (0 453)® . It
is to be noted that (3) * “Y4,0 is uniformly continuous. In the eventuality of the fact, that if (0 ;53 )™ = 1 then
the function (&) * Y4, 0 , the first augmentation coefficient would be absolutely continuous.
Definition of (0 13 )@, (Q; )™ : 130
(D) (0 13)D,(Q3)D, are positive constants
(e (' 1
(013)D "(0413)D

Definition of (053 )M, (0453 )® : 131
(E) There exists two constants ( 0;3 )® and (05 ) which together with (0 13 )@, (Q YD, (613)® and 132
(613 )® and the constants (3 1, (Y L. ()L, (@, (L, (9L, C=1314,15, 122

satisfy the inequalities

Toml @+ @+ (815)+ (5)® ()P <1 0
m[ (@ +(@L + (613)P+ (03)® (Q)V]<1

Where we suppose 136
F) @l Gy, Gy, G2, Gy, Gy >0, (o= 161718 137
(G) The functions (22, £ are positive continuous increasing and bounded. 138
Definition of (p;) 2, (r;) ?: 139
B2 Y0 (12 B 140
B (Q,0 (9% (B2 (66)@ 141
(H) lim-yo 1y, B "Y;,0 = (g 2 142
limey, @G Q0 = (i ? 143
Definition of (6,6 )@, (6,5 )@ : 144
Where|(616 Y@ (816)P, (Y 2, (9?2 |are positive constants and

They satisfy Lipschitz condition: 145
&2 "0 (&2 %ol ()Y "ElQ @)™ 146
I8 Q%0 (B " Y% 1<(Q)PN'Q G H[Q @) 147

With the Lipschitz condition, we place a restriction on the behavior of functions (G&f? “¥&,0 and(¢&Ef? “Y,,0 148
. "¥8,0 And “¥;,0 are points belonging to the interval ("Qg )@, (0 1)@ . Itis to be noted that (GEf? “Y,, 0
is uniformly continuous. In the eventuality of the fact, that if (0 15 )® = 1 then the function (¢£F? “Y,,0 , the
SECOND augmentation coefficient would be absolutely continuous.
Definition of (0 15 )@, (Qs )@ : 149
0] (0 16)P,(7Qs )@, are positive constants 150
(G 2 g 2

(012)@) ‘(i(‘u(:)@) <1
Definition of (053 )@, (043)@ : 151
There exists two constants ( Uy )@ and (044 )@ which together with (0 16 )@, (Qs )@, (616)@6E'Q( 8,6 )@

and the constants (63 2, (¢ 2, () 2, (@B 2. (Y2, (9?2 ,'x>=16,1718,
satisfy the inequalities

(M1i><2>[(ai) 2+ @)2 + (Ap)P+ (Pg)® (kg )] <1 152
(t‘)lel;)@)[ (W2 +(@F% + (66)P+ (036)@ (Q)?]<1 153
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Where we suppose 154
) God, @3, @B, @y, W@, @ >0, (0=202122 155

The functions ¢, GE>® are positive continuous increasing and bounded.
Definition of (N9 2, (r;) 3:

B (%0 (3 (620)® i

B (09 (93 (B° (820)®

dQ yo u, &= %,0 =(g° 156
limgo 1, (1'%’393 00 = (i3 157
Definition of (8,0 )@, (8,0 )@ : 158
Where|(620 Y® (6,0 )®, (M2, (i3 |are positive constants and

They satisfy Lipschitz condition: 159
ICFF° %0 (@ %ol (IO "ElQ @2 160

(GBF "0 (B QY| < ('Qo)@|[O "OfjQ (920 ot
With the Lipschitz condition, we place a restriction on the behavior of functions (G2 “¥,0 and(¢GEf° “Y;,0 162
. "¥8,0 And “¥;,0 are points belonging to the interval ("Qg )®, (0 50 )® . Itis to be noted that

(¢&5= "Y,,0 is uniformly continuous. In the eventuality of the fact, that if (0 ,o )®® = 1 then the function

(G2 Y;,0 , the third augmentation coefficient would be absolutely continuous.

Definition of (0 y )£3), (Qy )®: 163
(K) (0 20)®,(Qy )®, are positive constants
(N (93
(020)® "(020)® 5 5
There exists two constants There exists two constants ( U,g )® and ( 0,9 ) which together with 164
(020)®,(7Q0 )®, (020)PE'Q( 659 )@ and the constants (6 * , (6H *, (@ * . (F 3, (A ?, (9% &= 165
20,21,22, 166
satisfy the inequalities 12;
1 v . R - .
m[(wﬁs +(GB 3 + (050)®+ (0)® ()] <1 169
1 5, 5, 2 - -
m[ (@3 +(0B3 + (00)3+ (05)® ()P <1
Where we suppose 170
(L) g%, (B4, (B, g, B4, & >0, (0242526 1

(M) The functions ¢8>* , (I%ae“ are positive continuous increasing and bounded.

Definition of (N9 4, (iQ *:
B> (Y% 0 (' (0824)9
B> Q0 (9t (@B (824)?

(N) (‘i{ﬁ YO tb @B ¥,0 =M *
limgoy, 65> Q7 ,0 = (iQ*
Definition of (6,4 )@, (6,4 )® :
Where|(t‘>24 YD (60 )D, (A4, (94 |are positive constants and
They satisfy Lipschitz condition: 173
G "®0 (P %0l (RO  "EQ©E20®
IGBP* Q%0 @& Q YI<(QIDIG g Qb
With the Lipschitz condition, we place a restriction on the behavior of functions (G “¥£,0 and(¢gF* "¥s,0 174
. "¥2,0 and "¥s, 0 are points belonging to the interval  ("Q, )™, (0,4 )® . Itis to be noted that (GEf** “¥s, 0

is uniformly continuous. In the eventuality of the fact, that if (0 ,, ) = 4 then the function (¢&f** “¥s,0 , the
fourth augmentation coefficient would be absolutely continuous.

172

Definition of (0 ,, )®, (7Q, ) : 175
(0) (0 5,)®,(7Q, )™, are positive constants
(P)
(@ (@4
(524)® " (024)®
Definition of (0,4 )™, (054 )@ : 176

Q) There exists two constants ( U,4 )™ and (0, )® which together with

(0 24),(Q4 )@, (824)PEQ( 624 )™ and the constants (6 *  (¢B* . (@ * . (GG * (M *, (9* .
24,25,26,
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satisfy the inequalities
Fo@ @+ @@+ (820)P+ (5)® (Qu)D] <1
(‘02411)(‘0[ (@4 +@H* + (60)P+ (0,4)® ()] <1

Where we suppose 177
(R) W%, GBS, B, g5, (B°, & >0, '(JG=282930 178
(S) The functions (2>, G 5 are positive continuous increasing and bounded.

Definition of (N9 °, (i °:
& (%0 (MQ° (0)®
B Q0 (9% (685  (0)®

(M) o[o] "¥O Hb (I%% ¥,0 = (N9 >

limgoy, 6B "Q;,0 = (i9°
Definition of (0,5 )®, (6,5 )® :
Where|(628 Y®) (6,5 )®, (M 5, (i) ° |are positive constants and
They satisfy Lipschitz condition: 180

ICEF° "BO  (F° %ol (Q)OY% "¥Qd=)
IGEF° " ®0 (@ Q. "% 1<(Q)OI'e  q Ae =)
With the Lipschitz condition, we place a restriction on the behavior of functions (¢&f° “¥5,0 and(¢&Ef® ¥y, 0 181
. "¥,0 And ¥, 0 are points belonging to the interval (" Qg )®, (0 55 )® . Itisto be noted that (¢EF® Yy, 0
is uniformly continuous. In the eventuality of the fact, that if (0 ,5 )® = 5 then the function (¢&f® "¥,,0 , the
fifth augmentation coefficient would be absolutely continuous.
Definition of (0 55 )®,(Qg )® : 183
L) (0 ,8)®,(Qg )®, are positive 184constants
(6 5 0 5

('02?)(5) '(1(322)(5) <1
Definition of (0,5 )®, (0,5 )® : 184
(V) There exists two constants ( U, )® and (0,5 )® which together with

(025 )®,(Qg )®), (025)®¢E'Q( 625 ) and the constants (cdg ° , (6 °, (W ° (B ° (M °, (19 °,'%E
28,29,30,  satisfy the inequalities

179

182

(52:)(5)[((:'()aS + (@) ° + (088)+ (05)® (Q)®] <1

G @5+ @5+ (62)0+ (95)® (3)O] <1
Where we suppose 185
G, G/, (B¥, g%, B, ®*® >0, (J0=323334 186
(W) The functions (56, J%*G are positive continuous increasing and bounded.
Definition of (N9 &, (i ¢ :

B (%0 (° (83)®

B (Q 0 (9° (B° (65)®

X) &ﬁ:\éo w B Y50 = (g °

limgoy, 6B Qs ,0 = (i9°
Definition of (63, )®, (63, )©® :

Where|(632 YO (63, )®, (Y C, (iQ° |are positive constants and

They satisfy Lipschitz condition: 188
IGBF° B0 @B %0l (RO "Flo@=)®e
ICBF° "Qs %0 @F® Qs % 1<(Q)OI'Q Qs fjQ (D)
With the Lipschitz condition, we place a restriction on the behavior of functions (Gf® “¥5,0 and(¢Ey*® “¥;,0 190
. "¥§,0 and "¥3, 0 are points belonging to the interval ("Q, )®, (03, )® . Itis to be noted that (CFF* Y5, 0

is uniformly continuous. In the eventuality of the fact, that if (0 5, )® = 6 then the function (¢&f* "¥,,0 , the
sixth augmentation coefficient would be absolutely continuous.

187

Definition of (0 3, )®,('Q, )® : 191
(0 3,)® ("Q,)® are positive constants
(@9 ° (@ ° 192
(032)® "(032)®
Definition of (03, )®, (03, )® :1 193
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There exists two constants ( Uz, )® and (0, )® which together with (0 3, )®, ("Q, )®, (63,)®EQ( 65, )©®

and the constants (63 ® , (¢ °, () ¢, (B¢ . (Y%, (9% "=323334,
satisfy the inequalities

Foe @ +E@° + (83)@+ ()@ (Q,)®] <1
Gl @° +(@° + (8)@+ (55)®@ (Q)®]<1

194
Theorem 1: if the conditions (A)-(E)( first five conditions related to the system Boolean satisfiability problem) 195
above are fulfilled, there exists a solution satisfying the conditions
Definition of "@,0 ,"™%0 :
QO by Qbm ' [0 =d>0
KO (Dyp)®@PP0 [0 =" >0

196
If the conditions of second module pertaining to Knapsack problem and Hamiltonian Path Problem above are 197
fulfilled, there exists a solution satisfying the conditions
Definition of "@Q,0 ,"%0
@O (U)PE0P g0 ="@>0
O (016)@Q010P0 o ="%>0

198

If the conditions pertaining to the third module Sub graph Isomorphism problem and Subset sum problem above are 199
fulfilled, there exists a solution satisfying the conditions

@O (Up)PE20)P g0 =@ >0

KO (D )D 20 @o Y0 =" >0

If the conditions of the fourth module Subset Sum Problem and Clique problem above are fulfilled, there exists a 200
solution satisfying the conditions

Definition of "@,0 ,"%0 :

@0 624 4'QD24 40 ,| Q0 :"C%>0|

WO (Do)

If the conditions pertaining to the module five namely Vertex Cover Problem and Independent Set problem are 201
fulfilled, there exists a solution satisfying the conditions
Definition of "@,0 ,"%0 :

.‘on 628 5 'QDZB 5% , | .\Q}O =“C?)> 0| 202

WO (D)@

If the conditions pertaining to Dominating set problem and Graph Coloring Problem above are fulfilled, there exists 203
a solution satisfying the conditions

Definition of "@,0 ,"%0 :

Q0 O Qb 0 [ Q0 ='G>0

O ()OO

Proof: 204

Consider operator ' ) defined on the space of sextuples of continuous functions '@, ™45 . © g, which satisfy

Q0 =", %0 =8, G (Ba)P8 (512)® 205
0 Qo W (B Vb 206
0 %o B (B)0)®s 7
By

@y 0 =G "'WOO () ' "Qy {15 (B +aBF! Yol i1z Qi Qg3

@, 0 =G, "',VOO (4) 15 i g3 (@) +(@EF Yl s Qi O 209
Qs 0 ="G; "',VOO (QAs) " "Qy i 13 ()t + (R Yl f1s Qig Dy 210
Y 0 =" "',VOO (@) *Ys i 13 (@) (W@BF* Oiyg iz Yaiw 9y 211
Yo 0 ="Y, "',VOO (@)Y i 13 ()Y (WP Oiyg iy Yaiw 9y 212
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Tist =T+, (@) Y f1s  (GR)' (CEF' Ol i1z Yois T 213
Wherei .5 isthe integrand that is integrated over an interval 0,0

214

215
Consider operator ' @ defined on the space of sextuples of continuous functions "Q, “¥%a . © 5, which satisfy
Q0 =@, 0 ="8, @ (06)P "8 (056)?, 216
0 Qo G (Dy )@ 217
0 o "B (D)@ 218
By 219
Qs 0 =" "'»00 (Q6) 27Q7 1 16 (CFR)2 +aRF> Y i f16 Qie Qi
d 0 =g "',VOO (A7) > "Qs 1 16 (CB)? +(BF? Yl d17 Qi Qi 220
Qs 0 =G "',VOO () > Q7 1 16 (B2 +(HBF> Yl 16 Qie Qi 221
Yo 0 =" "',VOO ((Ile) 2"y 116 ((Ifé) 2 ((If%?z Oige 16 Yol g 222
Y, 0 =" "'WOO ((117) Yo 1 16 ((If%) 2 ((If%ez Ol 16 Yol g 223
Y 0 =" "'WOO ((Ila) 2" 116 ((If%) 2 ((préjez Ol 16 Yol g 224
Wherei 15 isthe integrand that is integrated over an interval 0,0

225

. ! (3) . . . ", o 0 . .
Consider operator defined on the space of sextuples of continuous functions '@, %4 . © 4, which satisfy
R0 =@, "0 =", G (0,0)® "% (D)@, 226
0 Qo @ (DOy)@gb0)Po 227
0 "0 " (g )®@o0)®0 228
By 229
"@o 0 ="Gy "'woo (6%0) * "Qy i 2 (6B)° +BF2 Yl a0 Qin Do
"@1 0 ="GQ, "'woo (61)%"Q i 2 (GF)° +(FEF® Yl i Qrizxn Oy 230
"@2 0 =G, "'woo (6%2) ® "Gy i 5 (@B)° +(BF® Yl o Qixn Uy 231
Y 0 =% "'WOO (‘I%o) 3% i o (&%) 3 (‘I%Qfg Oi iz Yl Uy 232
Yo ="% "'woo (&%1) "% i 20 (‘Igel) 3 (‘139173 Ofz iz ™Yl Uy 233
Tt =TH+. 0 (@2)° Mo (B GBI Ol i %in U 234
Wherei ,o isthe integrand that is integrated over an interval 0,0
Proof: Consider operator ' @ defined on the space of sextuples of continuous functions '@, "%5 . © 4, which 235
satisfy
Q0 =G, 60 =8 G (Tu)@ G (52)@, 236
0 Q0 @ (DO )@goa)®o 237
0 "0 "B (g )@ctbe)®o 238
By 239
"C§4 0= "@4 "'woO (624) * Q5 1 24 (B)* +BF* Yoo s "Quiog Qo
B0 =Gy (Gs) QU ios  (GH)T H(CETY Y las o Qia o 240
"(56 0 ="Gs "'wo0 (6%6) * Qs 1 24 (6B)* +(GFT* Yo los g Qeiog o 241
’ 4 0 =" 4 ,VOO ((:%4) 4 "\f5 i 24 ((":gl) 4 (@?4 “Oi 24 1i 24 ")/4 i 24 Q 24 242
Yo 0 =" +
Yo 0 =Yt ) (@) Yl (@)Y (GEF Olas o Yol Qo 243
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Te t =T "',VOO (636) * Y5 | 2 (@3@)*  (ORF* Olg i Yolio Qo 244

Wherei ,, isthe integrand that is integrated over an interval 0,0
Consider operator ' ) defined on the space of sextuples of continuous functions "Q, "%, © 5., which satisfy 245

246
Q0 =@, 0 ="8, @ (05)® " (02)®, 247
0 'Q)O “C% ( 628 )(5).Ql') 28 )30 248
0 "0 "B (D)@ ct02s)®0 249
By 250
Qs 0 =Gy "',VOO (628) ° "Qq i 25 (CB)° +a3T° Yoiom s Qi o
Qe 0 =G "',VOO (Gre) ® Qg 1 25 (68)° +(FT° Yoiog 258 "Qoiog Do 251
@ 0 =" "',VOO (6%)° Qo i 25 (CB)° +(GFT° Yol s Qi o 253
Yo 0 ="% "',VOO ((Iks) > Yo i 28 ((Iges) ° ((Ig%§5 Ol g 128 "Yglog o 254
Yo 0 =" "',VOO ((I&g) > Y i 28 ((12%) ° ((Ig%§5 Ol gg 28 "Yolog Uy 255
Tot =T+, @)%Y (o5  (@H)° (GRI® Ol g Yoio Do 2%
Wherei ,g isthe integrand that is integrated over an interval 0,0

257
Consider operator ' (® defined on the space of sextuples of continuous functions "@, "% . © 4, which satisfy
QO =@, %0 ="8, "G (0)® " (03)®, 258
0 Q0 '@ (O )O0a)0 259
0 "0 "B (s )©¢ba)® 260
By 261
"@2 0 =G "'WOO (6%)° Qs i 3 (CB)° +BF® Yaigp s Qizp Ui
"@3 0 =G "'WOO (3)°"Q, i 3 (CB)° +(BF® igp i Qip dip 262
"@4 0 =G, "'WOO (63) ° Qs i 3 (CE)°C +(@&ET® iz i QUip dap 263
Y, 0 ="% "'WOO (aéz) Y i g ((Igez) ® (‘Igeﬁe Oig iz YHizxp Ui 264
Yy 0 ="% "'WOO (‘Iés) °"% i g (‘Iges) ° (652376 Oigp iz "YBizp Ui 265
Tt =TH+ 0 (@)° % i (B (@FF® Oigp iz YMizxz 9 266
Wherei 3, isthe integrand that is integrated over an interval 0,0

267
@ The operator PO maps the space of functions satisfying into itself .Indeed it is obvious that 268
o~ & n 0 N 5 D 13 )Di ,
Q0 G Q) @H(D)VEP s gy =

v f \ e @3) ! (513)D (1 15)Ds
1+(Qs) 1 0" + =S — 9bs 1
From which it follows that 269
SN (Ge) ! - (P13 ?(1)+--(g4 -
Q0 @uOmPe GO (G weg 0 F o (f)®
"@, is as defined in the statement of theorem 1
Analogous inequalities hold also for "Q, ,"Qs, Y3, Y4, " Y5 270
(b) The operator ' @ maps the space of functions satisfying into itself .Indeed it is obvious that 271
o . o 0 , o 5 o~ 0 2); )
Q 0 Gy +>voo (G6) 2 "@+(0y6 ) OGP 1) 16 f (g = 272
" W o, 2 (5 ) n @)
1+(Qg) %20, +—(°’16()0 1:;,(126)) g016)@0 1
From which it follows that 273
5@ (Gre) 2 . —C&;—(Gle (D

Q0 G Qe (012 @ (06)P +¢, Q 7 + (036 )@
Analogous inequalities hold also for "Q; ,"Qgs, Y5, Y7, " Ys 274
@) The operator ' (3 maps the space of functions satisfying into itself .Indeed it is obvious that 275

o \ o o o 5 o~ O (O )
Q 0 "G "'wo0 (6y0) 3 "Gu+(Dy ) OGP0 Gy =

" (@20) 3 (020)® 5,0 Y®)e
1_,_(0%0)30 c?l"'W f020)0 1
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From which it follows that
0,0)®0  (Gpo) 3 ~ (820)®+ ) -
Qo GeOmP B (@G0 T+ (5)® 277
Analogous inequalities hold also for "Q; ,"Q,," Yy, Y;, ¥, 278
(b) The operator @ maps the space of functions satisfying into itself .Indeed it is obvious that

o \ o 0 ,u o 5 o~ O (Oh ’
Qs 0 G+, (a)* "Co+(Uy YOG Gy, =
@)
1+ (@4) 44 "@5 (6n4) * (024) 024 MO 1

(024)®
From which it follows that
(0524)H)+s
N L e e~ (5o @ (Cpa)d - o~ D >
Qs 0 "G, Q02670 (021)(4) (04)® +G; Q s + (0 )@

"@, is as defined in the statement of theorem 4
(© The operator () maps the space of functions satisfying 35,35,36 into itself .Indeed it is obvious that

QPO G+ (0%) 5 "Qy+( Uy )OO 28 @iz g 28 =

. (¢pg) 5 (U28)® OF
1+(0L&8)50 Gy + W b28)™0 1

From which it follows that
(528)®)+d)g

“ \ o . " (5)¢ (&pg) 5 5 - . @ 5
Qs 0 "G QD260 m (05)® +°Gy Q o + (0 )®

"@, is as defined in the statement of theorem 1
(d) The operator O maps the space of functions satisfying 34,35,36 into itself .Indeed it is obvious that

o \ o C . o 5 e~ 0 (6); )
Q0 G *.0 ; (Cx) & "@+(0yy )OFV R G, =
6 ®)
1+ (Cay) ®0°Q + (082) (D32) ha2)® 4

32)©®
From which it follows that
532)®0  (32)° N (B30 )O+ .
Q0 "G QO m (02)® +'&; Q 2 + (05, )®
"@, is as defined in the statement of theorem1
Analogous inequalities hold also for "Qs ,"Qg, ¥4, ¥s5, " ¥5

(.
It is now sufficient to take 1)® "(613)D

(Pi3)® and (Qu3)® Iarge to have

< 1 and to choose

(510)0)+
5 o, . (9 5
(u 13) ©1a) (0) + (03)D+"@ Q ? (0;3)®
(513D,
@l P N .
(012)1 (033)P+"gQ 2+ (053)W (043)®

In order that the operator ' @ transforms the space of sextuples of functions "@, "into itself
The operator ' ) is a contraction with respect to the metric

Q o' Yl | 02,772 =

R T AN N P B (013)16'"‘",1 \ -,'2 o (013)10
lggr]{%gfocg)o Q 01Q ,%ﬁo\f)o % 0Q }
Indeed if we denote

Definition of "Q"Y:

.‘OUY :! (l)(nou$
It results

Q; Q)z ,vob(dla) 1 Qi Qi Q(013) M i1z cf01a) i1z iy 13+

vob{(dﬁ) 1 Q?l) Q?z) Q1) iz b)) i 4

@3 Y i @ QRO i e 4

o2 o, [ o, N2 7 . 0 1 v 1 ,

Q5 [(CBF* Y, i 13 (CBFL Y, i1z | QO T(fn) "l g,
WWW.ijmer.com
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Wherei ;5 represents integrand that is integrated over the interval 0,t
From the hypotheses it follows

Of 02 QU S (@)t + (G8) !+ (B19) T (D) P (Q) @ Ot vror v 293

And analogous inequalities for "QE'Q™Y, Taking into account the result follows

Remark 1: The fact that we supposed (6%¥* and (ci2¥* depending also on t can be considered as not conformal 294

with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the

uniqueness of the solution bounded by ( 0;3) 2 013 " 0 (2 Q(0,5) T ¢8913) * © respectively of 1 ,.

If instead of proving the existence of the solution on 51, we have to prove it only on a compact then it suffices to

consider that (&' and (6&f** ,"G= 13,14,15 depend only on T,, and respectively on "QGE'QE€0EE §) and

hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any 0 where '@, 0 =06EQ"™%0 =0 295

From the governing equations of the holistic system it results

Q0 @0 o @FY (@BF Yaiig i1z 9ogs 0

"o "BQ @0 >0 fort>0

Definition of (0 43) * L (013)* , GEQ (013) ! 3" 296

Remark 3: if "Q; is boundgq, the same property have also "Q, GE'Q Qs . indeed if

"Q; < (043)? itfollows % (013)* |, (G33) ' "Q, and by integrating

Qs (Dix)! =@ +2(Aa) " (D)t /(6F) !

In the same way , one can obtain

Qs (D)t ;=T +2(0s) T (D)t /(65

If'Q, €1 Qs is bounded, the same property follows for "Q; , "Qs and "Q; , "Q, respectively.

Remark 4: If "Q; "Qbounded, from below, the same property holds for "Q, ¢£'Q"Qs . The proof is analogous with 297

the preceding one. An analogous property is true if "Q, is bounded from below.

Remark 5: If T;5 is bounded from below and limg 1, ((GEF: (00 ,0)) = (&) * then™Y, © Hb 298

Definitionof & ! and-; :

Indeed let ¢ be sothat for 6 > ¢

@)1 (@ (00,0 <" %B(O> & !

Then TY@A () & ' -"Y,which leads to 299
. 1 . 1

“Ya (‘*’14)+
. 1 . 1

“Ya (wl“)+ , 0= czQz—l By taking now - sufficiently small one sees that T;, is unbounded. The same

property holds for "Ys if limgp ,(CEF! 00,0 = () ?

We now state a more precise theorem about the behaviors at infinity of the solutions of equations solution to the

governing equations of the global system

1 Q10 +"¥'Q 19 |fwetaket such that'Q 10 = % it results

300
v 2 i 2
It is now sufficient to take =2 & <1 and to choose 301
~ . (016)® " (016)@
(016 )@ Q046 )@ large to have
(B16)@D+d) 302

g 2 5 5 0 e ¥
ﬁ (06) 2 + (U;6)@+"6 Q ? (016)®

303

(516)D+ ¥

M2 @) e Y 5\ 5@ 304
©10) 2 (016)@+"¢ Q + (V) (V16) 305
In order that the operator * @ transforms the space of sextuples of functions ", ", into itself 306
The operator ' @ is a contraction with respect to the metric 307
Q QL% Q%2 =
rors s v el P B (016)20'"‘",1 \ .,'2 o (016)20
I(:)Qr]{%gxfoQ)O Q 00Q ,%(Ngio\(zo % 0Q }
Indeed if we denote 308
Definition of 'Qo,"Yo :  "Qe,"Ye ="' @(Q,"Ye)
It results 309

s~1 a2 0, « a1 a2 o 2. v 2. .
% QY () Q Q QP el s G o+
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ER?2 G g O e 4
GBI Yl % B O gl ie 4
Q5 1CRF2 Yy i 16 (CRF2 Yy igs | Q007 e 010 1 ue ygf

Wherei .5 represents integrand that is integrated over the interval 0,0 310
From the hypotheses it follows
QI G 2 e (Mie)?t 311

o (@) 2+ (B2 (A2 +(P)2(Qe)? d Qo 1Yo i Gy 2, Y 2

And analogous inequalities for G-and T.g Taking into account the hypothesis (34,35,36) the result follows 312
Remark 1: The fact that we supposed (¢%¥ 2 and (¢Gi2% 2 depending also on t can be considered as not conformal 313
with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the
uniqueness of the solution bounded by ( Pyg) 2 e(M16) * tand ( Q,5) 2 e(M16) * t respectively of 51 ..

If instead of proving the existence of the solution on 51, we have to prove it only on a compact then it suffices to
consider that (¢Ef and (G ,"G= 16,17,18 depend only on Ty, and respectively on "Qy (and noton t) and
hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where Gogt =0and Tot =0 314
From 19 to 24 it results

Got G o @82 @FF? Tz i i1 dige 0

Tot T @37t >0 fort>0

Definition of (M) * |, (M) ? ,and (M) ? - 315
Remark 3: if G;4 is bounded, the same property have also G,; and G;g . indeed if

Gig < (Myg) 2 it follows di% (M) ? | (CB) ? Gy7 and by integrating

Gz (M) ? 9= GY7 +2(Q7) * (Mgg) ? /(657) 2

In the same way , one can obtain

Gig (M) ? =Gl +2(s) > (M) * ,/(C5R) 2

If G;7 or Gy is bounded, the same property follows for G, , Gig and G4, G17 respectively.

Remark 4: If G5 isbounded, from below, the same property holds for G,; and G5 . The proof is analogous with 316
the preceding one. An analogous property is true if G,; is bounded from below.

Remark 5: If T;q is bounded from below and limo 1, ((GEJ2 ("Qy t,1)) = (C2) 2 thenT;; © Ho 317
Definition of & 2 andR,:

Indeed let t, be sothat fort >t,

(Q7)2 (B2 (Q t <R, T(®)> 6 ?

Then d;—f (37)%2 & 2  RyT;;which leads to 318
(7)) % a 2 0 1.
Ti7 e 1 e R +Te Rt [fwetaket suchthate Rt = 5 itresults
(CREE S a2 - - : 319
Ty, ———— . 0= Iogg By taking now R, sufficiently small one sees that T;; is unbounded. The same
property holds for Tyg if lime 1, (CBF2 Qg t.t = (C) 2
We now state a more precise theorem about the behaviors at infinity of the solutions of equations 37 to 42
320
v 3 7, 3
It is now sufficient to take % % < 1 and to choose 321
(020) (020)
(P )® and (Qy )@ large to have
(820)®)+d) 322
€3 ¥ ¥ o e ¥
G202 (00) % + (00)®+"¢ Q ? (0y0)®
(520)®+¥, 323
() 3 = @ R = =
©20) 3 (05)®+¢ Q ° +(00)®  (05)®
In order that the operator * ) transforms the space of sextuples of functions "@, “¥into itself 324
The operator ' is a contraction with respect to the metric 325

Q GGt Yt QY 2 =

iér‘]{(gdm"%l 0 Q)Z 00 (ﬁzo)%’ddm",\él o ""62 0 Q ©20° 0
Q

NA Ny
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Indeed if we denote 326
Definition of "Q5,"¥;: Q3 , "Ys =' @ "Q;, Y,
It results 327

Qé Q22 . ob(dko) 3 Qi Qi 'Q (020) 3 'c§ 0 20) 3, a0 +
”00{((1%) 3 Qé Qg 0 (02031 20 (020 %1 20 4

@F° Wi QG G QO agin o 4

. o o ’ o, - ’ . 0 3 o~ D) 3 5

Q0 (65T "W 0 (GBF Y Mg | QO T2 020 2y o

Wherei ,, represents integrand that is integrated over the interval 0O,t

From the hypotheses it follows

“Ol "02 Q (0 20) 39 328

1 o o, o 5 7, , o, - o o

(52073 (630) 3 + (683) % +(020)° +(00) 3 ( Q)2 Q "Gy ', " *; Q3 2, 7Y 2

And analogous inequalities for "QE Q™Y Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (¢35 2 and (c3¥ 2 depending also on t can be considered as not conformal 329
with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the
uniqueness of the solution bounded by ( 0,) 3 ‘G020 ° 0 GE'Q( D) 3 BV 20) ° © respectively of 51 .

If instead of proving the existence of the solution on 51, we have to prove it only on a compact then it suffices to
consider that (¢&§*° and (a5 ,"CG= 20,21,22 depend only on T,; and respectively on "Q; (CEQ&£0£¢ 0) and
hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any 0 where '@, 0 =06E'Q"™%0 =0 330
From 19 to 24 it results

Q0 A0 0 @F3 (BT Y1z i 9o 0

%0 8Q @30 >0 fort>0

Definition of (050)° |, (020)% ,68Q (D2)° ;- 331
Remark 3: if "Q, is bounded, the same property have also "Q, GE'Q"Q, . indeed if

"Qy < (0 ,) 2 it follows % (020)°% | (¢80)°"Q and by integrating

Q@ (D)% ,="G +2(6)° (D) /(68)°

In the same way , one can obtain 332
Q  (D20)% ,="F +2(6x)° (D)% /(6%)°

If"Q; €1 "Q, isbounded, the same property follows for 'Q, , "Q, and "Q, , "Q, respectively.

Remark 4: If "Q, "Qbounded, from below, the same property holds for "Q; ¢£'Q"Q, . The proof is analogous with 333
the preceding one. An analogous property is true if "Q, is bounded from below.

Remark 5: If T,y is bounded from below and limgp  ((6EF°2 Q3 0,0 = ()3 then™y; © b 334
Definitionof & 2 and-;:

Indeed let &; be so that for 0 > &,

@)° @F® Q% 0.0 <-37%©O> &

Then % (6y)3 & 3 -3"¥; which leads to 335

o, 3 3 . . .
Y Bt _3(’ 1 Q73 +"%Q % Ifwetaket such that Q3= = itresults
Y, @ s ®
2

property holds for Y, if limp (C5F 3 "Q; 0,0 = (65) 3

We now state a more precise theorem about the behaviors at infinity of the solutions:

, 0= &> By taking now -5 sufficiently small one sees that T,; is unbounded. The same
-3

336
. . (g 4 (G 4 337
It is now sufficient to take 520 (0@ = 1 and to choose
(Py )@ and (Qy, )™ large to have
(524)D+d), 338
x4 ¥ ¥ o e ¥
©22) (024) * + (0)D+"@ Q ? (024 )®
(524)0+%, 339
(&g 4 oG R 4 e
G202 (020)P+"¢ Q ° +(024)@  (04)®
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In order that the operator ' ) transforms the space of sextuples of functions "@, “¥, into itself 340
The operator ' @ is a contraction with respect to the metric 341

Q gttt g 2 Y 2 =
iér‘l{gdrb"q,l o @ oQ (024>40,§Ndm*'¥j 0 Y o QG
Q a4+ A+
Indeed if we denote 342
Definition of "Q; , Y, : QY = @O0, )

It results .
QR @)t G G QM Tagia g, +
IO G Qh @t ag @0 iy
GEF* Yol QG QO Tagiwtia
QGICET* Yo ion  GEF* Wl a | QO gl gy,

Wherei ,, represents integrand that is integrated over the interval 0O,t
From the hypotheses it follows

Q; 1 Q; 2 'Q(024)4€) 243
(0:1)4 (Gya) * + (&B)* +(024)° +(624)4(794)4 Q QY Q%Y 2

And analogous inequalities for "QE'Q"Y, Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (¢ * and (¢35F ¢ depending also on t can be considered as not conformal 344
with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the
uniqueness of the solution bounded by ( 0,,) 4 02 * 0 GE'Q( 0 ,,) 4 'V 24) * © respectively of 51 ,.

If instead of proving the existence of the solution on 51, we have to prove it only on a compact then it suffices to
consider that (¢ and (G ,"G= 24,25,26 depend only on T,5 and respectively on "Q, (CE'QE£0£¢ ©) and
hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any 0 where "@,0 = 06E'Q"%0 =0 345
From 19 to 24 it results

geN e o) o (O (OBF* ¥ 0o i24 O 0

%o 8Q @30 >0 fort>0

Definition of (024)* |, (024)* ,68Q (D24)? ;- 346
Remark 3: if "'Q, is bounded, the same property have also "Qs GE'Q'Qg . indeed if

"Q, < (0,,)*% itfollows % (0,94 . (0%) 4"Qs and by integrating

Qs (Da0)® , =" +2(6s)* (D20)* /(c82)*

In the same way , one can obtain

Qs (D24)* ;=G +2(c)* (D20)* /(H)*

If "Qs €1 "Qg is bounded, the same property follows for "Q, , "Qg and "Q, , "Qs respectively.

Remark 4: If "Q, "“Qbounded, from below, the same property holds for "Qs 6£'Q"Qg . The proof is analogous with 347
the preceding one. An analogous property is true if "Qs is bounded from below.
Remark 5: If T,, is bounded from below and limp (G ("Q; 0,0)) = (G) * then"Ys © Hn 348
Definitionof & 4 and-,:
Indeed let ¢, be so that for 0 > ¢,
(03s) ; (@B ('@ 0,9<-,%(@©®>a *
Then =2>  (das)* @ *  -,"¥swhich leads to 349
v 4 - 4 . . .
vy, @9 Q-4 +"PQ 40 Ifwetaket such that'Q 40 = % it results
-4
.. 4 - 4
Y5 (os)” 0 > a , 0= &0 By taking now -, sufficiently small one sees that T,5 is unbounded. The same
-4
property holds for “Yy if limgp (6BF* @, 0,0 = (6) 4
We now state a more precise theorem about the behaviors at infinity of the solutions ;
Analogous inequalities hold also for "Qg ,"Qy, " ¥s, " ¥s. " Yo
350

(¢ ° (G ® 351
(D28)®) "(D28)®
(Pyg )® and (Q,g )® large to have

It is now sufficient to take < 1 and to choose
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(B28)B)+d) 352

(& 5 5 5 QY e 5
(0(?:) 5 (Og) ° + (Uy5)® +76§ 0 . (0 )®

(02g)®)+ 353

.- _ - . .

B ()00 B (D) (520)®
In order that the operator ' ) transforms the space of sextuples of functions "@, " into itself 354
The operator * ® is a contraction with respect to the metric 355

Q @ttt @ty 2=

i(')h{ddxb"q)l 0 Q)Z 0 Q ("328)5"’,@(111)")51 ) "352 00 (028)56}
Q N+ Ny

Indeed if we denote
Definitionof "Q; , "Y; : QY = e Q.Y 356
It results
QB (e)° G G QO a4
WOO{((IS%) 5 Qé 9523 Q (028) %1 28 (D28) i 08 4
CBI° B iz QW agimTis ,
- o, o ’ o, o ’ . 0 5 o~ D) 5 P
Qe ICHT® Yo los  (CBI® Yo .iz | QO a0 oy o
Wherei ,g represents integrand that is integrated over the interval 0O,t
From the hypotheses it follows
"Ql 1 “Ql 20 (D2g)%0 357
1 o, o o 5 7, ), o, o o o
TISE (Gyg) ® + (%) ° +(028)° +(08)°(Q)®> Q@ "@ *, ™ ' @ 2, 7Y 2
And analogous inequalities for "Qg & 'Q"Y, Taking into account the hypothesis (35,35,36) the result follows
Remark 1: The fact that we supposed (¢35¥ 5 and (c3¥ ° depending also on t can be considered as not conformal 358
with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the
uniqueness of the solution bounded by ( O,g) 5 ‘G0 28) ° © G'Q( D) 5 028 ° © respectively of 51 ..
If instead of proving the existence of the solution on 5., we have to prove it only on a compact then it suffices to
consider that (¢ and (GEf* ,"G= 28,29,30 depend only on T,y and respectively on "Q; (¢2'Qe£0€¢ ©) and
hypothesis can replaced by a usual Lipschitz condition.
Remark 2: There does not exist any 0 where "@,0 = 06E'Q"%0 =0 359

Q0 "G o (@B (GBS Yo iong io2s O o 0

%0 8Q @3°0 >0 fort>0

Definition of (0 ) ° It (028)° 2(33'9(028)5 3" 360
Remark 3: if "G is bounded, the same property have also "Qg GE'Q"Q, . indeed if

"Qg < (0 55) ° it follows % (028)° , (G%) °"Q and by integrating
Qo (D2)® ,="Co+2(Che)° (08)° /(CHR)°

In the same way , one can obtain

Qo (D2)° ;=" +2(6x)° (D2)° /(6)°

If'Qq €1 "Q, is bounded, the same property follows for "Qg , "Q, and "Qg , "Qq respectively.

Remark 4: If "Qg "“Qbounded, from below, the same property holds for "Q, G£'Q"Q, . The proof is analogous with 361
the preceding one. An analogous property is true if "Qq is bounded from below.

Remark 5: If T,g is bounded from below and lim ,((GE®° ("Q; 0,0)) = (G5) ° then"Y, © Hb 362
Definition of & ° and-g:

Indeed let & be so that for 6 > &

o () ° (@ (Q 0.09<-5%(@©®>a 5
Then =22 (o) ® & °  -5"¥ which leads to 363

v 5 . 5 . . . .
Y, e 7 g -0 4P 50 Ifwe take t such that'Q 50 = % it results
-5

" 5 » 5
i Gpo)” 4 7 , o= CEQZ— By taking now -- sufficiently small one sees that T is unbounded. The same
9 y g 5 y 29
2 -5

property holds for "Y, if limp (CBF° "Q; 0,0 = ((R)°
We now state a more precise theorem about the behaviors at infinity of the solutions;
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Analogous inequalities hold also for "Q; ,"Q4,"Y,, " ¥3, Yy
364
. 6 7 6
It is now sufficient to take ~=2_— {99 1 and to choose 365
(032)® "(032)®
(P53, )® and (Qs, )® large to have
(032)®)+d) 366
8 ¥ 5 o K 5
B (5) + (B)O+g0 B (052)®
(032)®)+, 367
(@ 6 4 o\Q " 7 7
D (B)®+80 R (55)®  (82)®
In order that the operator ' (® transforms the space of sextuples of functions "@, "¥into itself 368
The operator * ® is a contraction with respect to the metric 369
Q QT Q2 2 =
iér‘]{%dlb"%l 0 Q)Z 00 (032)50‘%(111)"%1 ) "3(22 o Qe
Q a4+ A+
Indeed if we denote
Definitionof "Qs , ¥ : Q5. Y% ='©® QY%
It results
Q; Q)z )voo(dhz) 6 Qé Q§ Q (032) %132 (f032) ® 1 3p 1y 3 + 370
S Y P e e e 4
@@F° G.ie G @Ol legin e 4
- w. o ’ o, o ’ . 0 6 ¢ o~ D) 6 ¢ P
RICBT® G (GBI G.ixp |QOD Taddio layg,
Wherei 3, representsintegrand that is integrated over the interval 0, t
From the hypotheses it follows
"QS 1 "QS 2 Q (b32) 80 371

ﬁ (6)° + (GB)°® +(03)° +(0)°(QRR)° Q Q@ ' " 1 QG 2, ¥ 2

And analogous inequalities for "QE'Q"Y, Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (¢&% © and (¢%%© depending also on t can be considered as not conformal 372
with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the
uniqueness of the solution bounded by ( 0s,) 8 ‘G032 ° © G2'Q(D4,) & ‘032 ° © respectively of 51 .

If instead of proving the existence of the solution on 51, we have to prove it only on a compact then it suffices to
consider that (¢ and (GEf*° ,"G= 32,33,34 depend only on Ty5 and respectively on "Qs (CE'QE£0€¢ ©) and
hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any 0 where "@,0 = 06E'Q"%0 =0 373
From governing equations it results

"R,0 C%Q ; (FE (BT "M3ig i3 Qg 0

%0 8Q @3°0 >0 fort>0

Definition of (03,)° |, (03)° ,68Q (03)° ,: 374
Remark 3: if "Q, is bounded, the same property have also "Q; GE'Q"Q, . indeed if

'R, < (03) ¢ itfollows 52 (D) ® | (¢8)© "Q; and by integrating

QR (D)® , =" +2()° (Dap)°® /() °

In the same way , one can obtain

Q. (D) ® ,="C +2(h) ° (Da2)® /() °

If "Q; €1 "Q, isbounded, the same property follows for '@, , "Q, and "Q, , "Q; respectively.

Remark 4: If "Q, "“Qbounded, from below, the same property holds for "Q; 6£'Q"Q, . The proof is analogous with 375
the preceding one. An analogous property is true if "Q; is bounded from below.

Remark 5: If Ty, is bounded from below and limgp 1, ((GEF® ("Qs 0,0)) = (653) © then™¥; © Hb 376
Definition of & © and-g:

Indeed let & be so that for 6 > &

(@3) ¢ (&® QG 0,0 <-5%(@>a ©
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Then T2 (633)® & ©  -¢"¥; which leads to 377
. 6 3 6 . . .
A )7 ¢ 7 1 Q-ed +"E'Q 6% |f we take t such that Q 6° = % it results
"6
. 6 I3 6
A (“83)+ , 0= (zQ% By taking now -4 sufficiently small one sees that T55 is unbounded. The same

property holds for Y, if limyp L(CEF® Qs 0,00,0 = (6§)°
We now state a more precise theorem about the behaviors at infinity of the solutions
378

Behavior of the solutions 379
Theorem 2: If we denote and define

w (nl) ! 1(112) ! l(Tl) ! l(TZ) ! :
(a) b))t G2) (1)t ()t four constants satisfying

G2)*t @)+t GBF Y0+ Y., 0 G)*

()1 OB + (@) (BF' 00 (T 00 (t)*
M(,1)11(,2)11(61)11(62)1|, llél . 380
(b) By (,)! >0,(,)?! <O0andrespectively (6;)* >0,(6,)* <O theroots of the equations
@'t TG T (@e)t =0and @) 0 T+ ()Tl (@) =0
Definitionof CDY,,CHY,(0)1,(0,)1 : 381

By(D?! >0,CF?! <O0and respectively (0;)* >0,(0,)* < 0 the roots of the equations
@)Y L TG T (@)t =0and @) 6! T+ (f)Tol (@) =0
Definitionof (a;)* ,(6.)* (). ()" Co)t - 382
©) If we define (61) 1 (&), (1)1 ()t by
CPHE :('o)1 (@)t =0, UQX’O)l <(t
@)= @) =D W) <(Cx)t <D,
and (o)t =L

(a)t =C)t @) =Co)t, WD <)

and analogously 383
(2) t= (60) L 1) t= (61) 11 @x(0) < (61) !

()P =@) (D) =) W6) T <(6p) <(6) ',

and|(60) ¥ =2

("2)P =) ()t =(0)t W6,) t < (6p) * where (61) T, (61) !

are defined above

Then the solution satisfies the inequalities 384

"@3'9("\1)1 (3) ! o Qs (0) "@31'1"\1)16
where (frg * is defined above
TR0t G0’ o g Sddn’e

CEV 19 @G?t o
(G15) ~ 'G3 ACHL )l 6 oy le w9 (¥ Lo A e 5
QD Mt o QHle 4@ lo 5
(Tt 0: aw? w? @ Qs(9)
o 1 -« . W . . .
@) dh __pernte Q@)+ g Q@R oy

@2 (N @!

R R A T s 386
1 v~V )1lo oy /e 1w 1 4(i1a)1 ¢
@Gns) 1 N I I B o~ (FEYL A wn, s 388

E ((”i) 1 (S*uf:é,) = @0 Q@ g @R e Ty (9

(6ns) * ¥ oM+l 0 oMo L 9o (w)lo
(21 (M)t +l1z) ! +()? QR ' Q + %Q
Definition of ('Y) 1, (Y) 1, ()1, (L) - 389
Where ("Y) * = (d%a) ! (a 2)‘1 (65) *

yt= (0175) oo(s) ! .

Ok =(313)1 (¢ z}l (633) *

()t = (u32) ! (i5) !
Behavior of the solutions 390
Theorem 2: If we denote and define
Definition of (K1) ? ,(£,) 2 ()2 ,(2)°? : 391
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(d) £) 2 ,(K) 2 (Z1)? .(zx)? four constants satisfying

(K2) 2 (C§%) 2 +(6F) > (GRF> Ty 0 +(GBF* Ty7,0 (A1) ? 392

(%) (6R) % +(a3) > (> "Q .0 (aBF*> "Q .0 () ? 393
Definition of ('1) %, (&) ?,(61) 2,(62) * : 394
By (,)2 >0,(&)2 < O0andrespectively (6,)2 >0,(6,) 2 <0 theroots 395
)  of theequations (C3-)2 ' 2 “+(A)2' 2 (Qe)? =0 396
and (@4)2 62 "+ (2)262 (Qs)2 =0and 397
Definitionof (D 2.,,CH ?,(0,)2,(0,)? : 398
By(D? >0,(t#)? <0and respectively (6,)2 >0,(6,)? <Othe 399
roots of the equations (¢37) 2 * 2 2y £5)2’ 2 (We)? =0 400
and (@)% 62 "+ (2)262 (@) =0 401
Definition of (,)? ,(G,)2 ,(1)2.(2)? :- 402
Q] If we define (&1) 2 ,(62)% ()%, ()2 by 403
(@2)2=Co)2.1)2=C1)2% WCo)? <(1)? 404
(@)% =C)2@)2=CD?. M2 <(Cn)?<(CD?2 405
and [(o)2 =5

Giz

(a)2 =C1)2%,1)2 =002 MCD? <(o)? 406
and analogously 407

(2)?2 :(60)2:(‘1)2 = (6,) 2 :
(2)2=0)% (1?2 =02,

v 1%
and|((6g) - ==

1%
(‘2)2 =(61)2.(1)% =(00) %, .(01) 2 <(60)? 408
Then the solution satisfies the inequalities 409
Gfse 1) 2 (me)? t "Q 0 GPetr) 2t
(" 2 is defined by equation above 410
ﬁggse D% (e)® t "Q,(0) 7 21) — e ? t 411
(ng) 29 2 | 2 2 2 \ 412
((d NERh) 28 (r‘]161)62 S eG1)° (M)t o G2)°t 4 G?ge (S2) “ t G15(0)
(éng) 2 69 2 ) 22 2
B (581)2 1&%)2 [e(Sl) t o (&) q+ G?ge (@i8) 9
TRe®D20 "y (9) The B0 *(w)? ¢ 43
: ];2 TeRD) 25 “Ys (0) : 1)2 T%e Ry Z+(16) 2 0 414
1 2
(Ga8) 2 19 2 Ry 2 ¢ 128wy g 415
L (Ri) 5 1(%%) > e(Rl) o e (6X8) 2 0 + TlOBe (&X3) %o \{8 (o)
(Gng) 2 T9 2 ()2 ¢ 2 ¢ 2 ¢
% G 28+(_| 16;62 )2 e R “+(16)° 0 g RD7O0 4+ T0e RO
Definition of (S1) #,(S2) * /(R1) ? , (R2) ? - 416
Where (S1) 2 =(&e) ? (a2)?  (6R)? 417
(C ~2 = (Qp) ? (f]ls) 2
(Y1) ? = (q) 2 (2! () 2 418
R)? =(c®)* (i18)? .
41
Behavior of the solutions 420

Theorem 2: If we denote and define

Definition of (,1) % ,(,2)® (1) ® (1) ® :
(a) 21) 3, G2) % (1) 2 (1) four constants satisfying

() (B3 +(ER)® (CBF® N0+ (BT RO ()?

(t2)° (@)% + (@) (@RF* 00 (@FF® Q.0 ()2
Definition of (1) 3,( ) 3,(6,)3,(0,) 3 : 421
(o) By (,)3% >0,(,)®% <O0andrespectively (6,) % >0,(6,) 2 <O0theroots of the equations
@3 " ° TG (@) =0
and (@) 63 “+(1)363 () =0and

By(D?® >0,CH3 <O0and respectively (6,)3 >0,(6,)% <O0the
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roots of the equations (63;) 2 ' 3 “+(,2) %' 2 (Cy)3 =0

and (@) 0% "+ (1) 2062 (Gp)? =0
Definition of (&1) 2 ,(&2)3 (1) 3.(2)3 - 422
© If we define (61) 3 ,(6) % ((1)3.(2)°% by

G2)3 =Co). (1) =(C1) 3, éééI(’o)3 <(p?

(@) =0l =CD . MCD® <Co)®<(D3,

) 3 :%
and |(" o) =)
(a)3 =C2. @)% =Co)®, MCD3 <(Co?
and analogously ) 423
(2)%=00)°% )% =002, WGo)? <(61)°
(23 =(01)3(1)3 =(0y)° 'I(Ol) 3 <(60)® <(61)%, andf(6p) 2 = % 424
("2)% =(6))°% (1)° =(00)%, W©1)* <(0)°?
Then the solution satisfies the inequalities
GO 20 0 g ) Gaw o
(N9 2 is defined by equation above
L__@M?® () o g (o) —@gne 425
@n X0 3o R AP L 426
(G s g Q007 () 0 Q00 +gu M0 g,
o) 3 N3 a3 a3
(a2>3(%\21)>3 c%xg%)s [Q0°0 Q@)% o]+ 'g,q @7 o)
HEWTE %@ R )’ o 427
1 v ~V)30 v e 1w 3 41(1.0)3 ¢
BE \2@0§in) Y (0) BE Y1) +(i20) " 0 428
o~ 429
S B gwie @ L@ e Ty,
(6p2) 3 "% V)3 o) 3 5 3¢ B o~ (Vo) 3 ¢
SER TS E R R At 1A
Definition of ("Y) *, (%) *, (Y1) ®, (Y2) 3 :- 430
Where ("Y) * = (G0) ° (62) ° (%) °
(92 =@)° (0)°
(Y1) ® = (6) 37(‘ 2)° ‘(C\S%)3
()3 =) ()3
431
432
Behavior of the solutions 433
_If we denote and define
Definition of (,1)* ,(.2)* (1) * (1) *
(d) G G2 (t)* (1) * four constants satisfying
(2)* (68)* +(B)*  (CBF* "¥%5.,0 +(6BF* "¥%.0 (1) *
(t2)* @) * + (@@ @FF* Q.0 (EF* Q.0 ()
Definition of (1) %,( ) *,(6,)%,(6,) %, 4,64 : 434
(e) By ()% >0,(,)* <O0andrespectively (6,)* >0,(6,)* <O0theroots of the equations
. L4 2 , .
(Gys)* " 1 "'(51)4 * (@)* =0
and (Gs)* 0% "+ (f)* 0% (G4)* =0and 435
Definitionof CD4,,CH*,(0,)%,(0,) % : 436
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By(D* >0,Cp* <0and respectively (6,)* >0,(6,)* <O0the
roots of the equations (Gys) # ' * gt G)Y 4 (G)* =0

and (Gs)* 6% “+ (1) %04 (By)? =0
Definition of (G1)% ,(G@,)% . C1)*. ()%, Co)? -

Q) If we define (6 1) * ,(6,)* .C1)*.(2)* by
@)% =Co)* () =(C1)*, 5@5.(’0)4 <()*
@)*=CD*@)*=CD* . WCD* <Co)* <(CD*

and |('o) * :%

(6 )% =C)* @@D)* =Co)?, I(’D4 <(Co)*

and analogously 437
438

(2% =00)* (1)* =(61)*, I(Oo) < (6))

(D4 =()* C)*=)* W©G)* <G)* <(6)*,

and|(6p) ¢ =2

s
Dt =0)*(C)* =(0)* 'I(Ol) 4 < (6p)* where(6,)*,(0,)*
are defined
Then the solution satisfies the inequalities 439
440
@MWt )t o g, o @Ento 441

where (9 # is defined by equation above

1 . N R R § \ 1 . Yy 4 g
@MY )t o g o g
@ 1) 4 @4 QS (@ 2) 4 @4 442

(o) * "Gy QDY et o Qe LGBl Q. ¢ 443
GDT 0t G ? HF 2 «Q + G0 Q6 ©
(C26)4'CA0(G 2)4( )4 (L6 M40 Q (626310+ P60Q (CP6950

PEWO Y 0 W o 4
: 1)4 P, ") 4o “Y, (0) - 1)4 P, 0M) 4 +(i2a)t 0 445
1 2
(Gpe) * - AV A S m (G240 4D (B4 6 vy g 446
ERTE %133%) — @WTe ETe + P ERTe Ty (9
447
(Gg) 4 P o~ (VYA oA s 48 L eg o (V) 46
LA 46+(,|24)44 oY) QO " +(2)" 0 9 ()70 4P ()7 0
Definition of ("Y) 4, ("Y) 4, (V1) 4, () 4 :- 448

Where (") * = (&) * (62)*  (682)*
(N * =) * (o)
M)* =@)* (D" (@)*
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(L) * = ((Ig%) 4 (26)*

Behavior of the solutions 449

_If we denote and define
Definition of (,1)° ,(.2) % (1) % (1) % :
@  G1)®.G2)® (1) ® (f)> four constants satisfying
G2)°  (B)° +(H)°  (HF® Yo.0 +(F&F® %0  (0°
(2)°  (@)° +(@R)° (&®F® Q.0 (GRF® @0 (t)°
Definition of ('1)%,(2)%,(61)%,(6,)5," 5,05 : 450

(h) By (,)°% >0,(,)°% <O0andrespectively (6,)° >0,(6,)° <O0theroots of the equations
o, , 2 , -
(Gy)° " ° "'(;1)5 > (G)° =0
and (@9)5 65 "+(f)°0° (@8)5 =0and
Definitionof (D °,,CH %, (6,)%,(0,)° : 451
By(DS >0,(CF° <O0and respectively (6,)° >0,(6,)° <O0the

roots of the equations (Gyg) ® * 5 “4 ()5 5 (Gyg)®> =0

and (Gye)® 65 “+(1)565 ((g)S =0
Definition of (61)° ,(&2)°% (‘1) °.(2)°.Co)°® -

() If we define (61)° ,(6,)° .(1)°.(2)° by
G2)° =(Co)°.(ay)® =(C1)°, I(o)5 <(1)°

(62)° =C°.6)°=CD° WD <Co)® <(CD?®,
and[()° =2

(42)° =C)®%. (@)% =Co)® WCD® <(Co)°®
and analogously 452
(2)°=00)°.C1)°=(1)° P©o)° <(01)°
(D5 =0)5C1)°=01)° P15 <(60)° <(61)5,

and | (6o) 5 :%

453

("'2)° =(61)°.(1)° =(6)° , W©6:)° <(60)° where(6;)°,(6)°
are defined respectively
Then the solution satisfies the inequalities 454
GO ()° 0 gy GUWSo
where (1} ° is defined by equation above

1 o o~ (" 5 > 5 & o, 3 1 e, o~ 5 ¢
(Gs) 5 (QSQ( k% (h28) © QQ (0) (6 2) 5 @8 Q 7o 455
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(¢30) ® "By QD @) 0 Qo 4 gQ Yo

@5 (D3 () ® () °

(CB0)5'C80(G 2)5("L)5 (B0 )50 Q (cBOFEO+ BOOR ((BOFED

PAWO Y () RO ° i) ® 0

1w v) 55 oy s N C
(G )OBQYl) ¢ ¥ (0 \?890(1) +(i28) > 0

(2)5%
(6%0) ® "% . 59 o~ (C2)5 ¢ O o~ (FERY5 & " .
T s s 2P0 @ @70 + O ER 70 Yy (9)
(éxp) 5 "@8 'Q(Yl) 5 +(i28) 5 4 Q (Y2) 54 + "?O'Q ¥) 54

(2% ()5 +(128) 5 +(%2) 5
Definition of ("Y) °, ("Y) °, (Y1) ° . (¥2) ® -
Where (Y) ° = (&) ° (42)° () °
() ° =(@)° () °
(V)® =(@e)°(2)° (WR)®
(2)° =(%)° () °

Behavior of the solutions

_If we denote and define

Definition of (,1) 8 ,(,2) ¢ (1) ¢ (1) © :

)} (1) € (o) ® (1) 8 (1) 8 four constants satisfying

G2)° (@BR)° +(@®)° (EBF® .0 +(RF° %0

()® (@B)° +(@B)° (@BF° Q.0 (BF°

Definition of ("1)8,(,)®,(0,)¢,(0,) ¢, ©

(k) By ()% >0,(,)% <0and respectively (0,) & >0,(0,)® <0 theroots of the equations

@5)° "% P+ ()8 ¢ (@p)® =0

66

and (Ga)® 66 “+ ()06 (Gy)° =0and

Definitionof (D& ,,CH %, (0,)°,(0,)° :

By(D® =>0,CF® <0and respectively (6;)¢ >0,(6,) % <O0the
roots of the equations (33) ¢ * & “+(,,) ¢ ©

and ()8 06 “+(H)66° (Qy)® =0
Definition of (61) ® , (@) ® (‘1) ®.( 2)%.(o)® :-

0) If we define (61) ® ,(42)® ,((1)®, ()% by

@)% =(Co)°.(a)® =(C1)°, I(o)6 <(1)°

62)°=CD° 6N =CN® M° <Ca)®<CD®,

and [(0)° =

WWW.ijmer.com
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(63)°® =0

456

457

458

459

460

461

462

463

464
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(62)° =C)°%@D°=Co)® WD <(o)°®
and analogously 465

(2)°=(00)°% (1)°® =(6)°, I(Oo) 6 <(6))°®
(2°=0)° ()8 =(6)° |I(01) 6 <(60)° <(6y)°,

and|(60) © =3¢

(‘2)® =(01)°,(1)® =(60)°  W(©61)® <(60)® where(6;)°,(0y)°
are defined respectively

Then the solution satisfies the inequalities 466
G ()° 0 Q) GaW°o
where (1} © is defined by equation above

1 o . . 6 . 6 . o \ 1 © o~ 6
‘ 6 2 3 5 6 2
a5 @M ° @2)° 0 "g,(g) o @, 0 467

(654) © Gy QM® ()® 6 Vo 1@ Vo Q¢ 468
GO° e b (ne 2 Q +'G,0 Q, 0
(GBA)6'B20(0 2)6(1)6 ((BAFEAM)EC Q ((BAIE0+ BAOQ ((BIHE0

AW () W i) o 469
R 11) =AW Y (8) R 21) =MW ° +i) © 0 410
e e E0 Q@ L@t (g an
(26 (‘Ylgd?4+)(163§26 ATt P 0 QW0 £ (W)

Definition of ("Y) ¢ ,(¥) ¢,(Y,) ¢ ,(Y,) © :- j;g

Where (Y) © = (&) ® (42) ® (@) °
(N °® =(@)° (M) ®
M)°® =(@)° () (®)°
(2)° =(@&)°  (a)®

474
Proof : From Governing equations we obtain 475
= =@)*t (BT (@) +ERT Y0 (BT Yo't (@)t
Definition of * 1 :- 1 =3
Q4
It follows
v, , 2 , v, o 1 ", , 2 , "
@)t T+t (@)t (@)t +G) (@)t

From which one obtains
Definitionof (D ,(C o) :-

@ Foro<|Ct =F|<()? <(D!
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D1 Wi@icala Fnt ot o @) = (o
1+@)1q @14 ' (Dt (ot o ' (0! (!
itfollows(Co)t "1 (@© ()*
In the same manner , we get 476
D1 Ir6itate Pt T e @) = (o
1@l Q4 (2t e ' ()l (!
From whichwe deduce (o)t 1@ (D?
N R A1 - A . 477
(b) fFOo<(qy) <(Co)™ = 9, < () * we find like in the previous case,
4
i las 1poylg S4B (DY ¢t o
(11)1 (l) + 0 (2)”01 - > - — 1 c‘)
1+ g @4 - (D= (2)° 0
cpt+oeflenla g el ol oo 1
1+ 610 g et ot oo QY
P . 478
(c) fo<(C)* (DY [C)? :% , We obtain
4
" 1 o 1 ) 1 .
- C 1 s cpl+ofleyylo @4 - (D7 (27 0 -
(1) © 1+ 86f 10 g et ol oo (o)
And so with the notation of the first part of condition (c) , we have
Definitionof * * 0 :-
2 )1 1L L)1 1 oy — Q30
(a2) o (Gy)*, 0 Qo
In a completely analogous way, we obtain
Definitionof 61 0o :-
Cy1 A1 c 3yl gl g =Xs0
(2) 60 (), |6%0 Na
Now, using this result and replacing it in concatenated equations of global system we get easily the result stated in
the theorem.
Particular case :
If(BFL = (CFGFL .60 (,,1)! =(@,)?! andinthiscase ()t = (D! ifinaddition (o)t =(,)?
then” 1 0 =(,)? andasa consequence "Q;(0) = (o) * "Q,(0) this also defines (' ;) * for the special case
Analogously if (a%F® = (GBEF L, (1) = (t,) ! andthen
(6,) 1 =(6,) tifinaddition (65) * = (0,) ! then "Y5(0) = (6p) * “Y,(0) This is an important consequence
of the relation between (" ;) * and C [) ', and definition of (6,) * .
479
Proof : From the concatenated set of global governing equations we obtain 480
d 2 " " v v - , " ,
T:(U%)z (GF) 2 (6§2) 2 +(6RF? Tyt (6BF2 Tt 2 ()2 2
Definition of * 2 :- 2 = 481
- G17
It follows 482
. L, 2 , . a@r . L, 2 , .
(@) "2 "+ (h)? 7 (Qe)® (@7)% "2 "+(h)?T 2 (Qe)?
From which one obtains 483
Definition of () 2 ,( o) ? :-
0
@  For0<(o)? =gr<(1)?<(D?
17
D2y WI@I(ae O Pw? (0?0 ©2 =7 (?
1+C)2q 7 2 (D% (02 o ' (02 (22
itfollows(o)2 "2 (1)?
In the same manner , we get 484
D2y WI@I(ae O Pw? 22 o 02 = (0?2
1+Cy2q @7 2 (D% (22 0 ' ()2 (?
From which we deduce (¢)2 ' 2(©) (D? 485
0
(e) IfOo<()?2<(o? = 2%6 < (') 2 we find like in the previous case, 436
17
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v N2 C1)2+C 2(¢20 o7 2 (D% (D2 0 Do
(1) jec 29 @7 2 (D2 (22 0 0
(1)2+C 20,20 o7 2 (D% (D2 0 (’D2
jec 29 @7 2 (D2 (2% 0
0
M  1F0<()? (D2 (o)2 =2, weobtain
17
o 2 2 2 5
, , . ()2+C 2¢)20 “7 % (D% (27 0 ,
(1)? 20 : 2 (o)?

1ec 2 @7 2 (D% 22 0
And so with the notation of the first part of condition (c) , we have
Definition of * 2 0 :-

, , . . , N € T
(6) 2 20 (61)?, 2 0——.‘Q6.
7 0

In a completely analogous way, we obtain
Definition of 62 0 :-

(22 620 (2, ]06% 0=
Now, using this result and replacing it in global equations we get easily the result stated in the theorem.
Particular case :

If (GRF2 = (GBF?, 6% (£,) 2 =(L£,)? andinthiscase (;)? = ()2 ifinaddition C¢)2 =(4)?
then * 2 0 = (o) 2 andasa consequence 'Qs(0) = (o) 2 '@, (0)

Analogously if (CEF2 = (CEF2,5%E (z,) 2 = (2,) 2 and then

(6,) 2 = (6,) 2 ifin addition (60) 2 = (0;) ? then "Y;(0) = (0p) ? "Y, (0) This is an important consequence
of the relation between (" ;) 2 and (' [) 2

Proof : From Global equations we obtain
o) 3

TG0 @GR HEET o @HIP K6 (@)

Definition of * 3 :- '3 =%

- Q1

It follows
. , 2 , . q 3 . , 2 , v
@)° "% T+62)3 % (Q)? o @) T+ (B)®

From which one obtains

(a) F0r0<('0)3:%<(’1)3 <(1D3

o 3 3 ¢ 3 5
(D3+©®) 330 2~ (V7 (07 ¢ @3 =(° (o’
' (0 (23

v 3/
(O) l+((')')3‘Q 1 3 ¢ 1)3 ¢ 0)3 0
itfollows(o)3 3@ (,)°
In the same manner , we get
. 3 ., 3 X 3 .
L3y WiEicpo ™ (o= 27 o @) =2 (o°
1+@f3q %12 (D% (23 0 ()d (23
Definition of C [) 3 :-
From which we deduce (¢)2 3@ (D3
(b) Ifo<(,)® <(o)? = % < (D2 wefind like in the previous case,
1

., 3 . 3 . 3 .
CD3+8 3(¢y3¢ %1 ° (D7 (27 0

(1)°

., 3 . 3 . 3 .
()3 +68F3 (30 %2t (1)° (22 o

148 3q @ 3 cnd 30

(D3

1+ 603q @21 S e (2% o

(c) fo<(Cy)® (D3 (’0)3:%,weobtain

. 3 . 3 . 3 .
Cp3+8l3(¢y)3q ¥~ (D7 (27 0

’ 3 y 3 A ’ 3
(1) © 1+ 873 q @21 S end (8% o (o)
And so with the notation of the first part of condition (c) , we have
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Definition of * 2 0 :-
V3 13 g + y3 [+ 3 o — Q0
(a2) 0 (ay)°, 0 91 0

In a completely analogous way, we obtain
Definition of 63 0 :-

. 3 £ 3 . 3 23N — “¥o O
(2) 6o (‘1)°,|6°0 N o
Now, using this result and replacing it in Global Equations we get easily the result stated in the theorem.
Particular case :

If(GHBF2 = ([@FF3, 00 (1) 2 =(,)°3 andinthiscase ;)2 = ([ 2 ifinaddition ()3 =(;)?® then

"2 0 =(,)? andasaconsequence 'Gy(0) = (o) 2 "Q,(0) 500
Analogously if (65F°3 = (65F 2,60 ()3 = (1,) 3 andthen
(6,) 3 = (6,) ¥ ifinaddition (6o) 3 = (0,) 2 then "Y,(0) = (6p) 3 "Y; (0) This is an important consequence of
the relation between (") ® and (' [) 8
Proof : From Global equations we obtain
= =(@)* (@) (@R H(@ET Y0 (BT Y0t ()t !
(0]
Definition of * 4 :- r4 =
- Qs
It follows
. , 2 , . Q4 - , 2 , .
©s)* " * TGPt (G)? @ Gs)% "% T+ G (Gx)?
From which one obtains
Definition of C ) %, (o) * :-
@  Foro<|Co)* =l<()* <(D*
L4 s (D6 tepta 9t 0t o s o4 _ (DY (o*
° 4+ 8 4 @5 Y DY (ot oo |9 Tt n®
itfollows(Cgo)* 4@ ()%
In the same manner , we get 501
L4 s (Dteelieytn 98t (DTt o cga _ (D% (o)*
0 e m ot 7 O T
4+ oT4q 25 1 2 0 2
From which wededuce ()% 4@ (D*
e FOo<( )% <(y)* :Fﬁ< "D # we find like in the previous case, 502
1 0 cé)s
N4 CD4+6 4¢n4a ips 4 (D4 (2t 0 ey
(1) 148 40 @5 Dt Dt 0
Cp4+el4cta ips 4 Y 2t o V4
14 8T4q @5 * CD* 2% 0 QY
503
504

)] fo<(C)* CD* [|Co? :% , We obtain

S SN N ERNY B
, , . Cp4+oF4enta @25 C™ (207 o ,
C)? t 0 : 2 ; Co)*

e 8fdg @5 * Dt (o
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And so with the notation of the first part of condition (c) , we have
Definition of * * 0 :- 505

, , . , ) . _ Q40
Gy)* Yo (Gp)?, 4 0——.‘Q4.
5 0

In a completely analogous way, we obtain
Definitionof 64 0 :-

‘ a4 ‘ VT
(2% 0% 0 (0%, 040—-;_-
5 0

Now, using this result and replacing it in Global equations we get easily the result stated in the theorem.

Particular case :

If ((BF* = ([@FF*, 0 (,1)* =()* andinthiscase ;)4 = (D * ifinaddition (o) * =(,)* then
"4 0 =()* andas aconsequence 'Q,(0) = ( o) * "Qs(0) this also defines (" ;) # for the special case .

Analogously if ((5F* = (GEF* 6% (1) * = (,) * and then
(6,) 4 = (6,) # ifinaddition (69) * = (6,) * then "¥,(0) = (0g) * "¥5(0) This is an important consequence of
the relation between (" ;) # and C [) , and definition of (6,) * .

506
Proof : From concatenated set of equations we obtain
= (@)% @B @R FEHTS VO (@HEFS V0’ (G)® S
Definition of * ° :- 5 =2
- Qo
It follows
v , 2 , . Q5 v , 2 , "
(Gy9)° "% " +(2)> ° (Gyg)° = (G)° "% "+ (1)® % (Q)®

From which one obtains
Definitionof (D °,( o) % :-
@ Foro<|()® = <()®<(D°

sy (D@t o P Cof o @) =° (0°
s+@)50q 929 ° (D% (0° o ' ()5 (2"
itfollows(g)® 5@ (,)°
In the same manner , we get 507
()5 +@F5 ()5 0Q dpg > (D% (D% 0 C)5 (o)
1 5 (b) 1 2 (655 =11 0
s+@f50 @9 ° (D% (2° o ' (0% (2%

From which we deduce (¢)°®> 5@ (E)° 508

(h) IfOo<()® <(o?’ = % < () ® wefind like in the previous case, 509
9
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VN5 L8 5. y55 ©20 ° (15 (25 o
(11)5 (l) + 0 (2)"95 : - : — 15(‘)
1+ 509 %9 ° (D> (2)° 0o
C)5+6F5¢50 do 5 (1% (2% o 5
14 875 @8 5 (D% 25 0o D
_ . _ 510
0] Ifo<(Cy)® (D% |(Co)° :% , We obtain
9
, , . Cp)5+8l5¢y50 ing 5 (1% (2% o ,
CD° %0 BB Co)®
1+8[5q % > (D2 (2)° 0
And so with the notation of the first part of condition (c) , we have
Definition of * ® 0 :-
, 5 y 5 \ , 5 y 5 \ — "Qg b
(a2) 0 (Gy)°, 0] CY
In a completely analogous way, we obtain
Definitionof 65 0 :-
(2% 650 (°, [6°06=2%
¥9 O
Now, using this result and replacing it in global equations we get easily the result stated in the theorem.
Particular case :
If (GHF° = (CBF°, 60 (,1)° =(,,)° andinthiscase (1) ® = ([ ° ifinaddition ()% =(5)° then
"5 0 =(,)° andasa consequence 'Qg(0) = (o) ° "Qq(0) this also defines (' ) ° for the special case .
Analogously if (CF° = (GRF° 6% (1;)° = (1,)° and then
(6,) ° = (6,) ® ifin addition (60) ® = (0;) ° then "Y5(0) = (6y) ® "¥o(0) This is an important consequence of
the relation between (" ;) 5 and (' [) %, and definition of (6,) ° .
511
Proof : From Global equations we obtain 512
== (@)% @B)° (@B H(CETC 0 (GBI %0 S (w)®C
Definition of * © :- 6 =2
- Q3
It follows
v , 2 , . Q 6 v , 2 , "
(G3)° "% "+ (@) = (63)° "% "TH+(G)OTC (6y)°
From which one obtains
it "M 6 (" V6 .
Definitionof (D) °,(g) ° : 513
() Foro<('0)6=% <(°®<CD°®
3
ey (Ir®° (0 % P(wf (0° o (60 =(° (0°
1+@) 6 98 ° (D® (0 o ' ()8 (2)°

itfollows(o)® " 6(@® ()¢
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In the same manner , we get 514

. 6 o 6 y 6 \
)8 +@)8 (B %3 ° (D7 (27 0

6y ° _(0° (0)°

,6((‘)) ()b (2)°

4@ @3 % (D° (28 0

From which we deduce ()¢ ' 6@ (D¢®

(k) If0<(.)® <(Cp® = % < ([ ® wefind like in the previous case, 515
3
( )5 ()8+8 8(fa gz © (0 (2° 0 16
1 146 61 ©3 % (D6 (26 0
(’1)6+6|,_6(’2)6'Q d)336(yl)6 (12)6 0 , 6
14876 ©3 8 (D& 28 0 QY
; _ 516
) H0<C)® (D® [Co)® ==2|, weobtain
@
3
o 6 6 6 4
, 6 P (’1)6+6r6('2)60 w33 1) C2) o , 6
(1) © 1ear6 98 % (D8 (26 o (o)
And so with the notation of the first part of condition (c) , we have
Definition of * & 0 :-
Y- 16 g £ V6 |16 oy — @20
(&) 0 (Gy)°, 0 Qs 0
In a completely analogous way, we obtain
Definitionof 6 ¢ o :-
‘6 16 o AN 16 o — %20
(2) 6° o0 (‘1)°,]|6%0 e
Now, using this result and replacing it in global equations we get easily the result stated in the theorem.
Particular case :
If (CBFe = (CBFC, 0% (,1)® =(,)® andinthiscase ;)& = () ® ifinaddition ()¢ =(,)® then
"6 0 =(,) 8 andasaconsequence 'Q,(0) = (o) & "Q;(0) this also defines (" ;) & for the special case .
Analogously if (C£%° = (G&F° 6% (1,) ¢ = (t,) ¢ and then
(6,) ® = (6,) ® ifin addition (6,) © = (0;) & then "Y,(0) = (0p) © "Y5(0) This is an important consequence of
the relation between (" ;) & and (' [) €, and definition of (6,) © .
517
518
We can prove the following 519
Theorem 3: If (P &' Q(GEF are independent on O, and the conditions
(CF) " (@H) - Qs LA <0 ot L
(‘ﬁ%)i(‘:ﬁ)ll W3 11 W4 11 + Qg ' Mg P ()T e T s P P >0
(of3) * (033) Wz * Wy >0,
@B) * () ! Qs " as b @) i P @) i P+ iy Py P <0
0°@Q 3 1, i, ! asdefined are satisfied , then the system
If (G2 (2'Q(GEf? are independent on t, and the conditions 520
(%) " (CF)° @ ° @y ° <0 o o, o2
((ﬁf%)z((:ﬁ)zz 9622 W7 22"'03.6 2 M 2 H+(FF)? My 2+ M * Ty 2 >0 522
(af%) “ (u5) We w; >0, 523
(aRR) % (033) ? Qe 2 @7 2 (GR)? iy 2 (@B)? iy 2 + iy 2 iy 2 <0 524
0'@Q Mg 2, i;; 2 asdefined are satisfied , then the system
S If (6B (2'Q(GEY® are independent on 6, and the conditions 525

(6%) % (@3) 3 G * @y * <0
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3 s 3 &3
+ N No1 >0

:+(68)3 N

31, ¥ <o

(63) 2 iy 3+ iy

WWW.ijmer.com
((52%)3((5381)3 (Eko 3 (j% 2+ Gy 3 Mo
((:2%)3((;%)3 (7*&030%13>0 ‘
CHAMEIN 0o ° 0y (‘*5%)3 i 3
0°@Q 1N,y 3, 1, 2 asdefined are satisfied , then the system

We can prove the following
If (6B 6’ Q(GEP™* are independent on O, and the conditions

€8) * (6%) *
(€8 * (683 *
ARG
CARCIR
0"6Q g

G

4@54<0

folys A Gy M

4®S4>0
4

0s 4 (Qﬁ) i 4 ((Iges)4 [P

41,5 * asdefined are satisfied , then the system

4 4 s 4
+ N MN2s >0

b+ (E3R) Y Ns

4 4Ly 4y 4
+ ol 7l " <0

If ((I%)*"5 GE'Q(GEF® are independent on O, and the conditions

(%) ° (6%) °
(%) ° (6%) °
(G%) ° (&%) °

(6%8) ° (&) °
0"@Q g

e

° Gy ° <0

5 o g 5 .
Uy + (g MN2g

5

0\%9 > ((*2%)5 iy ° ((Ig%)5 PP

5, 1y ° asdefined are satisfied , then the system

5 L 5 o 5
+ Mg MN2g >0

>+ (683)° Moo

+ iy ° iy ° <0

If (G C&'Q(GEY® are independent on 6, and the conditions

(€8) © (¢B) °
(€B)° (GB) °©
(@) ° (CB) °
(@) ° (68)°
0"6Q g,
i)
Qs Qs
(515 1Qy
(513 'Y,

G,
Gy

[(63) *

G 1Y (6B
Gs 'Y [GR)!

6 Gy &+ Gy © Mgy © +(GR)C Nas

6

Qs ° ((*gez) iz & (GB)° la
6 i35 © asdefined are satisfied , then the system Boolean satisfiability problem and N puzzle
)+ Y,
(CARIER (v R A
(CF) " + (@B Y,

6 L 6 x 6
+ N3 Ns3 ° >0

6 s 636
+ 13 l33 <0

Qs = 0
Q= 0
‘=0

(@EF" 0% =0
@&I* O, =0
CEF" OTY; =0

has a unique positive solution , which is an equilibrium solution for the system

N 2'Qy ((*f%)z"'(‘*f%?z Y, @ =0

Q7 2@ (R)Z +(H\F* Yy =0

Ga 2°Q  (68)2 +(BF? Y Q=0

Qs 27 [GR)° @GRF> "% 1'% =0

A, 2% [(CB)? (@BF° 'Q Iy =0

@s *7Y, [(GR)* (@RF*> Q@ I'%e=0

has a unique positive solution , WhICh is an equilibrium solution for the system
Go *"Q, (03%)3+(QS%?3 Q=0

G 3Q  (68)3 + (¢T3 \fl Q=0

G 2 @B+ Q=0

Go °% () (BF° "% 1%=0

@ Y [6H)° (5% Qs Ih=0

@ Y (6B (BF @ I'%L=0

has a unlque positive solution , which is an equilibrium solution for the system
By *Qs () H(@ETT Y =0

s 1Q,  (682) 4 +(B®T Y Q=0

s *"Qs  (GFR)* +(BF* ¥ Q=0

@ 4 (@4 ([@&F* 9 I%=0

@s * Y [(@®B)* ($F* @ 1¥%=0

@ * Y [(@®B)* (BF* " 1%=0
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has a unique positive solution , which is an equilibrium solution for the system
Gs ° Qo (6)° +(6HT° Yo Q=0

G ° Qg (6R)° +(HRF° Yo Q=0
o °Qo  (6F)° +(GHT° Yo Q=0

s * Yo [(GR)° (RF® @ I'%=0

Il
o

@ * Y% [GR)° (RF® & 1%
@ *Y% [(GR)° (RF° Q 1'% =0
has a unique positive solution , which is an equilibrium solution for the system
@ °Qs  (B)° +(®F° Y Q=0

W °Q (6B +(HBT® Y B=0
Gy °Q (G +(@EF® Y Q=0

Il
o

@ °% [6®)° (@BF° Q% 1Y%
@ % [6B)° (BF°® Q@ 1% =0

@y °Y [(6H)°  (6&HF® Qs I'u=0
has a unique positive solution , which is an equilibrium solution for the system
Proof:

(@) Indeed the first two equations have a nontrivial solution "Q;,"Q, if
0"y =

(@B) " (6F}B)* @ ' A T BT Ve + (@)t (BT Y.

(BT Ya (BT Ya =0

@) Indeed the first two equations have a nontrivial solution "Qg, '@, if

F% =

(@)% ()2 @ 2 7 2 +(ER)?(WF? Yy +(aF)? ((HF2 Y,

(GRF* Yy (&F¥? Y, =0

(@) Indeed the first two equations have a nontrivial solution "Q,,"Q, if
0y, =

(6%)° (@) ° 0y ° @ ° + (W) @HF® Y +(FH)° @H®RT° Y

(@%RF° Y% (#F° ™% =0

(@) Indeed the first two equations have a nontrivial solution "Q,, Qs if
oY, =

(6%) * (655)* 0y * s (@) (GET Y + (W) (@HT X

(T Y (BF* ¥ =0
WWW.ijmer.com
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577
(a) Indeed the first two equations have a nontrivial solution "Qg, Qg if
oY, =
(C5)° (6B)° s ° o 5 + (GBS [GHI® Yo +(@H)°(CHI® Yo +
(@%F° Yo (RF° Y =0 575

(a) Indeed the first two equations have a nontrivial solution "@,, Qs if
oY =
(6%)°(aFB)° oy ° g ® H(GH)C(EHT® Y +(GHB)C(HT® ¥ +
(@BF° ¥ (FBF°® Y =0
Definition _and unigueness of T;,; :- 579
After hypothesis "Q0 < 0,"QH> > 0 and the functions (¢f** Y, being increasing, it follows that there exists
aunique "Y, forwhich "Q"Y, = 0. With this value , we obtain from the three first equations
"Qy = iz 1"y "Qs = is 14

PTO@R) T AEBI ° T @) T H@EET e
Definition _and unigueness of T;; :- 580
After hypothesis "Q0 < 0,"QH> > 0 and the functions (¢£f*? Y, being increasing, it follows that there exists
aunique T;7 for which "QT;; = 0. With this value , we obtain from the three first equations

581

Qg = e %G1y Qg = g 2 Gy 582

67 (@R 2 +eRF2 Ti 87 (@) 2 +eRF? Tiy
Definition_and unigueness of T,; :- 583
After hypothesis "Q0 < 0,"QH> > 0 and the functions (GE** Y, being increasing, it follows that there exists
aunique "Y; for which "Q"Y; = 0. With this value , we obtain from the three first equations
"Qp = dpo 2 "Q, = ip2 2

07 @B +@HT: h 27 B3 H@BTE N
Definition _and unigueness of T,s :- 584
After hypothesis "Q0 < 0,"QH> > 0 and the functions (¢&f** “Ys being increasing, it follows that there exists
aunique “Ys for which "Q"Y; = 0. With this value , we obtain from the three first equations
"Qy = s 4G5 Qg = ipe * Qs

AT EET Y 67 (@) BT Vs
Definition _and unigueness of Tyq :- 585
After hypothesis "Q0 < 0,"QH> > 0 and the functions (¢ Y, being increasing, it follows that there exists
aunique "Yy for which "Q"Y, = 0. With this value , we obtain from the three first equations
Qg = ps 5 Qo "Q = im0 Qo

GG A 07 (B 5 +HT® Yo
Definition _and unigueness of Ts5 :- 586
After hypothesis "Q0 < 0,"QH> > 0 and the functions (¢ “Y; being increasing, it follows that there exists
aunique "Y; for which "Q"Y; = 0. With this value , we obtain from the three first equations
"Q — (1)32 6"@3 "Q _ (1)34 6 Qs

S ARG LS 4T @) S HEET N
(e) By the same argument, the eguations of global system admit solutions "Q;, "Q, if 587
cO=(B)PEH)?T Qs Y@, t )
(aB) * (7Tt O+ (af) * (aBF' O +(aEF' O(ufiFt 0 =0
Where in "O°Q3,"Q4, " Qs , 'Qs, "Q5 must be replaced by their values from 96. It is easy to see that 3 is a decreasing
function in "Q, taking into account the hypothesis « 0 >0, H < 0 it follows that there exists a unique "G,
suchthate "0 =0
) By the same argument, the equations 92,93 admit solutions "Qg, '@, if 588
3:@?9 ZSJf%)Z(Jf%)2~ dlsf Q7 ? _ ~
(6f8) 2 (5T > Qo + (6F) * (cfF? "Q +(CRF* Qo (cBF* "Q =0 .
Wherein "Qy "Qg,"Q;, Qg ,"Qg, Qg must be replaced by their values from 96. It is easy to see that 3 isa 590
decreasing function in “Q; taking into account the hypothesis 3 0 >0, H < 0 it follows that there exists a
unique Gi, suchthatz "Qy © =0
@ By the same argument, the equations of the global system admit solutions "Q,,"Q, if 591

e :SC‘%)S(C‘%)3~ 0o ~3 Gy ° _ ~

(5) ° (6517 ° "Qs +(63) ° (WFHF° Qs +(cHT® Qs (FF° Qs =0

Where in "Q; "Qy, 091, Q, ,"Qp, '@, must be replaced by their values from 96. It is easy to see that 3 isa
decreasing function in "Q; taking into account the hypothesis « 0 >0, H < 0 it follows that there exists a
unique "G, suchthate "Q; ° =0
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(h) By the same argument, the equations of the global system admit solutions "Q,, "Qs if

e =~(d§1)4(@%)4~ d&4~4 s - -

(a$3) * (65T * @ +(6%) * (FF* "Q +(HT* "Qr (BT @ =0

Wherein "Q; "Q,,"Qs,"Qg , Qy, Qg must be replaced by their values . It is easy to see that 3 is a decreasing
function in "Qs taking into account the hypothesis « 0 >0, H < 0 it follows that there exists a unique "Gs
suchthate "Q; * =0

(i By the same argument, the global equations admit solutions "Qg, "Qq if

* QG =~(dg%)5(dgg)5~ d&ef Gy ° - -

(658) ° (6BF° "Q +(6%)° (RF° "Q +(HRY° "Q (BBF° Q@ =0

Wherein "Q; "Qg,"Qq,'Qp ,"Qg, '@, must be replaced by their values from 96. It is easy to see that 3 isa
decreasing function in "Qq taking into account the hypothesis « 0 >0, Hb <0 it follows that there exists a
unique "Gq such thate "Q; ° =0

()] By the same argument, the global equations admit solutions "Q,,"Q; if

':Qs :S(@%)e(@%)6~ 0’%2~6 Gz ° . B
(6$) ° (6HBT°® Qs + (6H) ° (BF°® Qs +(HT® Qs (HBF° Q@ =0
Wherein "Qs "Q,,"Qsz,"Q, ,"Qy,"Q, must be replaced by their values from 96. It is easy to see that 3 isa
decreasing function in "Q; taking into account the hypothesis « 0 >0, H <0 it follows that there exists a
unique "@; suchthate "0 =0
Finally we obtain the unique solution of the global system:
‘Q, givenbye "0 =0,"Y, givenby'Q"Y, =0and
s LG

“Q — w13 4 “Q s i Q4
3 (dﬁ%)1+(w?%"’f1 Ny, BT (a%)u(u% 1Ty,

"Y Y4 "Y \f4
3 (wf%)l <uf%391 o BT (af%)l (uf%?l G
Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution
Gi; givenby3 "Qy * =0,T}; givenby™QT;; =0and

Gl = aze 2 Gy Gl = a;g 2 Gy
187 @R)2+@EF2 T, BT @R) 2 +EHRF? Ty
bis % Tiz z big 2 Tiy
Tz _ T, =
16 v g

0% 0RF? Qo T 6% ORF2 Qo
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution

"G, given by- "Q; © =0,"Y, givenby’ Q Yl =0and

“Q 3 Cél -Q s Ql
0~ (uﬁ%)h(uﬁ%% Y 22T (uﬁ%)h(w%s ¥

Yo = % "y, = e 1
07 (@) h (uﬁ%?S e BT @ T (w}ﬁs Qs°
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution

"Qs givenby e Q7 =0,"Y givenby QY. = 0and
* Gs

"Q @4 Q (*)26 4 qE
CT@@ET Y T T @B HET Y
4 4 o

Y Gp4 5 ); (e 5
T EF et T @) (B et
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution

"Qq given by ¢ Ql =0,"Y, givenby "Q"Y, = 0and
v 5 .‘q

"Q Gpg nq — 30 9

87 (@S +(w3%?5 Yo 0T @) HEHTS Yo

Y = \gg g = ‘:’.30~ 5 "\59
87 (@®s (@%?5 QL ° b0 T (@B)S @HBFS e

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

"Q; givenby ¢ Q5 =0, "Y; givenby’ Q ¥3 =0 and

"Q 0032 n@ Q3
2= (ué%)6+(w%%@f6 Ny T (oﬁ%)ﬁ +(w§%@f6 ¥
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"Y gB UY = 584 6 \g3
27 ()6 (‘*gffﬁ Qs * ! 4 &6 5F° Qs -

Obviously, these values represent an equilibrium solution
ASYMPTOTIC STABILITY ANALYSIS
Theorem 4:  If the conditions of the previous theorem are satisfied and if the functions (G & 'Q(GEy™
Belongto 6 ! (s .) then the above equilibrium point is asymptotically stable.
Proof:_Denote
Definition of Vg1 -

r\Q): nlcé)_'_ \,I o ’ u¥): rr%+ 1 '%

TRy .~ . NG ,

:).%;4 Yo = g ! ,—:)%Q 0 =ign

Then taking into account equations of global system neglecting the terms of power 2, we obtain

o " . . , "

,(;3 = (@) + Mz P Vpz+ Qg My Mz @0,
ol " . " , "

2= (@) My P Vgt Qg Mz Mg 1G04
o

o= ()T + s P Vis+ Qs TV s 1@l
m 5 N 5 ’ o
Tf: (of3) ! i3 1 T3+ Qs 1114 +BBys i 13 v ¥aV
m 5 N 5 ’ o
T;A: ()t g P T+ @ Y13 +BR; 01y 9 YoM
‘™ 7. N 5 , o
T;SZ (of2) * s 1 15+ Q@s 1134 +BRs 0 s g Ys Vg

If the conditions of the previous theorem are satisfied and if the functions (agy*? and (b Belong to
C 2 (a.) then the above equilibrium point is asymptotically stable

_Denote

Definition of V-1 -

HEF? 12 _ Gy
T =’ T QT =i

taking into account equations (global) and neglecting the terms of power 2, we obtain

dz_tle: (CF%)2 + Me 2 Mg+ Qs *Vyz  Mig °Glelyy
dz_tﬂz (@)% + My 2 Mpp+ Q7 My My 2Girlyy
dj_tls= (@)% + Mg 2 Mg+ Qg ?Miy  Mig ?Giglyy
d;_tle = (R)? s ? T+ Qg 2117 +BEe {16 wTieVa
d;_tn = ({®)2 iy 2 1+ Q7 216 +B¥ 117 CLTASS
d;_tls = (R)? g ? s+ Qg 217 +BEie 15 gTisV

If the conditions of the previous theorem are satisfied and if the functions (G} (&' Q(GE® Belong to
6 3 (a.) then the above equilibrium point is asymptotically stable.
_Denote
Definition of M -¢1 -
Q=G+l %= "%F g

3 (009793

T(;@L;Z”Yl = N TN Q" =iw

Then taking into account equations (global) and neglecting the terms of power 2, we obtain
‘Q.u%: (6) 3 + Mo 2 Moo+ o Mo Mo 2"Gpl2

‘9\;;1 = (B + M 3 Mo+ &y 3VMy M PGy

%: (GB)° + N 3 Mo+ G 3VMy M 3Gl

% = (@) iy > T+ G 1x+BEy i v YoVo

% = (E)° ix P Tat+ @y *10+BEyia g %1Va

%: (@®@)° iy P 1p+ @ 3151+ B | 22 g YoM

If the conditions of the previous theorem are satisfied and if the functions (¢ ¢&'Q(&EP* Belong to
6 4 (a.) then the above equilibrium point is asymptotically stable.
_Denote
Definition of Ml -¢1 -
Q="QtVn 6= h g
T—(:?i "\Zs = M 4 T—(:)?CZ Q" =i
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Then taking into account equations (global) and neglecting the terms of power 2, we obtain

Q\;;“ = (@)Y + Mg * VMpa+ Gy *VMos Mg 7G55

Q\;s = (@)Y + Mg * Mps+ Gy Mo Ms *Gsl5s

Q\;G = (@R + My * Vpe+ Gy *Mos  Moe *"Gelos

% = (@& i Mot Gy *1o5+BBy {20 o WMo

% = ()" is 4 15+ s * 120 +B%y {5 0¥V

%: (@) 4 ia * Toe+ Gy * 1,5 +B%y, i 5 9 ¥V

If the conditions of the previous theorem are satisfied and if the functions (¢ ¢&'Q(GEF°> Belong to
6 5 () then the above equilibrium point is asymptotically stable.
_Denote
Definition of Ml -¢1 -
"QFS Q+Ve %Y ';;SQ
TERTF° vy _ 1 (S5 o~z
Tw%?ég Yo = Mg ° o ?Gb @ =lwm
Then taking into account equations(global) and neglecting the terms of power 2, we obtain

o " . . , N

,(;8: (GF3)° + Mg ° Mog+ Gyg °VMog Mg ° "Gl
ol " . . , "

.Qfg: (GF)° + My ° Mag+ Gy Mag My ° Qglog
gu_(?: (GF)° + Nz > Mgg+ Gyg My NAzo ° "Goloo
%: (%) ° i ° 128"'(:%85129"'8328'28 o Y\
oj] 5. \ 5

ng: (N g 5 Tog+ Gy ° 128 +B8og i 29 0 Yol
oj] 5. \ 5

??o: () ° i30 ° Tg0+ Gy 5129+8328'30('g¥0“*

If the conditions of the previous theorem are satisfied and if the functions (G (&' Q(GE® Belong to
6 6 (a.) then the above equilibrium point is asymptotically stable.
_Denote
Definition of Ml -¢1 -
T(RFC o _ (& o~ 7
%\é}s—ﬂsse ﬁ Q- =iw
Then taking into account equations(global) and neglecting the terms of power 2, we obtain

oy " . . , N
sz— (GF)°® + Ny & Mg+ Gy %Mz Az ' Gulas
‘—9\;53 = (GB)° + Mgz ° Maz+ a3 ®Vazp  Mez ® "Gl
34 _ e\ 6 L6 “ 6 A6

9}; (6%)° + Nay Mgg+ Gys ®Mgg  Mag °Qulas
% = (@B)° i " Mat Gy C1u+BYy i ohVe
m 5. . 5 o
Tfe': (a3) © i3z & T3+ a3 15 +BHs i 23 0 sV
% = (a§)° fag & Tag+ @y 133 +BHg ia g YoM

The characteristic equation of this system is
_ b))t s P P H@EE) + s !
I (6 ) I 1 PR PR € I ¢ VI | PR @3

5. \ ’ 2 5 ’ 2
_ P!t i3 P g ™Mt s tis ™
+ P @) g P e TG+ @ P e TG,
5. \ ’ 2 5 ’ 2
_ P! i3 Pl 3™t Qs tigg s
2
1

+ (@B A e P b
_ 1t ‘4 (6B) L + (@) g T+, bt

+ P T+ (@)@ e P e b s TGS
I ) R T Qs ' Ay 1O+ g P s P s TGS
_ P!t i3 1 i1 15 Yo+ @y li13,15"Y3 }=0
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_ 2+ (®)?2 g 2 { _ 2+(@W@R®R)2+ N 2
2+ (@)% + M 2 My 26+ Q7 2 N 2 G

2 5. 2 \ 2 ’ z 5 2 z
_ ° +(uf}) l1s l17 17 Tiz+ @7 16 17 Tiy
2 vop \ 2 L2 o 2A2 2 a2z
+  _C+ (AR + My Me ~ Gis + Ws M7 © Gz
2 5. 2 \ 2 ’ z 5 2 z
— < +(uF) l16 l17 16 iz + W7 “ 116 16 Ti6

2 " " . .
2T+ (G2 My 2y 22
2 5, 7, \ \
2T+ (6R)? +(ufB)? g 2+ 17 2 _ 2
+ _ 2T+ ((R)Z BT+ e 2+ My 2 _ 2 g 26

+ _ 2+ ()2 + N 2 Qg % N7 267+ Q7 2 Qg 2 M 2 Gls

_ 2+ () g 2 {17, 18 Ti7 + @7 2i16,18T126}:0

R (% -5 I PP L o (% -) I S PP
B (7)1 Y PRI € I SR P
(@) P it @y fian
+ (@B N P o PG+ G P TG
(@) G it @y P20 Y
_32"' (CB)° +(CB)° + Mo >+ My 2 _°
Z° 4 (@B)° +(@F)3 iy 3+ 0y 2 _°

+ % T+ (@R AH@HE)I N PNy P % np G,

+ _ 3 (B2 + iy B G 2 My 3G+ Gy 3y PNy G

PRI i P i it Pl 2Y }=0
+
(@R e (@R My
@) Mt Mis TG s M PTG
B (/) R PYRR N PP " SRR TR RS 2
+ (BT s s TG+ Gy s TG
R (/) R PYRL N PP A N R [PYRPYRe 7
ST @) @) e st
_ ‘4 (@) * +(682) 4 iy *+ i 4 _ 4
+ 4 (GB)* +(CB)* + Mg * + M5 * % M PG

+ _ P @)+ Nyt e * Mos P Gs+ s 4 Qe P N PTG,

R CAN iog 15 26 Y5+ Qs “iog 26 }=0

+
P HER)S iy P { S @RS+ Ny °
= 2 H(EB)° + Mg ° Mo ° Qo+ Ge ° Mg ° G
_ (@) g ® Mg 00 Yo+ Qo g 20 Yo
+ % (B + M > Mg PG+ g 0 M ° G
_ S (@) g S Mg 8o+ Qo ®iog a8 Y
_° o+ (633)° +(GF]R)° + Mg °> + Mg ° _ °
=52+ (68R) ° +(aRR)° g >+ i ° _°
+ _° i (G33)° +(GF])° + Mg °> + Mo ° _ > Ny °'Q

+ _ % (@) + Mg ° o ° Moo >Gg+ Gpg ° Gyo ° Ny ° Gy

_CH(uR)°® g ° 129 30 Yo+t G 5i28,30"¥8 }=0
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Z (AR M O { P (&) Ny ©
PR+ N ® Mes PTGt @ © oM °TQ
(@B p Cia st Cia Y
+ OB+ Mg N PTG+ Gy © oM ° TG
@B i C it @ fin o
CO T @) @B Ny O N O 8
=62+ (6B)° +(GHB)® iy &+ & _ 6
+ _° 4 (CB)° +(B)°® + Npp ®+ Ngg ®° _° Mas °Q
+ 0B+ Nxp O oy % Mas PG+ Gy G © N °TG
(B ipp © gy st Pl s % }=0

And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and this proves
the theorem.
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