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I.  INTRODUCTION  
The wide range of applications of WMR in fields such as intelligent transportation, intelligent 

manufacturing, deep space exploration, and national defense construction is due to its high degree of motion 

accuracy, its fast movement capability, and its simple mechanical structure[1-5]. Ensuring precise and dependable 

trajectory tracking is paramount for WMR to execute its designated tasks. The physical limitations of actuator 

saturation and workspace, the prevalence of external interference, and model uncertainty all contribute to higher 

requirements for motion control of WMR in complex environments.  

In recent years, the problem of WMR trajectory tracking control has attracted extensive attention from 

many scholars, and related studies have emerged. In these studies, WMR systems are typically modeled as a 

class of unicycle systems, and non-complete constraints are introduced at the kinematic level to more accurately 

characterize their motion properties. In the literature [6], an anti-disturbance PID control strategy is proposed for 

solving the trajectory tracking control problem of WMR under unbalanced load. For instance, literature [7] 

utilizes backstepping control for a WMR based on a vision-based simultaneous localization and map building 

servo framework.Adaptive control is extensively employed for trajectory tracking control of WMRs. For 

example, literature [8] implements an adaptive approach based on a kinematic model of a mobile robot to 

transform the trajectory tracking control problem into a problem of adaptive update rate of uncertain parameters 

and virtual control input design. Additionally, fuzzy logic plays a significant role in addressing the uncertainty 

and inaccuracy inherent in WMR trajectory tracking, as it does not rely on an exact mathematical model. A 

study of a class of adaptive fuzzy control trajectory tracking controllers for wheeled inverted pendulum vehicle 

systems has been documented in the extant literature [9]. 

The robot control system is a constrained, nonlinear, and complex nonlinear system, and the 

aforementioned methods are difficult to solve the constraint problem of WMR.MPC is an effective means to 

solve the constraint control problem, and it is the only control method that explicitly deals with the system 

constraints at present[10].MPC has been widely used in the control of autonomous unmanned systems, such as 

underwater unmanned aerial vehicles, autonomous surface ships, autonomous unmanned aerial vehicles, 

unmanned vehicles, etc.[11-16].  

In this paper, we propose an enhanced MPC control strategy for the WMR tracking control system. 

This strategy is developed based on the WMR kinematic model and takes into account the practical constraints, 

such as actuator saturation and environmental state constraints. The MPC is designed to effectively address 

these constraints, while the Laguerre function is employed to minimize the computational burden of each batch, 

thereby enhancing the trajectory tracking accuracy. 
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II.  MATHEMATICAL MODEL OF WMR  
In this paper, we consider a standard WMR model, which is composed of two differential driving 

wheels and one power omnidirectional wheel, as illustrated in Figure 1. The vehicle coordinate system is 

denoted by { , , }x o y , the Cartesian coordinate system by { , , }X O Y , the center of mass of the WMR by o , the 

midpoint of the line connecting the two driving wheels of the WMR by r , and half of the distance between the 

two driving wheels by R . The robot heading angle is indicated by  .  

 

 
Figure 1: Schematic diagram of WMR 

  

In this study, the center of mass of the WMR in the Cartesian coordinate system is denoted by ( , )x y . 

Assuming that the wheeled mobile robot does not slip laterally, i.e., it cannot move in the direction of the axis of 

the driving wheel, the robot's velocity along the direction of the axis of the driving wheel is zero. This satisfies 

the non-holonomic constraints of pure rolling and no sliding as follows: 

 sin cos 0x y    (1) 

Thus the mathematical model of WMR subject to non-holonomic constraints can be expressed as: 

 ( , ) ( )q q S q     (2) 

where 3 1( , , )Tq x y     is the attitude vector of the WMR under { , , }X O Y , 2 1( , )T

a av     is the actual 

velocity vector, 
av  is the actual linear velocity, and 

a  is the actual angular velocity. 

Assume that there exists a virtual WMR under the Cartesian coordinate system, given a virtual global 

coordinate vector ( , , )T

r r r rq x y  , such that 
rv  and 

r  are the virtual linear and angular velocities. Then its 

corresponding virtual kinematic model is： 

 ( , ) ( )r r r r rq q S q     (3) 

where 3 1( , , )T

r r r rq x y    ， 2 1( , )T

r r rv    。 

Employing Taylor's formula, the kinematic model Eq.(3) is expanded at the reference point ( , )r rq  , 

with higher-order terms being disregarded in this process. The MWR error system can be obtained by 

differentiating Eq.(2) from Eq.(3): 

 ( ) ( )q A t q B t    (4) 

where 
3 2, ,

r
T
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r

x x

q q q e e e y y

 



 
          
  

， 2 1r a

r

r a

v v
  

 


 
    

 
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It is evident that the error system, given by Eq.(4), is a manageable entity. In order to carry out the 

design of the MPC controller, the error system Eq.(34) must be discretized with h  as the sampling time. The 

discretized prediction model is obtained as follows: 

 ( 1) ( ) ( )kh khq k A q k B k    (5) 
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In this paper, we assume that the matrices 
khA  and 

khB  are time-variant matrices, i.e., there are 

kh hA A  and 
kh hB B  at any moment. The augmented state matrix 5 1

( )
( )

( 1)

q k
x k

k

 
  

 
 is defined as 

follows. Subsequently, Eq.(5) will be utilized to derive the augmented state space model. 

 
( 1) ( ) ( )

( ) ( )

h h

h

x k A x k B k

y k C x k

    



 (6) 

where, 5 5

2 3 2 20

h h
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A
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,   3 5

3 3 0hC I 

  ,   denotes the system control 

input increment, while  ( ) ( ) ( 1) ( 1)
T

ck k k k N           is defined as the sequence of future 

control input increments at moment k  and 
cN  is the control time domain. 

 

III.  DESIGN OF THE LMPC CONTROLLER 
3.1 Laguerre function 

The z-transform of the discrete-time Laguerre network is as follows: 

 

1
2 1

1 1

1
( )

1 1

n

n

z
z

z z

 
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

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  
 (7) 

where   is the pole of the discrete Laguerre network and 0 1   ; n  is the rank of the discrete Laguerre 

network; ( )n z  is the n th Laguerre network, and the Laguerre function is defined as the inverse z-variation of 

the Laguerre network, and the sequence of the Laguerre function can be expressed in vector form as: 

  1 2( ) ( ) ( ) ( )
T

NL k l k l k l k  (8) 

where ( )( 1,2, , )jl k j N  is the standard orthogonal Laguerre function. 

The sequence of Laguerre functions satisfies the following difference equation in state-space form. 

 ( 1) ( )NL k L k    (9) 

where 2

0 (1 )   , 1 1

0(0) 1 ( 1)
T

N NL         . 

In particular, the Laguerre function becomes a series of impulse functions when 0  . 

  ( ) ( ) ( 1) ( 1)
T

L k k k k N       (10) 

Suppose that the impulse response of the discrete stabilized system at moment k  is ( )P k  , and for a 

given parameter N , ( )P k  can be expressed as: 

 
1 1 2 2( ) ( ) ( ) ( )N NP k c l k c l k c l k     (11) 

where ( 1,2, , )jc j N  is the Laguerre factor. 

3.2 Objective function 

Consider the control input increment after moment i  as the impulse response of the stabilized system 

and express it in the following form: 

  ( ) ( ) ( 1) ( 1)ck i i i i N           (12) 

where ( )i  in the above equation denotes the impulse function. 

According to Eq.(11), Eq.(12) can be approximated as: 

 
1

( ) ( ) ( ) ( )
N

T

j j

j

k i c i l k L k 


     (13) 

where  1 2

T

Nc c c   is a parameter vector consisting of N  Laguerre coefficients. Therefore, the 

problem of solving the optimal control increment ( )k i   is converted into a problem of solving the 

parameter vector  , thus reducing the number of controller optimization parameters. 

From Eq.(6) and Eq.(13), the state variables and output variables of the system at the moment m  after 

the moment k  are as follows: 

 
1( | ) ( ) ( )m T

hx k m k A x k m     (14) 

 
2( | ) ( ) ( )m T

h hy k m k C A x k m     (15) 
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where 
1
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Thus, the following system objective function is given: 

 
1

( | ) ( | )
pN

T T

m

J x k m k Qx k m k R


      (16) 

where Q  and R  are the weight matrices of the state and control inputs of the system, respectively, R  is the 

diagonal matrix with diagonal elements of a , and a  is the positive constant. 

If the value of the prediction time domain 
pN  is large enough, it can be obtained by substituting the 

sequence and Eq.(13) into Eq.(16): 

 
1

( | ) ( | )
pN

T T

L

i

J x k i k Qx k i k R 


     (17) 

Substituting Eq.(3) into Eq.(17) gives: 

 
1

2 ( ) ( )( ) ( )
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T T T T m m

h h

m

J x k x k A QA x k  
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where 
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1

1
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It can be seen that the third term in Eq.(18) is independent of  . Therefore, to minimize the 

performance index J  is essentially to minimize the sum of the first two terms, and the performance index can 

be rewritten as: 

 2 ( )T TJ x k      (19) 

3.3 Constrained optimal solution 

In order to prevent the problems of sudden torque change and unstable torque output of the drive motor 

caused by the sudden change of speed during WMR motion, it is necessary to constrain the speed and speed 

increment during the control process. To this end, the following input constraints are introduced. 

 
min max

min max

( ) , 0,1, , 1

( ) , 0,1, , 1

c

c

k m m N

k m m N
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  

       
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 (20) 

where 
min  and 

max  are the minimum and maximum values of the control quantity, respectively, 
min  and 

max  are the maximum and minimum values of the control increment. 

Without loss of generality, it follows from Eq.(13) and 
1

0

( ) ( )
k

i

k i 




   that the constraints of Eq.(20) 

can also be introduced into the Laguerre function, written as: 
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Therefore, for the error system Eq.(4), a quadratic programming problem for the MPC is formed to 

solve at the discrete sampling moment k : 

 

*

max1

min1

max2

min2

arg min 2 ( )

. .

T T

t
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M
s t

M

M



   



  

  
  


   
    
  
    

 (22) 
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where 
max  , 

min  , 
max  , 

min  are the set of maximum and minimum values of control increments and the 

set of maximum and minimum values of control quantities in the control time domain respectively. 

The above quadratic programming problem can be solved by existing well-established algorithms, 

where   is chosen to be a positive definite symmetric matrix of N N . The programming is a strictly convex 

quadratic programming problem, and if at least one of the vectors   satisfies the constraints and the 

performance index J  has a lower bound on the feasible domain, then the altered quadratic programming 

problem has a globally unique minimum value * . 

Based on Eqs.(12) and (13), the sequence of optimal control increments at moment k  can be obtained 

as: 

 * * * *( ) ( 1) ( 1)
T

ck k k N             (23) 

The MPC algorithm applies the first value of Eq.(3.22) as the actual control increment to the system, 

performing the following feedback correction: 

 * *( ) ( 1) ( )c k k k      (24) 

Therefore, the proposed control framework for improving MPC based on Laguerre function (LMPC) is 

shown in Figure 2. 

 

 
Figure 2: Control framework 

 

IV.  EXPERIMENTS AND DISCUSSIONS 
To verify the effectiveness of the LMPC strategy proposed in this paper. We are given a circular 

reference trajectory ( ) 2cosr rx t t , ( ) 2sinr ry t t  , ( )r rt t   , and the reference line velocity and angular 

velocity are 
2 2

r r rv x y  , 
r r  , respectively, and the WMR initial tracking error is 

 
T

(0) 0.5 0.5 0.1e   q . To illustrate the MPC controller's ability to handle the constraints, the experiments 

are performed with constraints on the velocity and velocity increment, where the assumptions are 
max

0.3 

rad/s, 
max

0.8v  m/s, the velocity increment  
T

0.2 0.5   , the MPC prediction time domain 10pN  , the 

control time domain 
6cN 

, and the sampling time 0.1sh  . 

 

Figure 3: Circular trajectory tracking error                                 Figure 4: Tracking error 
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              Figure 5: Linear velocity curve                             Figure 6: Angular velocity curve 

As illustrated in Figure 3, the tracking efficacy of the WMR for a circular reference trajectory is 

demonstrated in a simulation environment. It is evident that the control strategy presented in this study can be 

expeditiously adapted to track the upper reference trajectory, particularly in scenarios where the initial positional 

attitude is substantial. Furthermore, Figure 4 demonstrates that the tracking error converges towards a value of 

zero. As illustrated in Figures 5 and 6, the LMPC generates optimal velocities that are utilized as the control 

inputs for the WMR system. These velocities ensure compliance with the established velocity constraints, with 

linear velocity constraints being activated within the range of 3s to 4s. Concurrently, the WMR system 

converges towards the reference velocity for both linear and angular velocities following the tracking of the 

reference trajectory. 

 

V.  CONCLUSIONS  
This paper proposes a model predictive control method for trajectory tracking control of wheeled 

mobile robot, which takes the extended state space model of the system as the predictive model, under the 

condition of satisfying various types of constraints, adopts the Matlab quadratic programming function to 

optimize and solve the performance indexes, and introduces the Laguerre function to reconstruct the MPC 

algorithm, which can effectively reduce the computational load of the traditional periodical sampling MPC. The 

simulation tracking experiments for circular trajectories illustrate the superiority of the scheme in this paper. 
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